This paper focuses on the stability analysis of additive time-varying delay systems. First, a bivariate quadratic reciprocally convex matrix inequality is derived, which serves as a generalization of traditional reciprocally convex inequalities. By applying the Lyapunov–Krasovskii functional method, this matrix inequality is incorporated to form a new stability criterion applicable to systems with additive time-varying delays. Finally, some numerical examples are presented to demonstrate the effectiveness of the theoretical results obtained.
Citation: Xiao Ge, Xinzuo Ma, Yuanyuan Zhang, Han Xue, Seakweng Vong. Stability analysis of systems with additive time-varying delays via new bivariate quadratic reciprocally convex inequality[J]. AIMS Mathematics, 2024, 9(12): 36273-36292. doi: 10.3934/math.20241721
This paper focuses on the stability analysis of additive time-varying delay systems. First, a bivariate quadratic reciprocally convex matrix inequality is derived, which serves as a generalization of traditional reciprocally convex inequalities. By applying the Lyapunov–Krasovskii functional method, this matrix inequality is incorporated to form a new stability criterion applicable to systems with additive time-varying delays. Finally, some numerical examples are presented to demonstrate the effectiveness of the theoretical results obtained.
[1] | W. B. Chen, F. Gao, Stability analysis of systems via a new double free-matrix based integral inequality with interval time-varying delay, Int. J. Syst. Sci., 50 (2019), 2663–2672. https://doi.org/10.1080/00207721.2019.1672118 doi: 10.1080/00207721.2019.1672118 |
[2] | X. Y. Liu, K. B. Shi, Further results on stability analysis of time-varying delay systems via novel integral inequalities and improved Lyapunov–Krasovskii functionals, AIMS Mathematics, 7 (2022), 1873–1895. https://doi.org/10.3934/math.2022108 doi: 10.3934/math.2022108 |
[3] | C. Y. Shi, K. Hoi, S. Vong, Improved reciprocally convex inequality for stability analysis of neural networks with time-varying delay, Neurocomputing, 527 (2023), 167–173. https://doi.org/10.1016/j.neucom.2023.01.048 doi: 10.1016/j.neucom.2023.01.048 |
[4] | T. H. Lee, J. H. Park, Improved criteria for sampled-data synchronization of chaotic Lur'e systems using two new approaches, Nonlinear Anal.-Hybri., 24 (2017), 132–145. https://doi.org/10.1016/j.nahs.2016.11.006 doi: 10.1016/j.nahs.2016.11.006 |
[5] | F. Long, L. Jiang, Y. He, M. Wu, Stability analysis of systems with time-varying delay via novel augmented Lyapunov-Krasovskii functionals and an improved integral inequality, Appl. Math. Comput., 357 (2019), 325–337. https://doi.org/10.1016/j.amc.2019.04.004 doi: 10.1016/j.amc.2019.04.004 |
[6] | L. F. Ma, Z. D. Wang, Y. R. Liu, F. E. Alsaadi, Exponential stabilization of nonlinear switched systems with distributed time-delay: An average dwell time approach, Eur. J. Control, 37 (2017), 34–42. https://doi.org/10.1016/j.ejcon.2017.05.003 doi: 10.1016/j.ejcon.2017.05.003 |
[7] | Z. C. Wang, W. He, J. Sun, G. Wang, J. Chen, Event-triggered control of switched nonlinear time-delay systems with asynchronous switching, IEEE T. Cybernetics, 54 (2024), 4348–4358. https://doi.org/10.1109/TCYB.2023.3312491 doi: 10.1109/TCYB.2023.3312491 |
[8] | J. Lam, H. J. Gao, C. H. Wang, Stability analysis for continuous systems with two additive time-varying delay components, Syst. Control Lett., 56 (2007), 16–24. https://doi.org/10.1016/j.sysconle.2006.07.005 doi: 10.1016/j.sysconle.2006.07.005 |
[9] | W. B. Chen, F. Gao, G. B. Liu, New results on delay-dependent stability for nonlinear systems with two additive time-varying delays, Eur. J. Control, 58 (2021), 123–130. https://doi.org/10.1016/j.ejcon.2020.07.004 doi: 10.1016/j.ejcon.2020.07.004 |
[10] | X. H. Ge, Comments and an improved result on "Stability analysis for continuous system with additive time-varying delays: A less conservative result", Appl. Math. Comput., 241 (2014), 42–46. https://doi.org/10.1016/j.amc.2014.04.082 doi: 10.1016/j.amc.2014.04.082 |
[11] | C. F. Shen, Y. Li, X. L. Zhu, W. Y. Duan, Improved stability criteria for linear systems with two additive time-varying delays via a novel Lyapunov functional, J. Comput. Appl. Math., 363 (2020), 312–324. https://doi.org/10.1016/j.cam.2019.06.010 doi: 10.1016/j.cam.2019.06.010 |
[12] | J. K. Tian, Z. R. Ren, S. M. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058 doi: 10.1016/j.aml.2019.106058 |
[13] | S. Y. Xu, J. Lam, B. Y. Zhang, Y. Zou, New insight into delay-dependent stability of time-delay systems, Int. J. Robust Nonlin., 25 (2015), 961–970. https://doi.org/10.1002/rnc.3120 doi: 10.1002/rnc.3120 |
[14] | T. F. Duan, W. Q. Gong, Q. Li, K. Wang, F. R. Sun, Improved $\mu$-state estimation for Markovian switching CVNNs with mixed delays: event-triggered mechanism, Int. J. Syst. Sci., 55 (2024), 1673–1692. https://doi.org/10.1080/00207721.2024.2316249 doi: 10.1080/00207721.2024.2316249 |
[15] | Z. R. Ren, J. K. Tian, Improved stability criterion for distributed time-delay systems via a generalized delay partitioning approach, AIMS Mathematics, 7 (2022), 13402–13409. https://doi.org/10.3934/math.2022740 doi: 10.3934/math.2022740 |
[16] | T. H. Lee, J. H. Park, A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined-function, Automatica, 80 (2017), 239–242. https://doi.org/10.1016/j.automatica.2017.02.004 doi: 10.1016/j.automatica.2017.02.004 |
[17] | P. Park, J. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014 |
[18] | Q. Li, W. Q. Gong, L. Z. Zhang, K. Wang, Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay, AIMS Mathematics, 7 (2022), 19458–19480. https://doi.org/10.3934/math.20221068 doi: 10.3934/math.20221068 |
[19] | G. R. Duan, H. H. Yu, LMIs in control systems: analysis, design and applications, Boca Raton: CRC Press, 2013. https://doi.org/10.1201/b15060 |
[20] | L. He, W. H. Wu, G. S. Yao, J. P. Zhou, Input-to-state stabilization of delayed semi-markovian jump neural networks via sampled-data control, Neural Process. Lett., 55 (2023), 3245–3266. https://doi.org/10.1007/s11063-022-11008-z doi: 10.1007/s11063-022-11008-z |
[21] | Y. B. Chen, Z. Zhang, Y. J. Liu, J. P. Zhou, Z. Wang, Resilient input-to-state stable filter design for nonlinear time-delay systems, Commun. Nonlinear Sci., 89 (2022), 105335. https://doi.org/10.1016/j.cnsns.2020.105335 doi: 10.1016/j.cnsns.2020.105335 |
[22] | C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov–Krasovskii functionals, IEEE T. Automat. Contr., 62 (2017), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381 |
[23] | J. K. Tian, Z. R. Ren, Y. M. Liu, New stability criteria for systems with an interval time-varying delay, AIMS Mathematics, 8 (2023), 1139–1153. https://doi.org/10.3934/math.2023057 doi: 10.3934/math.2023057 |
[24] | W. Kwon, B. Koo, S. M. Lee, Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems, Appl. Math. Comput., 320 (2018), 149–157. https://doi.org/10.1016/j.amc.2017.09.036 doi: 10.1016/j.amc.2017.09.036 |
[25] | A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030 |
[26] | A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using bessel–legendre inequalities, IEEE T. Automat. Contr., 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485 |
[27] | X. Ge, K. Hoi, S. Vong, A delay-variation-dependent stability criterion for discrete-time systems via a bivariate quadratic function negative-determination lemma, J. Franklin I., 359 (2022), 4976–4996. https://doi.org/10.1016/j.jfranklin.2022.04.023 doi: 10.1016/j.jfranklin.2022.04.023 |
[28] | F. Liu, H. T. Liu, Y. Li, D. Sidorov, Two relaxed quadratic function negative-determination lemmas: application to time-delay systems, Automatica, 147 (2023), 110697. https://doi.org/10.1016/j.automatica.2022.110697 doi: 10.1016/j.automatica.2022.110697 |
[29] | W. Q. Ji, J. B. Qiu, S. F. Su, H. T. Zhang, Fuzzy observer-based output feedback control of continuous-time nonlinear two-dimensional systems, IEEE T. Fuzzy Syst., 31 (2023), 1391–1400. https://doi.org/10.1109/TFUZZ.2022.3201282 doi: 10.1109/TFUZZ.2022.3201282 |
[30] | J. B. Qiu, W. Q. Ji, H. K. Lam, A new design of fuzzy affine model-based output deedback control for discrete-time nonlinear systems, IEEE T. Fuzzy Syst., 31 (2023), 1434–1444. https://doi.org/10.1109/TFUZZ.2022.3202360 doi: 10.1109/TFUZZ.2022.3202360 |
[31] | C. F. Shen, Y. Li, X. L. Zhu, W. Y. Duan, Improved stability criteria for linear systems with two additive time-varying delays via a novel Lyapunov functional, J. Comput. Appl. Math., 363 (2020), 312–324. https://doi.org/10.1016/j.cam.2019.06.010 doi: 10.1016/j.cam.2019.06.010 |
[32] | X. M. Yu, X. M. Wang, S. M. Zhong, K. B. Shi, Further results on delay-dependent sta bility for continuous system with two additive time-varying delay components, ISA T., 65 (2016), 9–18. https://doi.org/10.1016/j.isatra.2016.08.003 doi: 10.1016/j.isatra.2016.08.003 |
[33] | L. M. Ding, Y. He, M. Wu, Q. G. Wang, New augmented Lyapunov–Krasovskii functional for stability analysis of systems with additive time-varying delays, Asian J. Control, 20 (2018), 1663–1670. https://doi.org/10.1002/asjc.1641 doi: 10.1002/asjc.1641 |
[34] | H. T. Xu, C. K. Zhang, L. Jiang, J. Smith, Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional, Appl. Math. Model., 45 (2017), 955–964. https://doi.org/10.1016/j.apm.2017.01.032 doi: 10.1016/j.apm.2017.01.032 |
[35] | J. Lam, H. J. Gao, C. H. Wang, Stability analysis for continuous systems with two additive time-varying delay components, Syst. Control Lett., 56 (2007), 16–24. https://doi.org/10.1016/j.sysconle.2006.07.005 doi: 10.1016/j.sysconle.2006.07.005 |
[36] | H. J. Gao, T. W. Chen, J. Lam, A new delay system approach to network-based control, Automatica, 44 (2008), 39–52. https://doi.org/10.1016/j.automatica.2007.04.020 doi: 10.1016/j.automatica.2007.04.020 |
[37] | H. Y. Shao, Q. L. Han, On stabilization for systems with two additive time varying input delays arising from networked control systems, J. Franklin I., 349 (2012), 2033–2046. https://doi.org/10.1016/j.jfranklin.2012.03.011 doi: 10.1016/j.jfranklin.2012.03.011 |
[38] | J. M. Jiao, A stability criterion for singular systems with two additive time varying delay components, Int. J. Autom. Comput., 10 (2013), 39–45. https://doi.org/10.1007/s11633-013-0694-0 doi: 10.1007/s11633-013-0694-0 |
[39] | M. Liu, Y. He, M. Wu, J. H. Shen, Stability analysis of systems with two additive time-varying delay components via an improved delay interconnection Lyapunov-Krasovskii functional, J. Franklin I., 356 (2019), 3457–3473. https://doi.org/10.1016/j.jfranklin.2019.02.006 doi: 10.1016/j.jfranklin.2019.02.006 |
[40] | H. X. Wu, X. F. Liao, W. Feng, S. T. Guo, W. Zhang, Robust stability analysis of uncertain systems with two additive time-varying delay components, Appl. Math. Model., 33 (2009), 4345–4353. https://doi.org/10.1016/j.apm.2009.03.008 doi: 10.1016/j.apm.2009.03.008 |