The aim of this paper is to introduce the concept of generalized biderivations of unital Banach algebras and prove some results concerning generalized biamenability of unital Banach algebras. Let $ A $ and $ B $ be unital Banach algebras, and let $ X $ be a unital $ A $-$ B $-module. Let $ T = Tri(A, X, B) $ be the corresponding triangular Banach algebra. We also study the generalized biamenability of triangular Banach algebras and show that if $ X = \{0\} $ and $ T $ is generalized biamenable, then $ A $ and $ B $ are both generalized biamenable.
Citation: Berna Arslan. On generalized biderivations of Banach algebras[J]. AIMS Mathematics, 2024, 9(12): 36259-36272. doi: 10.3934/math.20241720
The aim of this paper is to introduce the concept of generalized biderivations of unital Banach algebras and prove some results concerning generalized biamenability of unital Banach algebras. Let $ A $ and $ B $ be unital Banach algebras, and let $ X $ be a unital $ A $-$ B $-module. Let $ T = Tri(A, X, B) $ be the corresponding triangular Banach algebra. We also study the generalized biamenability of triangular Banach algebras and show that if $ X = \{0\} $ and $ T $ is generalized biamenable, then $ A $ and $ B $ are both generalized biamenable.
[1] | W. G. Bade, P. C. Curtis, H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc., 55 (1987), 359–377. https://doi.org/10.1093/plms/s3-55_2.359 doi: 10.1093/plms/s3-55_2.359 |
[2] | S. Barootkoob, Characterization of some biderivations on triangular Banach algebras, Facta Univ.-Ser. Math., 35 (2020), 929–937. https://doi.org/10.22190/FUMI2004929B doi: 10.22190/FUMI2004929B |
[3] | S. Barootkoob, On $n$-weak biamenability of Banach algebras, Wavelets and Linear Algebra, 8 (2021), 37–47. |
[4] | S. Barootkoob, S. Mohammadzadeh, Biamenability of Banach algebras and its applications, AUT Journal of Mathematics and Computing, 4 (2023), 129–136. http://doi.org/10.22060/AJMC.2022.21859.1115 doi: 10.22060/AJMC.2022.21859.1115 |
[5] | D. Benkovic, Biderivations of triangular algebras, Linear Algebra Appl., 431 (2009), 1587–1602. http://doi.org/10.1016/j.laa.2009.05.029 doi: 10.1016/j.laa.2009.05.029 |
[6] | M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077 doi: 10.1017/S0017089500008077 |
[7] | M. Bresar, W. S. Martindale 3rd, C. R. Miers, Centralizing maps in prime rings with involution, J. Algebra, 161 (1993), 342–357. https://doi.org/10.1006/jabr.1993.1223 doi: 10.1006/jabr.1993.1223 |
[8] | M. Bresar, Commuting maps: A survey, Taiwan. J. Math., 8 (2004), 361–397. http://doi.org/10.11650/twjm/1500407660 doi: 10.11650/twjm/1500407660 |
[9] | Y. Du, Y. Wang, Biderivations of generalized matrix algebras, Linear Algebra Appl., 438 (2013), 4483–4499. https://doi.org/10.1016/j.laa.2013.02.017 doi: 10.1016/j.laa.2013.02.017 |
[10] | B. E. Forrest, L. W. Marcoux, Derivations on triangular Banach algebras, Indiana Univ. Math. J., 45 (1996), 441–462. http://doi.org/10.1512/IUMJ.1996.45.1147 doi: 10.1512/IUMJ.1996.45.1147 |
[11] | B. E. Johnson, Cohomology in Banach algebras, Memoirs Am. Math. Soc., 1972 (1972), 127. http://doi.org/10.1090/memo/0127 doi: 10.1090/memo/0127 |
[12] | B. E. Johnson, Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284. https://doi.org/10.1112/blms/23.3.281 doi: 10.1112/blms/23.3.281 |
[13] | M. Mosadeq, On weak generalized amenability of triangular Banach algebras, J. Math. Ext., 8 (2014), 27–39. |
[14] | V. Runde, Lectures on amenability, Heidelberg: Springer Berlin, 1 Eds., 2002. http://doi.org/10.1007/b82937 |
[15] | A. Zohri, A. Jabbari, Generalized derivations and generalized amenability of Banach algebras, U.P.B. Sci. Bull., Series A, 75 (2013), 137–144. |