This paper focuses on the stability analysis of additive time-varying delay systems. First, a bivariate quadratic reciprocally convex matrix inequality is derived, which serves as a generalization of traditional reciprocally convex inequalities. By applying the Lyapunov–Krasovskii functional method, this matrix inequality is incorporated to form a new stability criterion applicable to systems with additive time-varying delays. Finally, some numerical examples are presented to demonstrate the effectiveness of the theoretical results obtained.
Citation: Xiao Ge, Xinzuo Ma, Yuanyuan Zhang, Han Xue, Seakweng Vong. Stability analysis of systems with additive time-varying delays via new bivariate quadratic reciprocally convex inequality[J]. AIMS Mathematics, 2024, 9(12): 36273-36292. doi: 10.3934/math.20241721
[1] | Saak Gabriyelyan . Limited type subsets of locally convex spaces. AIMS Mathematics, 2024, 9(11): 31414-31443. doi: 10.3934/math.20241513 |
[2] | Mahmut Karakuş . Spaces of multiplier σ-convergent vector valued sequences and uniform σ-summability. AIMS Mathematics, 2025, 10(3): 5095-5109. doi: 10.3934/math.2025233 |
[3] | Xinwei Su, Shuqin Zhang, Lixin Zhang . Periodic boundary value problem involving sequential fractional derivatives in Banach space. AIMS Mathematics, 2020, 5(6): 7510-7530. doi: 10.3934/math.2020481 |
[4] | Imran Ali, Faizan Ahmad Khan, Haider Abbas Rizvi, Rais Ahmad, Arvind Kumar Rajpoot . Second order evolutionary partial differential variational-like inequalities. AIMS Mathematics, 2022, 7(9): 16832-16850. doi: 10.3934/math.2022924 |
[5] | Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152 |
[6] | Narjes Alabkary . Hyper-instability of Banach algebras. AIMS Mathematics, 2024, 9(6): 14012-14025. doi: 10.3934/math.2024681 |
[7] | Hasanen A. Hammad, Hassen Aydi, Maryam G. Alshehri . Solving hybrid functional-fractional equations originating in biological population dynamics with an effect on infectious diseases. AIMS Mathematics, 2024, 9(6): 14574-14593. doi: 10.3934/math.2024709 |
[8] | Muneerah Al Nuwairan, Ahmed Gamal Ibrahim . Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces. AIMS Mathematics, 2023, 8(5): 11752-11780. doi: 10.3934/math.2023595 |
[9] | Sara Smail, Chafika Belabbaci . A characterization of Wolf and Schechter essential pseudospectra. AIMS Mathematics, 2024, 9(7): 17146-17153. doi: 10.3934/math.2024832 |
[10] | Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali . On generalization of Petryshyn's fixed point theorem and its application to the product of n-nonlinear integral equations. AIMS Mathematics, 2023, 8(12): 30562-30573. doi: 10.3934/math.20231562 |
This paper focuses on the stability analysis of additive time-varying delay systems. First, a bivariate quadratic reciprocally convex matrix inequality is derived, which serves as a generalization of traditional reciprocally convex inequalities. By applying the Lyapunov–Krasovskii functional method, this matrix inequality is incorporated to form a new stability criterion applicable to systems with additive time-varying delays. Finally, some numerical examples are presented to demonstrate the effectiveness of the theoretical results obtained.
In this paper, we are interested in establishing the existence and nonexistence results of nontrivial solutions for the coupled fractional Schrödinger systems of Choquard type
{(−Δ)su+λ1u=(Iα∗|u|p)|u|p−2u+βvin RN,(−Δ)sv+λ2v=(Iα∗|v|p)|v|p−2v+βuin RN, | (1.1) |
where s∈(0,1), N≥3, α∈(0,N), p>1, λi>0 are constants for i=1, 2, β>0 is a parameter, and Iα(x) is the Riesz Potential defined as
Iα(x)=Γ(N−α2)Γ(α2)πN22α|x|N−α,x∈RN∖{0}, |
where Γ is the Gamma function.
Here, the nonlocal Laplacian operator (−Δ)s with s∈(0,1) of a function u:RN→R is expressed by the formula
(−Δ)su(x)=C(N,s)P.V.∫RNu(x)−u(z)|x−z|N+2sdz, |
where P.V. stand for the Cauchy principal value on the integral, and C(N,s) is some positive normalization constant (see [1] for details).
It can also be defined as a pseudo-differential operator
F((−Δ)sf)(ξ)=|ξ|2sF(f)(ξ)=|ξ|2sˆf(ξ), |
where F is the Fourier transform.
The problem (1.1) presents nonlocal characteristics in the nonlinearity as well as in the (fractional) diffusion because of the appearance of the terms (Iα∗|u|p)|u|p−2u and (Iα∗|v|p)|v|p−2v. This phenomenon raises some mathematical puzzles that make the study of such problems particularly interesting. We point out that when s=1, λ1=1, p=2, N=3, α=2 and β=0, (1.1) reduces to the Choquard-Pekar equation
−Δu+u=(I2∗|u|2)u,in R3, | (1.2) |
which appeared in 1954 by Pekar [2] describing a polaron at rest in the quantum theory. In 1976, Choquard [3] used this equation to model an electron trapped in its own hole and considered it as an approximation to Hartree-Fock theory of one-component plasma. Subsequently, in 1996 Penrose [4] investigated it as a model for the self-gravitating collapse of a quantum mechanical wave function; see also [5]. The first investigations for existence and uniqueness of ground state solutions of (1.2) go back to the work of Lieb [6]. Lions [7] generalized the result in [6] and proved the existence and multiplicity of positive solutions of (1.2). In addition, the existence and qualitative results of solutions of power type nonlinearities |u|p−2u and for more generic values of α∈(0,N) are discussed by variational method, where N≥3, see [8,9,10,11,12]. Under almost necessary conditions on the nonlinearity F in the spirit of H. Berestycki and P. L. Lions [13], Moroz and Schaftingen [14] considered the existence of a ground state solution u∈H1(RN) to the nonlinear Choquard equation
−Δu+u=(Iα∗F(u))F′(u),in RN. |
When s∈(0,1), Laskin [15] introduced the fractional power of the Laplace operator in (1.1) as an extension of the classical local Laplace operator in the study of nonlinear Schrödinger equations, replacing the path integral over Brownian motions with Lévy flights [16]. This operator has concrete applications in a wide range of fields, see [1,17] and the references therein. Equations involving the fractional Laplacian together with local nonlinearities and the system of weakly coupled equations has been investigated extensively in recent years, and some research results can be found in [18,19,20,21].
When β=0, the system (1.1) can be reduced to two single Choquard equations
(−Δ)su+λ1u=(Iα∗|u|p)|u|p−2uin RN | (1.3) |
and
(−Δ)sv+λ2v=(Iα∗|v|p)|v|p−2vin RN. | (1.4) |
Equations (1.3) and (1.4) arise from the search for standing wave solutions of the following time-dependent fractional Choquard equation:
i∂Ψ∂t=(−Δ)sΨ+λΨ−(Iα∗|Ψ|p)|Ψ|p−2Ψ,(t,x)∈R+×RN, |
where i denotes the imaginary unit.
In [22], by minimizing
S(u)=‖(−Δ)s2u‖22+λ1‖u‖22(∫RN(Iα∗|u|p)|u|p)1p |
on Hs(RN)∖{0}, the authors obtained the existence of ground state solution of (1.3) with p∈(1+αN,N+αN−2s) (see [22, Theorem 4.2]).
Of course, scalar problems can be extended to systems. It is easy to see that the system (1.1) can be regarded as a counterpart of the following systems with standard Laplace operator
{−Δu+u=(Iα∗|u|p)|u|p−2u+λvin RN,−Δv+v=(Iα∗|v|p)|v|p−2v+λuin RN. |
In [23], Chen and Liu studied the systems of Choquard type, when p∈(1+αN,N+αN−2), they obtained the existence of ground state solutions of the systems. Yang et al. [24] considered the corresponding critical case.
Motivated by the above mentioned works, in this paper, we aim to study the existence of positive ground state solutions of the systems (1.1). This class of systems has two new characteristics: One is the presence of the fractional Laplace and the Choquard type functions which are nonlocal, the other is its lack of compactness inherent to problems defined on unbounded domains. In order to overcome such difficulties, next we introduce a special space where we are able to recover some compactness.
First we use ‖⋅‖p denote the norm of Lp(RN) for any 1≤p<∞. The Hilbert space Hs(RN) is defined by
Hs(RN):={u∈L2(RN):∫RN∫RN|u(x)−u(z)|2|x−z|N+2sdxdz<+∞} |
with the scalar product and norm given by
⟨u,v⟩:=∫RN(−Δ)s2u(−Δ)s2vdx+∫RNuvdx,‖u‖:=(‖(−Δ)s2u‖22+‖u‖22)12, |
where
‖(−Δ)s2u‖22:=C(N,s)2∫RN∫RN|u(x)−u(z)|2|x−z|N+2sdxdz. |
The radial space Hsr(RN) of Hs(RN) is defined as
Hsr(RN):={u∈Hs(RN)|u(x)=u(|x|)} |
with the Hs(RN) norm.
Let
‖u‖2λi:=‖(−Δ)s2u‖22+λi‖u‖22,i=1,2 |
for convenience. It is easy to obtain that ‖⋅‖λi and ‖⋅‖ are equivalent norms in Hs(RN). Denote H:=Hs(RN)×Hs(RN) and Hr:=Hsr(RN)×Hsr(RN). The norm of H is given by
‖(u,v)‖2H=‖u‖2λ1+‖v‖2λ2,for all (u,v)∈H. |
The energy functional Eβ associated to (1.1) is
Eβ(u,v)=12∫RN[|(−Δ)s2u|2+|(−Δ)s2v|2+λ1|u|2+λ2|v|2]dx−12p∫RN(Iα∗|u|p)|u|pdx−12p∫RN(Iα∗|v|p)|v|pdx−β∫RNuvdx,for all (u,v)∈H. | (1.5) |
It is easy to obtain that Eβ∈C1(H,R) and
⟨E′β(u,v),(φ,ψ)⟩=∫RN[(−Δ)s2u(−Δ)s2φ+(−Δ)s2v(−Δ)s2ψ+λ1uφ+λ2vψ]dx−∫RN(Iα∗|u|p)|u|p−2uφdx−∫RN(Iα∗|v|p)|v|p−2vψdx−β∫RN(vφ+uψ)dx | (1.6) |
for all (φ,ψ)∈H.
(u,v) is called a nontrivial solution of (1.1) if uβ≢0, vβ≢0 and (u,v)∈H solves (1.1). A positive ground state solution (u,v) of (1.1) is a nontrivial solution of (1.1) such that u>0, v>0 which has minimal energy among all nontrivial solutions. In order to find positive ground state solutions of (1.1), we need to investigate the existence of the minimum value of Eβ, defined in (1.5) under the Nehari manifold constraint
Nβ={(u,v)∈H∖{(0,0)}:⟨E′β(u,v),(u,v)⟩=0}. | (1.7) |
Define
mβ=inf |
Furthermore, define E_{0, i}:H^{s}(\mathbb{R}^{N})\to \mathbb{R} by
\begin{equation} E_{0, i}(u) = \frac{1}{2}\int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u|^{2}dx+\frac{\lambda_{i}}{2}\int_{\mathbb{R}^{N}}u^{2}dx-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}dx, \ \ i = 1, 2. \end{equation} | (1.8) |
We introduce the Nehari manifolds
\begin{equation} \mathcal{N}_{0, i}: = \left\{u\in H^{s}(\mathbb{R}^{N})\setminus \{0\}: \|(-\Delta)^{\frac{s}{2}}u\|^{2}_{2}+\lambda_{i}\|u\|^{2}_{2}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}dx = 0\right\}, \ \ i = 1, 2. \end{equation} | (1.9) |
A ground state solution of (1.3) (or (1.4)) is a solution with minimal energy E_{0, 1} (or E_{0, 2} ) and can be characterized as
\begin{equation*} \min\limits_{u\in \mathcal{N}_{0, 1}}E_{0, 1}(u)\ (or \min\limits_{u\in \mathcal{N}_{0, 2}}E_{0, 2}(u)). \end{equation*} |
The main results of our paper are the following.
Theorem 1.1. Suppose s\in(0, 1), \ N\geq 3, \ \alpha\in(0, N) and p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) , then the system (1.1) possesses a positive radial ground state solution (u_{\beta}, v_{\beta})\in \mathcal{N}_{\beta} with E_{\beta}(u_{\beta}, v_{\beta}) = m_{\beta} > 0 for any 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} . Moreover, (u_{\beta}, v_{\beta})\to(u_{0}, v_{0}) in H as \beta\to 0^+ , where (u_{0}, v_{0}) is a positive radial ground state solution for the system (1.1) with \beta = 0, namely, u_{0} and v_{0} are positive radial ground state solutions to problems (1.3) and (1.4), respectively.
Remark 1.1. In comparison with [19], this paper has several new features. Firstly, the system (1.1) contains the Choquard type terms which are more difficult to deal with. Secondly, Lemma 3.11 in [19] shows that (u_{\beta}, v_{\beta})\to (u_{0}, v_{0}) in H as \beta\to 0^+ , where either v_{0}\equiv 0 and u_{0} is a ground state solution to one single equation, or u_{0}\equiv 0 and v_{0} is a ground state solution to the other single equation. While we prove that (u_{0}, v_{0}) is a positive radial ground state solution for the system (1.1) with \beta = 0. Finally, the difference in asymptotic behavior is that it is obtained in this paper that u_{0} > 0 and v_{0} > 0 are positive radial ground state solutions to problems (1.3) and (1.4), respectively (see Theorem 1.3 in [19]).
Finally, by using the Pohožaev identity (4.1) of the system (1.1), we have the following non-existence result.
Theorem 1.2. Suppose p\ge\frac{\alpha+N}{N-2s} or p\leq 1+\frac{\alpha}{N} , then the system (1.1) does not admit non-trivial solutions.
Remark 1.2. According to Theorem 1.2, we can know that the range of p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) is optimal for the existence of nontrivial solutions to the system (1.1).
The rest of this paper is as following. In Section 2, we introduce some preliminary results and notions. In Section 3, we obtain the existence of ground state solutions of the system (1.1) and we also investigate their asymptotic behaviour. In Section 4, we get the nonexistence result.
Throughout this paper, we use " \rightarrow " and " \rightharpoonup " to denote the strong convergence and weak convergence in the correlation function space, respectively. o_{n}(1) denotes a sequence which converges to 0 as n\to \infty . C will always denote a positive constants, which may vary from line to line.
It is well known that the following properties which follow from the fractional Sobolev embedding
H^{s}(\mathbb{R}^{N})\hookrightarrow L^{q}(\mathbb{R}^{N}), \quad q\in[2, 2^{*}_{s}], \ \text{where} \ 2^{*}_{s}: = \frac{2N}{N-2s}. |
If 1+\frac{\alpha}{N} < p < \frac{\alpha+N}{N-2s} , we have that 2 < \frac{2Np}{N+\alpha} < 2^{*}_{s} , the space H^{s}_{r}(\mathbb{R}^{N}) compactly embedded into L^{\frac{2Np}{N+\alpha}}(\mathbb{R}^{N}) .
First of all, let us recall the Hardy-Littlewood-Sobolev inequality.
Lemma 2.1. (Hardy-Littlewood-Sobolev inequality [23]) Let 0 < \alpha < N , r, \ q > 1 and 1\leq s < t < \infty be such that
\frac{1}{r}+\frac{1}{q} = 1+\frac{\alpha}{N}, \quad \frac{1}{s}-\frac{1}{t} = \frac{\alpha}{N}. |
(i) For any u\in L^{r}(\mathbb{R}^{N}) and v\in L^{q}(\mathbb{R}^{N}) , we have
\begin{equation} \left|\int_{\mathbb{R}^{N}}(I_{\alpha}*u)v\right|\leq C(N, \alpha, q)\|u \|_{r}\|v \|_{q}. \end{equation} | (2.1) |
If p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) and r = q = \frac{2N}{N+\alpha} , then
\begin{equation} \left|\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}\right|\leq C(N, \alpha, p)\|u \|^{2p}_{\frac{2Np}{N+\alpha}}, \end{equation} | (2.2) |
where the sharp constant C(N, \alpha, p) is
C(N, \alpha, p) = C_{\alpha}(N) = \pi^{\frac{N-\alpha}{2}}\frac{\Gamma(\frac{\alpha}{2})}{\Gamma(\frac{N+\alpha}{2})}\left\{\frac{\Gamma(\frac{N}{2})}{\Gamma(N)}\right\}^{-\frac{\alpha}{N}}. |
(ii) For any u\in L^{s}(\mathbb{R}^{N}) , we have
\begin{equation} \|I_{\alpha}*u \|_{t}\leq C(N, \alpha, s)\|u \|_{s}. \end{equation} | (2.3) |
Here, C(N, \alpha, s) is a positive constant which depends only on N , \alpha and s , and satisfies
\limsup\limits_{\alpha\to 0}\alpha C(N, \alpha, s)\leq\frac{2}{s(s-1)}\omega_{N-1}, |
where \omega_{N-1} denotes the surface area of the N-1 dimensional unit sphere.
Next, the following result is crucial in the proof of the Theorem 1.1.
Lemma 2.2. Assumption N\in \mathbb{N} , 0 < \alpha < N and p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) . Let \{u_{n}\}\subset H^{s}(\mathbb{R}^{N}) be a sequence satisfying that u_{n}\rightharpoonup u weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty , then
\begin{equation} \lim\limits_{n \to \infty}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}-u|^{p})|u_{n}-u|^{p} = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}. \end{equation} | (2.4) |
To show Lemma 2.2, we state the classical Brezis-Lieb lemma [25].
Lemma 2.3. Let \Omega \subseteq \mathbb{R}^{N} be an open subset and 1\leq r < \infty . If
(i) \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{r}(\Omega) .
(ii) u_{n}\rightarrow u almost everywhere on \Omega as n\to \infty , then for every q\in[1, r] ,
\begin{equation} \lim\limits_{n \to \infty}\int_{\Omega}||u_{n}|^{q}-|u_{n}-u|^{q}-|u|^{q}|^{\frac{r}{q}} = 0. \end{equation} | (2.5) |
Here we also need to mention sufficient conditions for weak convergence (see for example [25, Proposition 4.7.12]).
Lemma 2.4. Assume \Omega be an open subset of \mathbb{R}^{N} , 1 < q < \infty and the sequence \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{q}(\Omega) . If u_{n}\rightarrow u almost everywhere on \Omega as n\to \infty , we have that u_{n}\rightharpoonup u weakly in L^{q}(\Omega) .
In view of Lemmas 2.3 and 2.4 we have the following proof.
Proof of Lemma 2.2. For every n\in \mathbb{N} . We have that
\begin{equation*} \begin{split} \int_{\mathbb{R}^{N}}&(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}-u|^{p})|u_{n}-u|^{p}\\ = &\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))(|u_{n}|^{p}-|u_{n}-u|^{p})\\ &+2\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))|u_{n}-u|^{p}. \end{split} \end{equation*} |
Since 1+\frac{\alpha}{N} < p < \frac{\alpha+N}{N-2s} , we have that 2 < \frac{2Np}{N+\alpha} < 2^{*}_{s} , then the space H^{s}(\mathbb{R}^{N}) is embedded continuously in L^{\frac{2Np}{N+\alpha}}(\mathbb{R}^{N}) . Moreover, u_{n}\rightharpoonup u weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty . Thus, the sequence \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{\frac{2Np}{N+\alpha}}(\mathbb{R}^{N}) . By (2.5) with q = p and r = \frac{2Np}{N+\alpha} , we have that
\begin{equation*} |u_{n}|^{p}-|u_{n}-u|^{p}\to |u|^{p} \end{equation*} |
strongly in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) as n\to\infty . By (2.3), we have that I_{\alpha} defines a linear continuous map from L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) to L^{\frac{2N}{N-\alpha}}(\mathbb{R}^{N}) , then
\begin{equation*} I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p})\to I_{\alpha}* |u|^{p} \end{equation*} |
in L^{\frac{2N}{N-\alpha}}(\mathbb{R}^{N}) as n\to\infty . By (2.2), we have
\begin{equation*} \int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))(|u_{n}|^{p}-|u_{n}-u|^{p}) = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+o_{n}(1). \end{equation*} |
In view of Lemma 2.4, we get |u_{n}-u|^{p}\rightharpoonup0 weakly in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) as n\to\infty . Thus,
\begin{equation*} \int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p}-|u_{n}-u|^{p}))|u_{n}-u|^{p} = o_{n}(1). \end{equation*} |
The proof is thereby complete.
Lemma 2.5. Let 0 < \alpha < N , p\in(1+\frac{\alpha}{N}, \frac{\alpha+N}{N-2s}) and the sequence \{u_{n}\}_{n\in\mathbb{N}}\subset H^{s}(\mathbb{R}^{N}) be such that u_{n}\rightharpoonup u\in H^{s}(\mathbb{R}^{N}) weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty . Let \phi\in H^{s}(\mathbb{R}^{N}) , we have
\begin{equation} \lim\limits_{n \to \infty}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p-2}u_{n}\phi = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p-2}u\phi. \end{equation} | (2.6) |
Proof. Since u_{n}\rightharpoonup u weakly in H^{s}(\mathbb{R}^{N}) as n\to\infty , then u_{n}\rightarrow u a.e. in \mathbb{R}^{N} . By the fractional Sobolev embedding H^{s}(\mathbb{R}^{N})\hookrightarrow L^{q}(\mathbb{R}^{N}) with q\in[2, 2^{*}_{s}] , we see that \{u_{n}\}_{n\in\mathbb{N}} is bounded in L^{2}(\mathbb{R}^{N})\cap L^{2^{*}_{s}}(\mathbb{R}^{N}) . Since 2 < \frac{2Np}{N+\alpha} < 2^{*}_{s} , then \{|u_{n}|^{p}\} and \{|u_{n}|^{q-2}u_{n}\} are bounded in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) and L^{\frac{q}{q-1}}(\mathbb{R}^{N}) with q\in [2, 2^{*}_{s}] , respectively, up to a subsequence, we get
\begin{equation*} |u_{n}|^{q-2}u_{n}\rightharpoonup |u|^{q-2}u\ \text{weakly in}\ L^{\frac{q}{q-1}}(\mathbb{R}^{N}), \end{equation*} |
\begin{equation} |u_{n}|^{p}\rightharpoonup |u|^{p}\ \text{weakly in}\ L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}). \end{equation} | (2.7) |
In view of the Rellich theorem, u_{n}\rightarrow u in L^{t}_{loc}(\mathbb{R}^{N}) for t\in [1, 2^{*}_{s}) and |u_{n}|^{p-2}u_{n}\rightarrow |u|^{p-2}u in L^{\frac{2Np}{(p-1)(N+\alpha)}}_{loc}(\mathbb{R}^{N}) (see [26, Theorem A.2]), then we have that |u_{n}|^{p-2}u_{n}\phi\rightarrow |u|^{p-2}u\phi in L^{\frac{2N}{N+\alpha}}(\mathbb{R}^{N}) for any \phi\in C^{\infty}_{0}(\mathbb{R}^{N}) , where C^{\infty}_{0}(\mathbb{R}^{N}) denotes the space of the functions infinitely differentiable with compact support in \mathbb{R}^{N} . By (2.3), we get
\begin{equation} I_{\alpha}*(|u_{n}|^{p-2}u_{n}\phi)\rightarrow I_{\alpha}*(|u|^{p-2}u\phi) \end{equation} | (2.8) |
in L^{\frac{2N}{N-\alpha}}(\mathbb{R}^{N}) . Therefore, by (2.7) and (2.8) we get
\begin{equation*} \begin{aligned} &\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p-2}u_{n}\phi-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p-2}u\phi\\ = &\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u_{n}|^{p-2}u_{n}\phi))|u_{n}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u|^{p-2}u\phi))|u|^{p}\\ = &\int_{\mathbb{R}^{N}}\left[I_{\alpha}*(|u_{n}|^{p-2}u_{n}\phi)-I_{\alpha}*(|u|^{p-2}u\phi)\right]|u_{n}|^{p}\\ \qquad\quad&+\int_{\mathbb{R}^{N}}(I_{\alpha}*(|u|^{p-2}u\phi))(|u_{n}|^{p}-|u|^{p})\\ \rightarrow &\ 0 \end{aligned} \end{equation*} |
as n\to \infty . Since C^{\infty}_{0}(\mathbb{R}^{N}) is dense in H^{s}(\mathbb{R}^{N}) , we reach the conclusion.
Lemma 2.6. (see [27, Theorem 3.7]) Let f , g and h be three non-negative Lebesgue measurable functions on \mathbb{R}^{N} . Let
W(f, g, h): = \int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}f(x)g(y)h(x-y)dxdy, |
we get
W(f^{*}, g^{*}, h^{*})\ge W(f, g, h), |
where f^{*} , g^{*} and h^{*} denote the symmetric radial decreasing rearrangement of f , g and h .
Lemma 2.7. (see [22, Theorem 1.1]) Under the assumptions of Theorem 1.1, there exists a ground state solution u\in H^{s}(\mathbb{R}^{N}) ( v\in H^{s}(\mathbb{R}^{N}) ) to problem (1.3) (1.4) which is positive, radially symmetric. Moreover, the minima of the energy functional E_{0, 1} ( E_{0, 2} ) on the Nehari manifold \mathcal{N}_{0, 1} ( \mathcal{N}_{0, 2} ) defined in (1.9) satisfies \min _{u\in \mathcal{N}_{0, 1}}E_{0, 1}(u) > 0 ( \min _{u\in \mathcal{N}_{0, 2}}E_{0, 2}(u) > 0 ).
For any (u, v)\in \mathcal{N}_{\beta}, we have
\begin{equation*} \begin{split}E_{\beta}(u, v)& = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uvdx\right)\\ & = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}dx+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}dx\right). \end{split} \end{equation*} |
This shows that E_{\beta} is coercive on \mathcal{N}_{\beta} . Next we show, through a series of lemmas, that m_{\beta} is attained by some (u, v)\in\mathcal{N}_{\beta} which is a critical point of E_{\beta} considered on the whole space H , and therefore a ground state solution to (1.1).
We begin with some basic properties of E_{\beta} and \mathcal{N}_{\beta} .
Lemma 3.1. For every (u, v)\in H\setminus \{(0, 0)\} , there exists some t > 0 such that (tu, tv)\in\mathcal{N}_{\beta} .
Proof. Indeed, (tu, tv)\in\mathcal{N}_{\beta} is equivalent to
\|(tu, tv)\|^{2}_{H} = \int_{\mathbb{R}^{N}}(I_{\alpha}*|tu|^{p})|tu|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|tv|^{p})|tv|^{p}+2\beta t^{2}\int_{\mathbb{R}^{N}}uv, |
which is solved by
\begin{equation} t = \left(\frac{\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uv}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}} \right)^{\frac{1}{2p-2}}. \end{equation} | (3.1) |
By inequality
\begin{equation*} \begin{split} 2\beta\int_{\mathbb{R}^{N}}uv < 2\sqrt{\lambda_{1}\lambda_{2}}\int_{\mathbb{R}^{N}}uv &\leq \int_{\mathbb{R}^{N}}\lambda_{1}u^{2}+\lambda_{2}v^{2}\\ &\leq\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{1}} = \|(u, v)\|^{2}_{H}, \end{split} \end{equation*} |
we have that
\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uv > \|(u, v)\|^{2}_{H}-\|(u, v)\|^{2}_{H} = 0. |
Therefore we get t > 0 .
Lemma 3.2. The following assertions hold:
(i) There exists c > 0 such that \|(u, v)\|_{H}\ge c for any (u, v)\in\mathcal{N}_{\beta} .
(ii) m_{\beta} = \inf_{(u, v)\in \mathcal{N}_{\beta}}E_{\beta}(u, v) > 0 for all fixed 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} .
(iii) Let u_{1} , v_{1} are positive solutions of (1.3) and (1.4) respectively, and let t > 0 be such that (tu_{1}, tv_{1})\in \mathcal{N}_{\beta} , then 0 < t < 1 .
Proof. (i) In view of the definition of \mathcal{N}_{\beta} , by the Hardy-Littlewood-Sobolev inequality (2.2), for any (u, v)\in\mathcal{N}_{\beta} , we have
\begin{equation*} \begin{split} \|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}}& = \ \int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}+2\beta\int_{\mathbb{R}^{N}}uv\\ &\leq C(N, \alpha, p)(\|u \|^{2p}_{\frac{2Np}{N+\alpha}}+\|v \|^{2p}_{\frac{2Np}{N+\alpha}})+\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\left(2\sqrt{\lambda_{1}\lambda_{2}}\int_{\mathbb{R}^{N}}uv\right)\\ &\leq C_{1}C(N, \alpha, p)(\|u \|^{2p}_{\lambda_{1}}+\|v \|^{2p}_{\lambda_{2}})+\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\left(\int_{\mathbb{R}^{N}}\lambda_{1}u^{2}+\lambda_{2}v^{2}\right)\\ &\leq C_{1}C(N, \alpha, p)(\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}})^{p}+\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}(\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}}), \end{split} \end{equation*} |
where C_{1} > 0 denotes the fractional Sobolev embedding constant and C_{1} does not depend on u and v . This means that
\begin{equation*} \left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right)\|(u, v)\|^{2}_{H}\leq C_{1}C(N, \alpha, p)\|(u, v)\|^{2p}_{H}. \end{equation*} |
Since 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} , we have \|(u, v)\|_{H}\ge c , where
\begin{equation} c = \left(\frac{\sqrt{\lambda_{1}\lambda_{2}}-\beta}{C_{1}C(N, \alpha, p)\sqrt{\lambda_{1}\lambda_{2}}}\right)^{\frac{1}{2p-2}} > 0. \end{equation} | (3.2) |
(ii) For any (u, v)\in\mathcal{N}_{\beta} , we have
\begin{equation} \begin{aligned} E_{\beta}(u, v)& = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(u, v)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}uv\right)\\ &\ge \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(u, v)\|^{2}_{H}-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}(\|u \|^{2}_{\lambda_{1}}+\|v \|^{2}_{\lambda_{2}})\right)\\ &\ge\left(\frac{1}{2}-\frac{1}{2p}\right)\left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right)\|(u, v)\|^{2}_{H}. \end{aligned} \end{equation} | (3.3) |
Since p > 1 , we obtain m_{\beta}\ge (\frac{1}{2}-\frac{1}{2p})(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}})c^{2} > 0 .
(iii) Since u_{1} , v_{1} are positive solutions of (1.3) and (1.4) respectively, and (tu_{1}, tv_{1})\in \mathcal{N}_{\beta} , we have
\begin{equation} \|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}} = \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{1}|^{p})|u_{1}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{1}|^{p})|v_{1}|^{p} \end{equation} | (3.4) |
and
\begin{equation} t^{2}\left(\|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}}-2\beta \int_{\mathbb{R}^{N}}u_{1}v_{1}\right) = t^{2p}\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{1}|^{p})|u_{1}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{1}|^{p})|v_{1}|^{p}\right). \end{equation} | (3.5) |
Combining (3.4) and (3.5), we have
\begin{equation*} t^{2p-2} = \frac{\|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}}-2\beta \int_{\mathbb{R}^{N}}u_{1}v_{1}}{\|u_{1} \|^{2}_{\lambda_{1}}+\|v_{1} \|^{2}_{\lambda_{2}}} < 1. \end{equation*} |
The proof is complete.
Proof of Theorem 1.1. Let (u_{n}, v_{n})\in\mathcal{N}_{\beta} be a minimizing sequence for E_{\beta} , namely such that E_{\beta}(u_{n}, v_{n})\to m_{\beta} . By (3.3), we know that \{(u_{n}, v_{n})\}_{n\in\mathbb{N}} is bounded in H . In view of Lemma 3.1, there exists t_{n} > 0 such that (t_{n}|u_{n}|, t_{n}|v_{n}|)\in \mathcal{N}_{\beta} . Then
\begin{equation*} \begin{split} t_{n}^{2p-2}& = \frac{\|(|u_{n}|, |v_{n}|)\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}|u_{n}||v_{n}|}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}}\\ &\leq\frac{\|(u_{n}, v_{n})\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}u_{n}v_{n}}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}} = 1. \end{split} \end{equation*} |
Hence, we have that 0 < t_{n}\leq1 . Since
\begin{equation*} \begin{split} E_{\beta}(t_{n}|u_{n}|, t_{n}|v_{n}|)& = \left(\frac{1}{2}-\frac{1}{2p}\right) t_{n}^{2p}\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}\right)\\ &\leq\left(\frac{1}{2}-\frac{1}{2p}\right)\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}\right)\\ & = E_{\beta}(u_{n}, v_{n}). \end{split} \end{equation*} |
For this reason we can assume that u_{n}\ge0 and v_{n}\ge0 . Let u_{n}^{*} and v_{n}^{*} denote the symmetric decreasing rearrangement of u_{n} , respectively v_{n} . By Lemma 2.6 with f(x) = |u_{n}(x)|^{p} , g(y) = |u_{n}(y)|^{p} , h(x-y) = |x-y|^{\alpha-N} , we have
\begin{equation} \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}^{*}|^{p})|u_{n}^{*}|^{p}\ge \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}. \end{equation} | (3.6) |
In addition, it is well known that
\begin{equation} \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{n}^{*}|^{2}\leq \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{n}|^{2}\quad \text{and}\quad \int_{\mathbb{R}^{N}}|u_{n}^{*}|^{2} = \int_{\mathbb{R}^{N}}|u_{n}|^{2} \end{equation} | (3.7) |
(see [28, Theorem 3]). By Hardy-Littlewood inequality and Riesz rearrangement inequality (see [28]),
\begin{equation} \int_{\mathbb{R}^{N}}u_{n}^{*}v_{n}^{*}\ge\int_{\mathbb{R}^{N}}u_{n}v_{n}. \end{equation} | (3.8) |
By (3.6)–(3.8) we have
\begin{equation*} \begin{split} E_{\beta}(u_{n}^{*}, v_{n}^{*})& = \frac{1}{2}(\|u_{n}^{*} \|^{2}_{\lambda_{1}}+\|v_{n}^{*} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}^{*}|^{p})|u_{n}^{*}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}^{*}|^{p})|v_{n}^{*}|^{p}-\beta\int_{\mathbb{R}^{N}}u_{n}^{*}v_{n}^{*}\\ &\leq \frac{1}{2}(\|u_{n} \|^{2}_{\lambda_{1}}+\|v_{n} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}-\beta\int_{\mathbb{R}^{N}}u_{n}v_{n}\\ & = E_{\beta}(u_{n}, v_{n}). \end{split} \end{equation*} |
Therefore, we can further assume that (u_{n}, v_{n})\in H_{r} . By (3.3), we have that \{(u_{n}, v_{n})\} is bounded in H , there exists (u_{\beta}, v_{\beta})\in H and u_{\beta}\ge 0 , v_{\beta}\ge 0 such that up to subsequences, (u_{n}, v_{n})\rightharpoonup(u_{\beta}, v_{\beta}) weakly in H . Moreover, we also can assume that u_{n}\to u_{\beta} , v_{n}\to v_{\beta} a.e. in \mathbb{R}^{N} and (u_{\beta}, v_{\beta})\in H_{r} . Since \{(u_{n}, v_{n})\}_{n\in\mathbb{N}}\subset\mathcal{N}_{\beta} , we have
\begin{equation*} \begin{split} \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{n}|^{p})|u_{n}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{n}|^{p})|v_{n}|^{p}& = \ \|u_{n} \|^{2}_{\lambda_{1}}+\|v_{n} \|^{2}_{\lambda_{2}}-2\beta\int_{\mathbb{R}^{N}}u_{n}v_{n}\\ & \ge\left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right)\|(u_{n}, v_{n}) \|^{2}_{H}\ge\left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right) c^{2}. \end{split} \end{equation*} |
By (2.4), we obtain
\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}\ge \left(1-\frac{\beta}{\sqrt{\lambda_{1}\lambda_{2}}}\right) c^{2} > 0, |
which means u_{\beta}\not\equiv 0 or v_{\beta}\not\equiv 0 .
By (2.4) and Fatou's lemma, we have
\|u_{\beta}\|^{2}_{\lambda_{1}}+\|v_{\beta}\|^{2}_{\lambda_{2}}-2\beta\int_{\mathbb{R}^{N}}u_{\beta}v_{\beta}\leq\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}. |
Let t > 0 such that (tu_{\beta}, tv_{\beta})\in\mathcal{N}_{\beta} , we have
t = \left(\frac{\|(u_{\beta}, v_{\beta})\|^{2}_{H}-2\beta\int_{\mathbb{R}^{N}}u_{\beta}v_{\beta}}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}} \right)^{\frac{1}{2p-2}}\leq1. |
Hence,
\begin{equation*} \begin{split} m_{\beta}&\leq E_{\beta}(tu_{\beta}, tv_{\beta}) = \ \left(\frac{1}{2}-\frac{1}{2p}\right)t^{2p}\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}\right)\\ &\leq\left(\frac{1}{2}-\frac{1}{2p}\right)\left(\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta}|^{p})|u_{\beta}|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta}|^{p})|v_{\beta}|^{p}\right)\\ & = \lim\limits_{n\to\infty}E_{\beta}(u_{n}, v_{n}) = m_{\beta}. \end{split} \end{equation*} |
Thus, we can deduce that t = 1 and m_{\beta} is achieved by (u_{\beta}, v_{\beta})\in \mathcal{N}_{\beta} with u_{\beta}\ge0 , v_{\beta}\ge0 . Now we know that (u_{\beta}, v_{\beta}) be non-negative and radial ground state solution of (1.1). Since (1.1) has no semitrivial solution, namely (u_{\beta}, 0) and (0, v_{\beta}) are no solutions of (1.1), we infer that u_{\beta}\not\equiv 0 and v_{\beta}\not\equiv 0 . By the strong maximum principle, we get u_{\beta} > 0 and v_{\beta} > 0 , then (u_{\beta}, v_{\beta}) be positive and radial ground state solution of (1.1).
Next we consider the asymptotic behavior of the ground state solution.
Suppose \{\beta_{n}\} be a sequence which satisfies \beta_{n}\in(0, \min\{\frac{1}{2}, \sqrt{\lambda_{1}\lambda_{2}}\}) and \beta_{n}\to 0 as n\to\infty . Let (u_{\beta_{n}}, v_{\beta_{n}}) be the positive radial ground state solution of (1.1) obtained above, we claim \{(u_{\beta_{n}}, v_{\beta_{n}})\} is bounded in H . Indeed, let \phi , \psi are the positive solutions of (1.3) and (1.4) respectively. By (iii) of Lemma 3.2, we have that (t_{n}\phi, t_{n}\psi)\in \mathcal{N}_{\beta_{n}} , where 0 < t_{n} < 1 . Hence, by (1.5) and (1.6), we have
\begin{equation*} \begin{aligned} E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})&\leq E_{\beta_{n}}(t_{n}\phi, t_{n}\psi) = E_{\beta_{n}}(t_{n}\phi, t_{n}\psi)-\frac{1}{2p} \langle E'_{\beta_{n}}(t_{n}\phi, t_{n}\psi), (t_{n}\phi, t_{n}\psi)\rangle\\ & = \left(\frac{1}{2}-\frac{1}{2p}\right)\left(\|(t_{n}\phi, t_{n}\psi)\|_{H}^{2}-2\beta_{n}t_{n}^{2}\int_{\mathbb{R}^{N}}\phi\psi\right)\\ & < \left(\frac{1}{2}-\frac{1}{2p}\right)\|(\phi, \psi)\|_{H}^{2}: = D. \end{aligned} \end{equation*} |
Therefore, let c_{0} = \min\{\frac{1}{2}, \sqrt{\lambda_{1}\lambda_{2}}\} , for n large enough, we have
\begin{equation*} \begin{aligned} D& > E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}}) = E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})-\frac{1}{2p} \langle E'_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}}), (u_{\beta_{n}}, v_{\beta_{n}})\rangle\\ &\ge\left(\frac{1}{2}-\frac{1}{2p}\right)(1-\beta_{n})\|(u_{\beta_{n}}, v_{\beta_{n}})\|_{H}^{2} > c_{0}\left(\frac{1}{2}-\frac{1}{2p}\right)\|(u_{\beta_{n}}, v_{\beta_{n}})\|_{H}^{2}, \end{aligned} \end{equation*} |
from which we deduce that \{(u_{\beta_{n}}, v_{\beta_{n}})\} is bounded in H . Thus, there exists (u_{0}, v_{0})\in H such that, up to a subsequences, (u_{\beta_{n}}, v_{\beta_{n}})\rightharpoonup (u_{0}, v_{0}) in H as n\to\infty and u_{0}\geq 0, v_{0}\geq 0 . Moreover by (3.2) we have that
\begin{equation*} c_{n} = \left(\frac{\sqrt{\lambda_{1}\lambda_{2}}-\beta_{n}}{C_{1}C(N, \alpha, p)\sqrt{\lambda_{1}\lambda_{2}}}\right)^{\frac{1}{2p-2}} \end{equation*} |
is an increasing sequence and \|(u_{\beta_{n}}, v_{\beta_{n}})\|_{H}^{2} > c_{1} > 0 , hence we have that u_{0}\not\equiv 0 or v_{0}\not\equiv0 . It is easy to observe that E'_{0}(u_{0}, v_{0}) = 0 , thus u_{0} , v_{0} are the solutions of (1.3) and (1.4), respectively. Since
\begin{equation} \begin{aligned} &\|(u_{\beta_{n}}, v_{\beta_{n}})-(u_{0}, v_{0})\|_{H}^{2}\\ = &\ \langle E'_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})-E'_{0}(u_{0}, v_{0}), (u_{\beta_{n}}, v_{\beta_{n}})-(u_{0}, v_{0})\rangle+\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta_{n}}|^{p})|u_{\beta_{n}}|^{p}\\ &+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta_{n}}|^{p})|v_{\beta_{n}}|^{p}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{\beta_{n}}|^{p})|u_{\beta_{n}}|^{p-2}u_{\beta_{n}}u_{0}-\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{\beta_{n}}|^{p})|v_{\beta_{n}}|^{p-2}v_{\beta_{n}}v_{0}\\ &+\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}|^{p})(|u_{0}|^{p}-|u_{0}|^{p-2}u_{0}u_{\beta_{n}})+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{0}|^{p})(|v_{0}|^{p}-|v_{0}|^{p-2}v_{0}v_{\beta_{n}})\\ &+\beta_{n}\int_{\mathbb{R}^{N}}(2u_{\beta_{n}}v_{\beta_{n}}-u_{\beta_{n}}v_{0}-v_{\beta_{n}}u_{0}), \end{aligned} \end{equation} | (3.9) |
by Lemmas 2.1, 2.2, 2.5 and above equality (3.9), we can conclude that (u_{\beta_{n}}, v_{\beta_{n}})\to (u_{0}, v_{0}) in H as n\to\infty .
In view of Lemma 2.7, we can assume that u_{1} , v_{1} are positive ground state solutions to (1.3) and (1.4) respectively, and let t_{n} > 0 such that (t_{n}u_{1}, t_{n}v_{1})\in \mathcal{N}_{\beta_{n}} . In view of (iii) of Lemma 3.2, we know that 0 < t_{n} < 1 . Furthermore, by (3.1) we have that
\begin{equation*} t_{n} = \left(\frac{\|(u, v)\|^{2}_{H}-2\beta_{n}\int_{\mathbb{R}^{N}}uv}{\int_{\mathbb{R}^{N}}(I_{\alpha}*|u|^{p})|u|^{p}+\int_{\mathbb{R}^{N}}(I_{\alpha}*|v|^{p})|v|^{p}} \right)^{\frac{1}{2p-2}} \end{equation*} |
is an increasing sequence and t_{n} > t_{1} > 0 , then we know that t_{n}\to 1 . Consequently, we have
\begin{equation} E_{0}(u_{1}, v_{1})\leq E_{0}(u_{0}, v_{0}) = \lim\limits_{n\to\infty}E_{\beta_{n}}(u_{\beta_{n}}, v_{\beta_{n}})\leq \lim\limits_{n\to\infty}E_{\beta_{n}}(t_{n}u_{1}, t_{n}v_{1}) = E_{0}(u_{1}, v_{1}). \end{equation} | (3.10) |
Obviously E_{0}(u_{0}, v_{0}) is the sum of the energy of u_{0} and v_{0} for the single equation (1.3) and (1.4) respectively, namely
\begin{equation*} E_{0}(u_{0}, v_{0}) = E_{0, 1}(u_{0})+E_{0, 2}(v_{0}), \end{equation*} |
where E_{0, 2}:H^{s}(\mathbb{R}^{N})\to \mathbb{R} is the energy functional of (1.4), which is defined similarly to E_{0, 1} , and E_{0}(u_{1}, v_{1}) is the sum of the energy of u_{1} and v_{1} for the single equation (1.3) and (1.4), respectively, namely
\begin{equation*} E_{0}(u_{1}, v_{1}) = E_{0, 1}(u_{1})+E_{0, 2}(v_{1}). \end{equation*} |
Since u_{1} , v_{1} are positive ground state solutions to (1.3) and (1.4) respectively, we have
\begin{equation*} E_{0, 1}(u_{0})\ge E_{0, 1}(u_{1})\quad\text{and}\quad E_{0, 2}(v_{0})\ge E_{0, 2}(v_{1}). \end{equation*} |
By (3.10), we get E_{0, 1}(u_{0}) = E_{0, 1}(u_{1}) and E_{0, 2}(v_{0}) = E_{0, 2}(v_{1}) . By Lemma 2.7, we know that u_{0} , v_{0} are positive ground state solutions of (1.3) and (1.4) respectively.
Let u_{0}^{*} and v_{0}^{*} denote the symmetric decreasing rearrangement of u_{0} and v_{0} respectively. By Lemma 2.6 with f(x) = |u_{0}(x)|^{p} , g(y) = |u_{0}(y)|^{p} , h(x-y) = |x-y|^{\alpha-N} , we have
\begin{equation} \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}^{*}|^{p})|u_{0}^{*}|^{p}\ge \int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}|^{p})|u_{0}|^{p}. \end{equation} | (3.11) |
In addition, we know that
\begin{equation} \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{0}^{*}|^{2}\leq \int_{\mathbb{R}^{N}}|(-\Delta)^{\frac{s}{2}}u_{0}|^{2}\quad \text{and}\quad \int_{\mathbb{R}^{N}}|u_{0}^{*}|^{2} = \int_{\mathbb{R}^{N}}|u_{0}|^{2} \end{equation} | (3.12) |
(see [28, Theorem 3]). By (3.11) and (3.12) we have
\begin{equation*} \begin{split} E_{0}(u_{0}^{*}, v_{0}^{*})& = \frac{1}{2}(\|u_{0}^{*} \|^{2}_{\lambda_{1}}+\|v_{0}^{*} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}^{*}|^{p})|u_{0}^{*}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{0}^{*}|^{p})|v_{0}^{*}|^{p}\\ &\leq \frac{1}{2}(\|u_{0} \|^{2}_{\lambda_{1}}+\|v_{0} \|^{2}_{\lambda_{2}})-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|u_{0}|^{p})|u_{0}|^{p}-\frac{1}{2p}\int_{\mathbb{R}^{N}}(I_{\alpha}*|v_{0}|^{p})|v_{0}|^{p}\\ & = E_{0}(u_{0}, v_{0}). \end{split} \end{equation*} |
Therefore, we can further assume that (u_{0}, v_{0})\in H_{r} . This completes the proof of Theorem 1.1.
In this section, in order to prove the nonexistence of nontrivial solutions, we need to use the following Pohožaev identity type:
Lemma 4.1. Let N\ge 3 and (u, v)\in H be any solution of (1.1). Then, (u, v) satisfies the Pohožaev identity
\begin{equation} \begin{aligned} \frac{N-2s}{2}\int[|(-\Delta)^{\frac{s}{2}}u|^{2}+&\ |(-\Delta)^{\frac{s}{2}}v|^{2}]dx+\frac{N}{2}\int (\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2})dx\\ & = \frac{N+\alpha}{2p}\left(\int(I_{\alpha}*|u|^{p})|u|^{p}dx+\int(I_{\alpha}*|v|^{p})|v|^{p}dx\right)+N\beta\int uvdx. \end{aligned} \end{equation} | (4.1) |
Proof. The proof is similar to the argument of Theorem 1.13 in [22].
Proof of Theorem 1.2. Let \langle E_{\beta}'(u, v), (u, v)\rangle = 0 , by (1.6), we have
\begin{equation} \begin{split} \int[|(-\Delta)^{\frac{s}{2}}u|^{2}+|(-\Delta)^{\frac{s}{2}}v|^{2}+\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2}]dx = &\int(I_{\alpha}*|u|^{p})|u|^{p}dx\\ &+\int(I_{\alpha}*|v|^{p})|v|^{p}dx+2\beta\int uvdx \end{split} \end{equation} | (4.2) |
for all (u, v)\in H .
Combining the Pohožaev identity (4.1) and (4.2), we can see that
\begin{equation} \begin{split} 0 = &\ \left(N-2s-\frac{N+\alpha}{p}\right)\int[|(-\Delta)^{\frac{s}{2}}u|^{2}+|(-\Delta)^{\frac{s}{2}}v|^{2}]dx\\ &+\left(N-\frac{N+\alpha}{p}\right)\int(\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2})dx+\left(\frac{N+\alpha}{p}-N \right)\int2\beta uvdx. \\ = &\ \left(N-2s-\frac{N+\alpha}{p}\right)\int[|(-\Delta)^{\frac{s}{2}}u|^{2}+|(-\Delta)^{\frac{s}{2}}v|^{2}]dx\\ &+\left(N-\frac{N+\alpha}{p}\right)\int(\lambda_{1}|u|^{2}+\lambda_{2}|v|^{2}-2\beta uv)dx. \end{split} \end{equation} | (4.3) |
Since \lambda_{1} > 0 , \lambda_{2} > 0 and 0 < \beta < \sqrt{\lambda_{1}\lambda_{2}} , we have
\begin{equation*} \lambda_{1}|u|^{2}+\lambda_{2}|v|^{2}\ge 2\sqrt{\lambda_{1}\lambda_{2}}uv > 2\beta uv. \end{equation*} |
Thus, if both the coefficients are non-positive, that is
\begin{equation*} N-2s-\frac{N+\alpha}{p}\leq 0\quad \text{and}\quad N-\frac{N+\alpha}{p}\leq0, \end{equation*} |
then we get p\leq1+\frac{\alpha}{N} , which jointly with (4.3) leads us to a contradiction. Therefore, the solution of (1.1) is the trivial one. Similarly, if they are nonnegative, that is p\ge \frac{N+\alpha}{N-2s} , we get that nontrivial solutions of (1.1) cannot exist. Therefore, the range of 1+\frac{\alpha}{N} < p < \frac{N+\alpha}{N-2s} is optimal for the existence of nontrival solutions of the problem (1.1). This completes the proof.
In this present paper, we combine the critical point theory and variational method to investigate a class of coupled fractional systems of Choquard type. By using constrained minimization method and Hardy-Littlewood-Sobolev inequality, we establish the existence and asymptotic behaviour of positive ground state solutions of the systems. Furthermore, nonexistence of nontrivial solutions is also obtained. In the next work, we will focus on the research of normalized solutions to fractional couple Choquard systems.
This research was funded by the National Natural Science Foundation of China (61803236) and Natural Science Foundation of Shandong Province (ZR2018MA022).
The authors declare that they have no conflicts of interest.
[1] |
W. B. Chen, F. Gao, Stability analysis of systems via a new double free-matrix based integral inequality with interval time-varying delay, Int. J. Syst. Sci., 50 (2019), 2663–2672. https://doi.org/10.1080/00207721.2019.1672118 doi: 10.1080/00207721.2019.1672118
![]() |
[2] |
X. Y. Liu, K. B. Shi, Further results on stability analysis of time-varying delay systems via novel integral inequalities and improved Lyapunov–Krasovskii functionals, AIMS Mathematics, 7 (2022), 1873–1895. https://doi.org/10.3934/math.2022108 doi: 10.3934/math.2022108
![]() |
[3] |
C. Y. Shi, K. Hoi, S. Vong, Improved reciprocally convex inequality for stability analysis of neural networks with time-varying delay, Neurocomputing, 527 (2023), 167–173. https://doi.org/10.1016/j.neucom.2023.01.048 doi: 10.1016/j.neucom.2023.01.048
![]() |
[4] |
T. H. Lee, J. H. Park, Improved criteria for sampled-data synchronization of chaotic Lur'e systems using two new approaches, Nonlinear Anal.-Hybri., 24 (2017), 132–145. https://doi.org/10.1016/j.nahs.2016.11.006 doi: 10.1016/j.nahs.2016.11.006
![]() |
[5] |
F. Long, L. Jiang, Y. He, M. Wu, Stability analysis of systems with time-varying delay via novel augmented Lyapunov-Krasovskii functionals and an improved integral inequality, Appl. Math. Comput., 357 (2019), 325–337. https://doi.org/10.1016/j.amc.2019.04.004 doi: 10.1016/j.amc.2019.04.004
![]() |
[6] |
L. F. Ma, Z. D. Wang, Y. R. Liu, F. E. Alsaadi, Exponential stabilization of nonlinear switched systems with distributed time-delay: An average dwell time approach, Eur. J. Control, 37 (2017), 34–42. https://doi.org/10.1016/j.ejcon.2017.05.003 doi: 10.1016/j.ejcon.2017.05.003
![]() |
[7] |
Z. C. Wang, W. He, J. Sun, G. Wang, J. Chen, Event-triggered control of switched nonlinear time-delay systems with asynchronous switching, IEEE T. Cybernetics, 54 (2024), 4348–4358. https://doi.org/10.1109/TCYB.2023.3312491 doi: 10.1109/TCYB.2023.3312491
![]() |
[8] |
J. Lam, H. J. Gao, C. H. Wang, Stability analysis for continuous systems with two additive time-varying delay components, Syst. Control Lett., 56 (2007), 16–24. https://doi.org/10.1016/j.sysconle.2006.07.005 doi: 10.1016/j.sysconle.2006.07.005
![]() |
[9] |
W. B. Chen, F. Gao, G. B. Liu, New results on delay-dependent stability for nonlinear systems with two additive time-varying delays, Eur. J. Control, 58 (2021), 123–130. https://doi.org/10.1016/j.ejcon.2020.07.004 doi: 10.1016/j.ejcon.2020.07.004
![]() |
[10] |
X. H. Ge, Comments and an improved result on "Stability analysis for continuous system with additive time-varying delays: A less conservative result", Appl. Math. Comput., 241 (2014), 42–46. https://doi.org/10.1016/j.amc.2014.04.082 doi: 10.1016/j.amc.2014.04.082
![]() |
[11] |
C. F. Shen, Y. Li, X. L. Zhu, W. Y. Duan, Improved stability criteria for linear systems with two additive time-varying delays via a novel Lyapunov functional, J. Comput. Appl. Math., 363 (2020), 312–324. https://doi.org/10.1016/j.cam.2019.06.010 doi: 10.1016/j.cam.2019.06.010
![]() |
[12] |
J. K. Tian, Z. R. Ren, S. M. Zhong, A new integral inequality and application to stability of time-delay systems, Appl. Math. Lett., 101 (2020), 106058. https://doi.org/10.1016/j.aml.2019.106058 doi: 10.1016/j.aml.2019.106058
![]() |
[13] |
S. Y. Xu, J. Lam, B. Y. Zhang, Y. Zou, New insight into delay-dependent stability of time-delay systems, Int. J. Robust Nonlin., 25 (2015), 961–970. https://doi.org/10.1002/rnc.3120 doi: 10.1002/rnc.3120
![]() |
[14] |
T. F. Duan, W. Q. Gong, Q. Li, K. Wang, F. R. Sun, Improved \mu-state estimation for Markovian switching CVNNs with mixed delays: event-triggered mechanism, Int. J. Syst. Sci., 55 (2024), 1673–1692. https://doi.org/10.1080/00207721.2024.2316249 doi: 10.1080/00207721.2024.2316249
![]() |
[15] |
Z. R. Ren, J. K. Tian, Improved stability criterion for distributed time-delay systems via a generalized delay partitioning approach, AIMS Mathematics, 7 (2022), 13402–13409. https://doi.org/10.3934/math.2022740 doi: 10.3934/math.2022740
![]() |
[16] |
T. H. Lee, J. H. Park, A novel Lyapunov functional for stability of time-varying delay systems via matrix-refined-function, Automatica, 80 (2017), 239–242. https://doi.org/10.1016/j.automatica.2017.02.004 doi: 10.1016/j.automatica.2017.02.004
![]() |
[17] |
P. Park, J. Ko, C. Jeong, Reciprocally convex approach to stability of systems with time-varying delays, Automatica, 47 (2011), 235–238. https://doi.org/10.1016/j.automatica.2010.10.014 doi: 10.1016/j.automatica.2010.10.014
![]() |
[18] |
Q. Li, W. Q. Gong, L. Z. Zhang, K. Wang, Robust dissipativity and passivity of stochastic Markovian switching CVNNs with partly unknown transition rates and probabilistic time-varying delay, AIMS Mathematics, 7 (2022), 19458–19480. https://doi.org/10.3934/math.20221068 doi: 10.3934/math.20221068
![]() |
[19] | G. R. Duan, H. H. Yu, LMIs in control systems: analysis, design and applications, Boca Raton: CRC Press, 2013. https://doi.org/10.1201/b15060 |
[20] |
L. He, W. H. Wu, G. S. Yao, J. P. Zhou, Input-to-state stabilization of delayed semi-markovian jump neural networks via sampled-data control, Neural Process. Lett., 55 (2023), 3245–3266. https://doi.org/10.1007/s11063-022-11008-z doi: 10.1007/s11063-022-11008-z
![]() |
[21] |
Y. B. Chen, Z. Zhang, Y. J. Liu, J. P. Zhou, Z. Wang, Resilient input-to-state stable filter design for nonlinear time-delay systems, Commun. Nonlinear Sci., 89 (2022), 105335. https://doi.org/10.1016/j.cnsns.2020.105335 doi: 10.1016/j.cnsns.2020.105335
![]() |
[22] |
C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: bounding inequalities and augmented Lyapunov–Krasovskii functionals, IEEE T. Automat. Contr., 62 (2017), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
![]() |
[23] |
J. K. Tian, Z. R. Ren, Y. M. Liu, New stability criteria for systems with an interval time-varying delay, AIMS Mathematics, 8 (2023), 1139–1153. https://doi.org/10.3934/math.2023057 doi: 10.3934/math.2023057
![]() |
[24] |
W. Kwon, B. Koo, S. M. Lee, Novel Lyapunov–Krasovskii functional with delay-dependent matrix for stability of time-varying delay systems, Appl. Math. Comput., 320 (2018), 149–157. https://doi.org/10.1016/j.amc.2017.09.036 doi: 10.1016/j.amc.2017.09.036
![]() |
[25] |
A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems, Automatica, 49 (2013), 2860–2866. https://doi.org/10.1016/j.automatica.2013.05.030 doi: 10.1016/j.automatica.2013.05.030
![]() |
[26] |
A. Seuret, F. Gouaisbaut, Stability of linear systems with time-varying delays using bessel–legendre inequalities, IEEE T. Automat. Contr., 63 (2018), 225–232. https://doi.org/10.1109/TAC.2017.2730485 doi: 10.1109/TAC.2017.2730485
![]() |
[27] |
X. Ge, K. Hoi, S. Vong, A delay-variation-dependent stability criterion for discrete-time systems via a bivariate quadratic function negative-determination lemma, J. Franklin I., 359 (2022), 4976–4996. https://doi.org/10.1016/j.jfranklin.2022.04.023 doi: 10.1016/j.jfranklin.2022.04.023
![]() |
[28] |
F. Liu, H. T. Liu, Y. Li, D. Sidorov, Two relaxed quadratic function negative-determination lemmas: application to time-delay systems, Automatica, 147 (2023), 110697. https://doi.org/10.1016/j.automatica.2022.110697 doi: 10.1016/j.automatica.2022.110697
![]() |
[29] |
W. Q. Ji, J. B. Qiu, S. F. Su, H. T. Zhang, Fuzzy observer-based output feedback control of continuous-time nonlinear two-dimensional systems, IEEE T. Fuzzy Syst., 31 (2023), 1391–1400. https://doi.org/10.1109/TFUZZ.2022.3201282 doi: 10.1109/TFUZZ.2022.3201282
![]() |
[30] |
J. B. Qiu, W. Q. Ji, H. K. Lam, A new design of fuzzy affine model-based output deedback control for discrete-time nonlinear systems, IEEE T. Fuzzy Syst., 31 (2023), 1434–1444. https://doi.org/10.1109/TFUZZ.2022.3202360 doi: 10.1109/TFUZZ.2022.3202360
![]() |
[31] |
C. F. Shen, Y. Li, X. L. Zhu, W. Y. Duan, Improved stability criteria for linear systems with two additive time-varying delays via a novel Lyapunov functional, J. Comput. Appl. Math., 363 (2020), 312–324. https://doi.org/10.1016/j.cam.2019.06.010 doi: 10.1016/j.cam.2019.06.010
![]() |
[32] |
X. M. Yu, X. M. Wang, S. M. Zhong, K. B. Shi, Further results on delay-dependent sta bility for continuous system with two additive time-varying delay components, ISA T., 65 (2016), 9–18. https://doi.org/10.1016/j.isatra.2016.08.003 doi: 10.1016/j.isatra.2016.08.003
![]() |
[33] |
L. M. Ding, Y. He, M. Wu, Q. G. Wang, New augmented Lyapunov–Krasovskii functional for stability analysis of systems with additive time-varying delays, Asian J. Control, 20 (2018), 1663–1670. https://doi.org/10.1002/asjc.1641 doi: 10.1002/asjc.1641
![]() |
[34] |
H. T. Xu, C. K. Zhang, L. Jiang, J. Smith, Stability analysis of linear systems with two additive time-varying delays via delay-product-type Lyapunov functional, Appl. Math. Model., 45 (2017), 955–964. https://doi.org/10.1016/j.apm.2017.01.032 doi: 10.1016/j.apm.2017.01.032
![]() |
[35] |
J. Lam, H. J. Gao, C. H. Wang, Stability analysis for continuous systems with two additive time-varying delay components, Syst. Control Lett., 56 (2007), 16–24. https://doi.org/10.1016/j.sysconle.2006.07.005 doi: 10.1016/j.sysconle.2006.07.005
![]() |
[36] |
H. J. Gao, T. W. Chen, J. Lam, A new delay system approach to network-based control, Automatica, 44 (2008), 39–52. https://doi.org/10.1016/j.automatica.2007.04.020 doi: 10.1016/j.automatica.2007.04.020
![]() |
[37] |
H. Y. Shao, Q. L. Han, On stabilization for systems with two additive time varying input delays arising from networked control systems, J. Franklin I., 349 (2012), 2033–2046. https://doi.org/10.1016/j.jfranklin.2012.03.011 doi: 10.1016/j.jfranklin.2012.03.011
![]() |
[38] |
J. M. Jiao, A stability criterion for singular systems with two additive time varying delay components, Int. J. Autom. Comput., 10 (2013), 39–45. https://doi.org/10.1007/s11633-013-0694-0 doi: 10.1007/s11633-013-0694-0
![]() |
[39] |
M. Liu, Y. He, M. Wu, J. H. Shen, Stability analysis of systems with two additive time-varying delay components via an improved delay interconnection Lyapunov-Krasovskii functional, J. Franklin I., 356 (2019), 3457–3473. https://doi.org/10.1016/j.jfranklin.2019.02.006 doi: 10.1016/j.jfranklin.2019.02.006
![]() |
[40] |
H. X. Wu, X. F. Liao, W. Feng, S. T. Guo, W. Zhang, Robust stability analysis of uncertain systems with two additive time-varying delay components, Appl. Math. Model., 33 (2009), 4345–4353. https://doi.org/10.1016/j.apm.2009.03.008 doi: 10.1016/j.apm.2009.03.008
![]() |
1. | Hamza El-Houari, Hicham Moussa, On a class of generalized Choquard system in fractional Orlicz-Sobolev spaces, 2024, 540, 0022247X, 128563, 10.1016/j.jmaa.2024.128563 | |
2. | Huiqin Lu, Kexin Ouyang, Existence of Positive Ground State Solutions for Fractional Choquard Systems in Subcritical and Critical Cases, 2023, 11, 2227-7390, 2938, 10.3390/math11132938 |