Research article

On generalized biderivations of Banach algebras

  • Received: 15 October 2024 Revised: 11 December 2024 Accepted: 20 December 2024 Published: 30 December 2024
  • MSC : 15A78, 46H25

  • The aim of this paper is to introduce the concept of generalized biderivations of unital Banach algebras and prove some results concerning generalized biamenability of unital Banach algebras. Let $ A $ and $ B $ be unital Banach algebras, and let $ X $ be a unital $ A $-$ B $-module. Let $ T = Tri(A, X, B) $ be the corresponding triangular Banach algebra. We also study the generalized biamenability of triangular Banach algebras and show that if $ X = \{0\} $ and $ T $ is generalized biamenable, then $ A $ and $ B $ are both generalized biamenable.

    Citation: Berna Arslan. On generalized biderivations of Banach algebras[J]. AIMS Mathematics, 2024, 9(12): 36259-36272. doi: 10.3934/math.20241720

    Related Papers:

  • The aim of this paper is to introduce the concept of generalized biderivations of unital Banach algebras and prove some results concerning generalized biamenability of unital Banach algebras. Let $ A $ and $ B $ be unital Banach algebras, and let $ X $ be a unital $ A $-$ B $-module. Let $ T = Tri(A, X, B) $ be the corresponding triangular Banach algebra. We also study the generalized biamenability of triangular Banach algebras and show that if $ X = \{0\} $ and $ T $ is generalized biamenable, then $ A $ and $ B $ are both generalized biamenable.



    加载中


    [1] W. G. Bade, P. C. Curtis, H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., 55 (1987), 359–377. https://doi.org/10.1093/plms/s3-55_2.359 doi: 10.1093/plms/s3-55_2.359
    [2] S. Barootkoob, Characterization of some biderivations on triangular Banach algebras, Facta Univ.-Ser. Math., 35 (2020), 929–937. https://doi.org/10.22190/FUMI2004929B doi: 10.22190/FUMI2004929B
    [3] S. Barootkoob, On $n$-weak biamenability of Banach algebras, Wavelets and Linear Algebra, 8 (2021), 37–47.
    [4] S. Barootkoob, S. Mohammadzadeh, Biamenability of Banach algebras and its applications, AUT Journal of Mathematics and Computing, 4 (2023), 129–136. http://doi.org/10.22060/AJMC.2022.21859.1115 doi: 10.22060/AJMC.2022.21859.1115
    [5] D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl., 431 (2009), 1587–1602. http://doi.org/10.1016/j.laa.2009.05.029 doi: 10.1016/j.laa.2009.05.029
    [6] M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077 doi: 10.1017/S0017089500008077
    [7] M. Bresar, W. S. Martindale 3rd, C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161 (1993), 342–357. https://doi.org/10.1006/jabr.1993.1223 doi: 10.1006/jabr.1993.1223
    [8] M. Bresar, Commuting maps: A survey, Taiwan. J. Math., 8 (2004), 361–397. http://doi.org/10.11650/twjm/1500407660 doi: 10.11650/twjm/1500407660
    [9] Y. Du, Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 4483–4499. https://doi.org/10.1016/j.laa.2013.02.017 doi: 10.1016/j.laa.2013.02.017
    [10] B. E. Forrest, L. W. Marcoux, Derivations on triangular Banach algebras, Indiana Univ. Math. J., 45 (1996), 441–462. http://doi.org/10.1512/IUMJ.1996.45.1147 doi: 10.1512/IUMJ.1996.45.1147
    [11] B. E. Johnson, Cohomology in Banach algebras, Memoirs Am. Math. Soc., 1972 (1972), 127. http://doi.org/10.1090/memo/0127 doi: 10.1090/memo/0127
    [12] B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284. https://doi.org/10.1112/blms/23.3.281 doi: 10.1112/blms/23.3.281
    [13] M. Mosadeq, On weak generalized amenability of triangular Banach algebras, J. Math. Ext., 8 (2014), 27–39.
    [14] V. Runde, Lectures on amenability, Heidelberg: Springer Berlin, 1 Eds., 2002. http://doi.org/10.1007/b82937
    [15] A. Zohri, A. Jabbari, Generalized derivations and generalized amenability of Banach algebras, U.P.B. Sci. Bull., Series A, 75 (2013), 137–144.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(106) PDF downloads(10) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog