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1. Introduction

The study of systems with time delays poses a significant challenge for control researchers and
engineers, primarily because stability and performance are often compromised. While most existing
research focuses on systems with a single time-varying delay, many practical control applications,
particularly in networked systems, necessitate the consideration of multiple time-varying delays [1–4].
This is due to the fact that signals transmitted from one point to another frequently encounter successive
delays with varying characteristics. Such systems are commonly found in practical applications,
including network control systems, mechanical systems, and biological systems [5–7]. Consequently,
investigating the stability of systems with multiple time delays is essential. Specifically, the practical
significance of linear systems with two-time delays has attracted considerable attention in recent
years [8–11].

The Lyapunov stability theory is a classical method for analyzing the stability of delay systems [12–
14]. By constructing an appropriate Lyapunov, the changes in the system’s energy or state over
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time can be examined to determine the stability of the system [15–18]. Additionally, the linear
matrix inequalities (LMIs) method is a commonly used technique in modern control theory [19].
This method transforms the stability conditions of delay systems into solvable matrix inequalities,
allowing numerical optimization tools to be employed to obtain stability criteria for the system.
Numerical simulation is also an effective tool for studying the stability of delay systems. By simulating
the dynamic behavior of the system on a computer, the response of the system under different
parameters and initial conditions can be observed, thereby analyzing its stability. In practical analyses,
multiple methods are often combined, such as integrating the Lyapunov method with matrix inequality
approaches, which can yield stronger stability results, especially in complex or high-dimensional delay
systems. It is noteworthy that the time delays are assumed to be differentiable, which is a more stringent
condition than that in some existing studies [20,21]. This limitation may affect the general applicability
of our results. Future research could consider relaxing this assumption to include non-differentiable
time delays, thereby broadening the scope of the proposed method and enhancing its relevance to
practical applications. Addressing this issue could significantly enrich the understanding of the stability
of systems with more complex delay structures.

Recently, many studies have constructed enhanced Lyapunov–Krasovskii functions (LKFs) by
introducing time-weighted or space-weighted terms and have incorporated various integral inequalities
to obtain less conservative stability criteria [22–24]. For example, the Wirtinger inequality [25],
the Bessel–Legendre inequality [26], and the reciprocally convex inequality (RCI) [17] are popular
integral inequalities that have been widely applied. Consequently, an increasing number of studies are
beginning to improve upon these inequalities to better apply them in different integrals. It is noteworthy
that the quadratic function associated with time delay frequently arises in the derivative of the LKFs.
Determining the negative definiteness condition (NDC) of this quadratic function has been a crucial
topic in developing tractable LMIs over the years. Numerous studies have been conducted on the
conditions for ensuring the negative definiteness of quadratic functions; their work has established
conditions for constructing the quadratic form reciprocally convex inequality [27, 28].

The RCI effectively addresses these nonlinear characteristics, enhancing the accuracy of stability
analysis. Thus, extending the concept of RCI becomes essential. In light of the recent extensive
research on negative determination conditions for quadratic functions, their work has provided the
necessary conditions for applying quadratic reciprocally convex inequalities in additive delay systems.
The proposed bivariate quadratic reciprocally convex matrix inequality in this paper is inspired by
their results. We have derived a bivariate quadratic reciprocally convex matrix inequality (BQRCI)
which generalizes the original RCI, facilitating its application to bivariate quadratic functions [27]. By
utilizing this inequality, we have successfully reduced the conservativeness of the stability criteria,
leading to improved stability conditions. In addition, the application of the generalized BQRCI
may be diverse, and future research could explore the integration of T-S fuzzy models with the
proposed BQRCI framework. This may involve developing stability analysis methods that utilize T-S
fuzzy representations to more effectively address complex nonlinear systems [29, 30]. Furthermore,
investigating the robustness of the BQRCI under various uncertainties within T-S fuzzy models could
provide new insights and enhance the applicability of our findings in reality scenarios. Such extensions
could make significant contributions to the field, offering a more comprehensive understanding of
stability for systems characterized by time-varying delays and T-S fuzzy dynamics.

The main contributions of this paper can be summarized as follows:
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1) This paper generalized a new bivariate quadratic reciprocally convex inequality and applied
this inequality to additive time-varying delay systems to reduce the conservativeness of system
stability.

2) Using the Lyapunov–Krasovskii functional method and the new bivariate quadratic reciprocally
convex inequality, we obtained a new stability criterion and validated the effectiveness of the
proposed method through some numerical examples.

The structure of this paper is as follows: In the second section, we introduce a new inequality related
to bivariate quadratic functions, referred to as the improved RCI, called BQRCI. In the next section, we
demonstrate the application of this new inequality in LKFs, leading to enhanced stability results and
presenting the main theoretical findings. In the final section, we provide four numerical experiments
to validate the new stability criterion.
Notations: LetRn andRn×m denote the sets of n-dimensional Euclidean real vectors space and n×m real
matrices. The symbols Sn and Sn

+ represent the collections of n × n symmetric matrices and symmetric
positive-definite matrices. The notation diag refers to diagonal matrices, while zeros (m, n) indicates
the m× n matrices in R where all entries are zero. The identity matrix in Rn×n is denoted by In; let ∗ be
the symmetric part of a matrix. Lastly, we define sym(A) = A + AT , where T denotes the transpose of
a matrix, and we set µ21 = µ2 − µ1 and h21 = h2 − h1.

2. Preliminaries

ẏ(t) = Ay(t) + By(t − k1(t) − k2(t)), t ≥ 0,
y(t) = ϕ(t), t ∈ [−k1 − k2, 0],

(2.1)

where y(t) ∈ Rn represents the state vector, the initial conditions of time delay are ϕ(t) ∈ Rn, and
A,B ∈ Rn×n are the given matrices. The time-varying delays k1(t) and k2(t) are differentiable functions
that satisfy the following condition:

0 ≤ ki(t) ≤ ki, 0 ≤ k̇i(t) ≤ µi, (2.2)

where ki and µi (i = 1, 2) are given positive constants.
Next, some important lemmas are introduced as follows:

Lemma 2.1. [25] For a matrix R ∈ Sn
+, real scalars a and b, if there exists a continuous differentiable

function x : [a, b]→ Rn, the following integral inequality holds:∫ b

a
ẏT (s)Rẏ(s) ds ≥

1
b − a

[
ξ1
ξ2

]T [
R 0
0 3R

] [
ξ1
ξ2

]
, (2.3)

where

ξ1 = y(b) − y(a),

ξ2 = y(b) + y(a) −
2

b − a

∫ b

a
y(s) ds.
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Lemma 2.2. [27] For a bivariate quadratic function f (x, y) = p2x2+ p1x+q2y2+q1y+r2xy+r1, where
p2, p1, q2, q1, r2, r1 ∈ R, and 0 ≤ h1 ≤ x ≤ h2, µ1 ≤ y ≤ µ2, if f (x, y) < 0 for ∀(x, y) ∈ [h1, h2] × [µ1, µ2],
the following inequalities hold:

g1(h1) = p2h2
1 + (p1 + r2µ1)h1 + (q2µ

2
1 + q1µ1 + r1) < 0,

g1(h2) = p2h2
2 + (p1 + r2µ1)h2 + (q2µ

2
1 + q1µ1 + r1) < 0,

h21
2 (2p2h1 + p1 + r2µ1) + g1(h1) < 0,

g2(h1) = p2h2
1 + (p1 + r2µ2)h1 + (q2µ

2
2 + q1µ2 + r1) < 0,

g2(h2) = p2h2
2 + (p1 + r2µ2)h2 + (q2µ

2
2 + q1µ2 + r1) < 0,

h21
2 (2p2h1 + p1 + r2µ2) + g2(h1) < 0,

g3(h1) = p2h2
1 + (p1 + r2µ1 +

µ21
2 r2)h1 + [q2(µ21µ1 + µ

2
1) + q1(µ21

2 + µ1) + r1] < 0,
g3(h2) = p2h2

2 + (p1 + r2µ1 +
µ21
2 r2)h2 + [q2(µ21µ1 + µ

2
1) + q1(µ21

2 + µ1) + r1] < 0,
h21
2 (2p2h1 + p1 + r2µ1 +

µ21
2 r2) + g3(h1) < 0.

Lemma 2.3. [17] Let h1, h2, . . . , hN : Rn → R be functions that take positive values in an open
subset H of Rn. Then, the reciprocally convex combination of hi defined over H satisfies the following
equations:

min
{αi |αi>0,

∑
i αi=1}

∑
i

1
αi

hi(t) =
∑

i

hi(t) +max
bi, j(t)

∑
i, j

bi, j(t),

subject to
{

bi, j : Rn → R, b j,i(t) = bi, j(t),
[

hi(t) bi, j(t)
b j,i(t) h j(t)

]
≥ 0

}
.

Corollary 2.4. For any real positive scalars α, β, γ, δ, and holds α + β + γ + δ = 1, for given Ri ∈

Sn
+(i = 1, 2, . . . , 4), and free matrices H12,H13,H14,H23,H24,H34, if the size of the matrix is 4 × 4, the

reciprocally convex inequality shows:
1
α
R1 0 0 0
∗ 1

β
R2 0 0

∗ ∗ 1
γ
R3 0

∗ ∗ ∗ 1
δ
R4

 ≥


R1 H12 H13 H14

∗ R2 H23 H24

∗ ∗ R3 H34

∗ ∗ ∗ R4

 , (2.4)

where the following restrictive conditions hold:[
R1 H12

∗ R2

]
≥ 0,

[
R1 H13

∗ R3

]
≥ 0,

[
R1 H14

∗ R4

]
≥ 0,[

R1 H12

∗ R2

]
≥ 0,

[
R1 H13

∗ R3

]
≥ 0,

[
R1 H14

∗ R4

]
≥ 0.

Remark 2.5. The reciprocally convex inequality can be efficiently applied in the stability of systems
with time-varying delays; if the size of the matrix is n × n, the number of restrictive conditions of the
matrix inequality is n(n−1)

2 .

Next, we introduce the bivariate quadratic reciprocally convex inequality based on Lemma 2.3 and
Corollary 2.4, and also provide a detailed proof for this novel inequality.
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Lemma 2.6. Bivariate quadratic reciprocally convex inequality (BQRCI). For any real positive scalars
α, β, γ, δ, and holds α + β + γ + δ = 1, for given Ri ∈ S

n
+(i = 1, 2, . . . , 4), and free matrices

S 1 j, S 2 j, S 3 j, S 4 j, S 5 j, S 6 j,U1 j,U2 j,U3 j,U4 j,U5 j,U6 j,U7 j,U8 j,U9 j,U10 j,U11 j,U12 j ∈ R
n×n( j = 1, 2),

such that the following inequality holds:


1
α
R1 0 0 0
∗ 1

β
R2 0 0

∗ ∗ 1
γ
R3 0

∗ ∗ ∗ 1
δ
R4

 ≥


R1 0 0 0
∗ R2 0 0
∗ ∗ R3 0
∗ ∗ ∗ R4

 +


M11 M12 M13 M14

∗ M22 M23 M24

∗ ∗ M33 M34

∗ ∗ ∗ M44

 . (2.5)

When the condition below is satisfied:

A1 =


αU11 + α

2U12 − R1 (α2 + β2)S 12 + S 11 0 0
∗ βU21 + β

2U22 − R2 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


≤ 0, (2.6)

A2 =


αU31 + α

2U32 − R1 0 (α2 + β2)S 22 + S 21 0
∗ 0 0 0
∗ ∗ γU41 + γ

2U42 − R3 0
∗ ∗ ∗ 0


≤ 0, (2.7)

A3 =


αU51 + α

2U52 − R1 0 0 (α2 + β2)S 32 + S 31

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ δU61 + δ

2U62 − R4


≤ 0, (2.8)

A4 =


0 0 0 0
∗ βU71 + β

2U72 − R2 (α2 + β2)S 42 + S 41 0
∗ ∗ γU81 + γ

2U82 − R3 0
∗ ∗ ∗ 0


≤ 0, (2.9)

A5 =


0 0 0 0
∗ βU91 + β

2U92 − R2 0 (α2 + β2)S 52 + S 51

∗ ∗ 0 0
∗ ∗ ∗ δU101 + δ

2U102 − R4


≤ 0, (2.10)

A6 =


0 0 0 0
∗ 0 0 0
∗ ∗ βU111 + β

2U112 − R3 (α2 + β2)S 62 + S 61

∗ ∗ ∗ δU121 + δ
2U122 − R4


≤ 0, (2.11)
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where

M12 = (α2 + β2)S 12 + S 11, M13 = (α2 + β2)S 22 + S 21,

M14 = (α2 + β2)S 32 + S 31, M23 = (α2 + β2)S 42 + S 41,

M24 = (α2 + β2)S 52 + S 51, M34 = (α2 + β2)S 62 + S 61,

M11 = βU11 + αβU12 + γU31 + αγU32 + δU51 + αδU52,

M22 = αU21 + αβU22 + γU71 + βγU72 + δU91 + βδU92,

M33 = αU41 + αγU42 + βU81 + βγU82 + δU111 + γδU112,

M44 = αU61 + αδU62 + βU101 + βδU102 + γU121 + γδU122.

Proof: We first write the difference of inequality in six parts,
1
α
R1 0 0 0
∗ 1

β
R2 0 0

∗ ∗ 1
γ
R3 0

∗ ∗ ∗ 1
δ
R4

 −


R1 S 11 S 21 S 31

∗ R2 S 41 S 51

∗ ∗ R3 S 61

∗ ∗ ∗ R4

 =

β

α
R1 −S 11 0 0
∗ α

β
R2 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

 +

γ

α
R1 0 −S 21 0
∗ 0 0 0
∗ ∗ α

γ
R3 0

∗ ∗ ∗ 0


+


δ
α
R1 0 0 −S 31

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ α

δ
R4

 +


0 0 0 0
∗

γ

β
R2 −S 41 0

∗ ∗
β

γ
R3 0

∗ ∗ ∗ 0

 +


0 0 0 0
∗ δ

β
R2 0 −S 51

∗ ∗ 0 0

∗ ∗ ∗
β

δ
R4

 +


0 0 0 0
∗ 0 0 0
∗ ∗ δ

γ
R3 −S 61

∗ ∗ ∗
γ

δ
R4

 .
For the first part, 

β

α
R1 −S 11 0 0
∗ α

β
R2 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

 =

βU11 + αβU12 (α2 + β2)S 12 0 0

∗ αU21 + αβU22 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


−D12(α


U11 S 11 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 + β


0 S 11 0 0
∗ U21 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 + γ


0 S 11 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 + δ


0 S 11 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


+α2


U12 S 12 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 + β2


0 S 12 0 0
∗ U22 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 −


R1 0 0 0
∗ R2 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

)D12,

where

D12 =



√
β

α
I 0 0 0

∗
√
α
β
I 0 0

∗ ∗ I 0
∗ ∗ ∗ I


.
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In other words,
β

α
R1 −S 11 0 0
∗ α

β
R2 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

 =

βU11 + αβU12 (α2 + β2)S 12 0 0

∗ αU21 + αβU22 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 − DT
12A1D12.

When Eq (2.6) holds,
β

α
R1 −S 11 0 0
∗ α

β
R2 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

 ≥

βU11 + αβU12 (α2 + β2)S 12 0 0

∗ αU21 + αβU22 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 .
Similarly, the other five parts can be described by

γ

α
R1 0 −S 21 0
∗ 0 0 0
∗ ∗ α

γ
R3 0

∗ ∗ ∗ 0

 =

γU31 + αγU32 0 (α2 + β2)S 22 0

∗ 0 0 0
∗ ∗ αU41 + αγU42 0
∗ ∗ ∗ 0

 − DT
13A2D13,


δ
α
R1 0 0 −S 31

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ α

δ
R4

 =

δU51 + αδU52 0 0 (α2 + β2)S 32

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ αU61 + αδU62

 − DT
14A3D14,


0 0 0 0
∗

γ

β
R2 −S 41 0

∗ ∗
β

γ
R3 0

∗ ∗ ∗ 0

 =


0 0 0 0
∗ γU71 + βγU72 (α2 + β2)S 42 0
∗ ∗ βU81 + βγU82 0
∗ ∗ ∗ 0

 − DT
23A4D23,


0 0 0 0
∗ δ

β
R2 0 −S 51

∗ ∗ 0 0
∗ ∗ ∗

β

δ
R4

 =


0 0 0 0
∗ δU91 + βδU92 0 (α2 + β2)S 52

∗ ∗ 0 0
∗ ∗ ∗ βU101 + βδU102

 − DT
24A5D24,


0 0 0 0
∗ 0 0 0
∗ ∗ δ

γ
R3 −S 61

∗ ∗ ∗
γ

δ
R4

 =


0 0 0 0
∗ 0 0 0
∗ ∗ δU111 + γδU112 (α2 + β2)S 62

∗ ∗ ∗ γU121 + γδU122

 − DT
34A6D34,

where

D13 =



√
γ

α
I 0 0 0

∗ I 0 0
∗ ∗

√
α
γ
I 0

∗ ∗ ∗ I


,D14 =


√
δ
α

I 0 0 0
∗ I 0 0
∗ ∗ I 0
∗ ∗ ∗

√
α
δ
I

 ,D23 =


I 0 0 0

∗

√
γ

β
I 0 0

∗ ∗

√
β

γ
I 0

∗ ∗ ∗ I


,
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D24 =


I 0 0 0

∗

√
δ
β
I 0 0

∗ ∗ I 0

∗ ∗ ∗

√
β

δ
I


,D34 =


I 0 0 0
∗ I 0 0

∗ ∗

√
δ
γ
I 0

∗ ∗ ∗

√
γ

δ
I


.

Hence, the lemma is proved whenever (2.7)–(2.11) hold.

Remark 2.7. If the free matrix U1 j,U2 j,U3 j,U4 j,U5 j,U6 j,U7 j,U8 j,U9 j,U10 j,U11 j,U12 j, for j = 1, 2 is
the zero matrix and S i2 is also the zero matrix for i = 1, 2, · · · 6, the BQRCI will become the traditional
reciprocally convex inequality.

Remark 2.8. As far as we know, a bivariate quadratic reciprocally convex matrix inequality is
proposed for the first time, and the new lemma effectively addresses the bivariate quadratic terms
generated in the system. Lemma 2.6 has broader applications and achieves less conservativeness.

3. Stability analysis based on the bivariate quadratic reciprocally convex inequality and the
improved Lyapunov–Krasovskii functional

For brevity, the following symbols are defined:

σ1(t) =
 y(t) − y(t − k1(t))
y(t) + y(t − k1(t)) − 2

k1(t)

∫ t

t−k1(t)
y(s) ds

 ,
σ2(t) =

 y(t − k1(t)) − y(t − k1(t) − k2(t))
y(t − k1(t)) + y(t − k1(t) − k2(t)) − 2

k2(t)

∫ t−k1(t)

t−k1(t)−k2(t)
y(s) ds

 ,
σ3(t) =

 y(t − k1(t) − k2(t)) − y(t − k1(t) − k2)
y(t − k1(t) − k2(t)) + y(t − k1(t) − k2) − 2

k2−k2(t)

∫ t−k1(t)−k2(t)

t−k1(t)−k2
y(s) ds

 ,
σ4(t) =

 y(t − k1(t) − k2) − y(t − k1 − k2)
y(t − k1(t) − k2) + y(t − k1 − k2) − 2

k1−k1(t)

∫ t−k1−k2

t−k1(t)−k2
y(s) ds

 ,
ξ(t) =

[
yT (t), yT (t − k1(t)), yT (t − k1(t) − k2(t)), yT (t − k1(t) − k2),

yT (t − k1 − k2),
1

k1(t)

∫ t

t−k1(t)
yT (s)ds,

1
k2(t)

∫ t−k1(t)

t−k1(t)−k2(t)
yT (s) ds,

1
k2 − k2(t)

∫ t−k1(t)−k2(t)

t−k1(t)−k2

yT (s) ds,
1

k1 − k1(t)

∫ t−k1(t)−k2

t−k1−k2

yT (s) ds
]T

ei =
[
zeros(n, (i − 1)n) In zeros(n, (9 − i)n)

]
, i = 1, 2, . . . , 9.

The important notations are denoted as

Ei =

[
ei − ei+1

ei + ei+1 − 2ei+5

]
(i = 1, 2, 3, 4), R̃ =

[
R 0
0 3R

]
, E = [ET

1 , E
T
2 , E

T
3 , E

T
4 ]T ,
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a2 =


0 −S 12

(k1+k2)2
−S 22

(k1+k2)2
−S 32

(k1+k2)2

∗
U72

(k1+k2)2
−S 42

(k1+k2)2
−S 52

(k1+k2)2

∗ ∗
U82

(k1+k2)2
−S 62

(k1+k2)2

∗ ∗ ∗ 0

 , b2 =


U52

(k1+k2)2
−S 12

(k1+k2)2
−S 22

(k1+k2)2
−S 32

(k1+k2)2

∗ 0 −S 42
(k1+k2)2

−S 52
(k1+k2)2

∗ ∗ 0 −S 62
(k1+k2)2

∗ ∗ ∗
U62

(k1+k2)2

 ,

c2 =


−U12+U32
(k1+k2)2 0 0 0
∗

−U22+U92
(k1+k2)2 0 0

∗ ∗
U42−U112

k1+k2
0

∗ ∗ ∗
U102−U122

(k1+k2)

 ,
a11=

−U11 + U31

(k1 + k2)
, a22 =

U71

k1 + k2
−

k2U72 + k1U92

(k1 + k2)2 ,

a33=
−U81

k1 + k2
−

k2U82 − k1U112

(k1 + k2)2 , a44 =
−U101 + U121

(k1 + k2)
−

k1U102 − k1U122

(k1 + k2)2 ,

b11 =
U51

(k1 + k2)
−

k2U32 + k1U52

(k1 + k2)2 , b22 =
−U21 + U91

k1 + k2
,

b33 =
−U41 + U111

k1 + k2
−

k2U42 − k2U112

(k1 + k2)2 , b44 =
−U61

k1 + k2
−

k1U62 − k2U122

(k1 + k2)2 ,

c11 =
−k2U31 − k1U51

(k1 + k2)
− R̃, c22 =

−k2U71 − k1U91

(k1 + k2)
− R̃,

c33 =
−k1U111

k1 + k2
+
−k1k2U112

(k1 + k2)2 − R̃, c44 =
−k2U121

k1 + k2
+
−k1k2U122

(k1 + k2)2 − R̃,

a1 = diag(a11, a22, a33, a44), b1 = diag(b11, b22, b33, b44), c1 = diag(c11, c22, c33, c44),

α1
2 =


0 S 12

(k1+k2)2 0 0
∗

U22
(k1+k2)2 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

 , β1
2 =


U12

(k1+k2)2
S 12

(k1+k2)2 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , α1
1 =


0 0 0 0
∗

U21
k1+k2

0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,

β1
1 =


U11

k1+k2
0 0 0

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , γ1
1 =


−R̃ S 11 0 0
∗ −R̃ 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , α2
2 =


0 0 S 22

(k1+k2)2 0
∗ 0 0 0
∗ ∗

U42
(k1+k2)2 0

∗ ∗ ∗ 0

 ,

β2
2 =


U32

(k1+k2)2 0 S 22
(k1+k2)2 0

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , α2
1 =


0 0 0 0
∗ 0 0 0
∗ ∗

−U41
(k1+k2) +

−2k2U42
(k1+k2)2 0

∗ ∗ ∗ 0

 ,

β2
1 =


U31

k1+k2
0 0 0

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , γ2
1 =


−R̃ 0 S 21 0
∗ 0 0 0

∗ ∗
k2U41

(k1+k2) +
k2

2U42

(k1+k2)2 − R̃ 0
∗ ∗ ∗ 0

 ,
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α3
2 =


0 0 0 S 32

(k1+k2)2

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , β3
2 =


U52

(k1+k2)2 0 0 S 32
(k1+k2)2

∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗

U62
(k1+k2)2

 , α3
1 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,

β3
1 =


−U51
k1+k2

0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗

−U61
(k1+k2) +

−2k1U62
(k1+k2)2

 , γ3
1 =


−R̃ 0 0 S 31

∗ 0 0 0
∗ ∗ 0 0

∗ ∗ ∗
k1U61

(k1+k2) +
k2

1U62

(k1+k2)2 − R̃

 ,

α4
2 =


0 0 0 0
∗

U72
(k1+k2)2

S 42
(k1+k2)2 0

∗ ∗
U82

(k1+k2)2 0
∗ ∗ ∗ 0

 , β4
2 =


0 0 0 0
∗ 0 S 42

(k1+k2)2 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 , β4
1 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0

 ,

α4
1 =


0 0 0 0
∗

U71
(k1+k2) 0 0

∗ ∗
−U81

(k1+k2) +
−2k2U82
(k1+k2)2 0

∗ ∗ ∗ 0

 , γ4
1 =


0 0 0 0
∗ −R̃ S 41 0

∗ ∗
k2U81

(k1+k2) +
k2

1U82

(k1+k2)2 − R̃ 0
∗ ∗ ∗ 0

 ,

α5
2 =


0 0 0 0
∗

U92
(k1+k2)2 0 S 52

(k1+k2)2

∗ ∗ 0 0
∗ ∗ ∗ 0

 , β5
2 =


0 0 0 0
∗ 0 0 S 52

(k1+k2)2

∗ ∗ 0 0
∗ ∗ ∗

U102
(k1+k2)2

 ,

α5
1 =


0 0 0 0
∗

U91
(k1+k2) 0 0

∗ ∗ 0 0
∗ ∗ ∗ 0

 , β5
1 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗

−U101
(k1+k2) +

−2k1U102
(k1+k2)2

 ,

γ5
1 =


0 0 0 0
∗ −R̃ 0 S 51

∗ ∗ 0 0

∗ ∗ ∗
k1U101
(k1+k2) +

k2
1U102

(k1+k2)2 − R̃

 , α6
2 =


0 0 0 0
∗ 0 0 0
∗ ∗

U112
(k1+k2)2

S 62
(k1+k2)2

∗ ∗ ∗ 0

 ,

β6
2 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 S 62

(k1+k2)2

∗ ∗ ∗
U122

(k1+k2)2

 , α6
1 =


0 0 0 0
∗ 0 0 0
∗ ∗

−U111
(k1+k2) +

−2k2U112
(k1+k2)2 0

∗ ∗ ∗ 0

 ,

β6
1 =


0 0 0 0
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗

−U121
(k1+k2) +

−2k1U122
(k1+k2)2

 ,
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γ6
1 =


0 0 0 0
∗ 0 0 0

∗ ∗
k2U111
(k1+k2) +

k2
1U112

(k1+k2)2 − R̃ S 61

∗ ∗ ∗
k1U121
(k1+k2) +

k2
1U122

(k1+k2)2 − R̃

 .
Then, we propose a new delay-dependent stability criterion for the system based on the bivariate
quadratic reciprocally convex matrix inequality and the improved Lyapunov–Krasovskii functional.

Theorem 3.1. For known ki > 0, µi > 0 (i = 1, 2), the time delays of the additive system:
k1(t) and k2(t) follow conditions (2.2); the additive system (2.1) is asymptotically stable if there

exists a matrix,
[
P1 P2

∗ P3

]
∈ S+2n, Zi ∈ S

+
n (i = 1, 2, 3, 4), Rl ∈ S

+, for any l = 1, 2, 3, 4, 5, 6,

S 1 j, S 2 j, S 3 j, S 4 j, S 5 j, S 6 j,U1 j,U2 j,U3 j,U4 j,U5 j,U6 j,U7 j,U8 j,U9 j,U10 j,U11 j,U12 j ∈ R
n×n( j = 1, 2)

such that LMIs (3.1)–(3.6) hold.

Ψ1(0) < 0, Ψ1(k2) < 0,
k2

2
â1 + Ψ1(0) < 0, (3.1)

Ψ2(0) < 0, Ψ2(k2) < 0,
k2

2
(â1 + ĉ2k1) + Ψ2(0) < 0, (3.2)

Ψ3(0) < 0, Ψ3(k2) < 0,
k2

2
(â1 +

k1

2
ĉ2) + Ψ3(0) < 0, (3.3)

Ω
j
1(0) < 0, Ω j

1(k2) < 0,
k2

2
α

j
1 + Ω

j
1(0) < 0, (3.4)

Ω
j
2(0) < 0, Ω j

2(k2) < 0,
k2

2
α

j
1 + Ω

j
2(0) < 0, (3.5)

Ω
j
3(0) < 0, Ω j

3(k2) < 0,
k2

2
α

j
1 + Ω

j
3(0) < 0. (3.6)

The important notations are defined:

Ψ1(h) = â2h2 + â1h + ĉ1, Ψ2(h) = â2h2 + (â1 + ĉ2k1)h + (b̂2k2
1 + b̂1k1 + ĉ1) < 0,

Ψ3(h) = â2h2 + (â1 +
k1

2
ĉ2)h + (b̂1

k1

2
+ ĉ1) < 0,

Ω
j
1(h) = α j

2h2 + α
j
1h + γ j

1 < 0, Ω j
2(h) = α j

2h2 + α
j
1h + (β j

2k2
1 + β

j
1k1 + γ

j
1) < 0,

Ω
j
3(h) = α j

2h2 + α
j
1h + (β j

1
k1

2
+ γ

j
1) < 0,

Θ1 = Sym{eT
1 (P1A + P2)e1 + eT

1 P1Be3 − eT
1 P2e5},

Θ2 = eT
1 (Z1 + Z2 + Z3 + Z4)e1 − (1 − µ1)eT

2 Z1e2 − (1 − µ1 − µ2)eT
3 Z2e3

− (1 − µ1)eT
4 Z3e4 − eT

5 Z4e5,

Θ3 = (k1 + k2)(eT
1 AT RAe1 + eT

3 BT RBe3 + Sym{eT
1 AT RBe3}),

Υi = Sym{eT
1 (AT P2 + P3)ei+5 + eT

3 BT P2ei+5 − eT
5 P3ei+5} (i = 1, 2, 3, 4),

â2 =
ET a2E
k1 + k2

, b̂2 =
ET b2E
k1 + k2

, ĉ2 =
ET c2E
k1 + k2

, â1 = Υ2 − Υ3 +
ET a1E
k1 + k2

,

b̂1 = Υ1 − Υ4 +
ET b1E
k1 + k2

, ĉ1 = Θ1 + Θ2 + Θ3 + k2Υ3 + k1Υ4 +
ET c1E
k1 + k2

.

AIMS Mathematics Volume 9, Issue 12, 36273–36292.



36284

Let us prove this theorem:
Proof: Choose some LKFs candidate first,

V(yt) = V1(yt) + V2(yt) + V3(yt), (3.7)

where

V1(yt) =
 y(t)∫ t

t−k1−k2
y(s) ds

T [
P1 P2

∗ P3

]  y(t)∫ t

t−k1−k2
y(s) ds

 ,
V2(yt) =

∫ t

t−k1(t)
yT (s)Z1y(s) ds +

∫ t

t−k1(t)−k2(t)
yT (s)Z2y(s) ds

+

∫ t

t−k1(t)−k2

yT (s)Z3y(s) ds +
∫ t

t−k1−k2

yT (s)Z4y(s) ds,

V3(yt) =
∫ 0

−k1−k2

∫ t

t+θ
ẏT (s)Rẏ(s) ds dθ.

Then, we calculate the derivatives of the functionals, which are given by:

V̇1(yt) = ξT (t) (Θ1 + Υ1k1(t) + Υ2k2(t) + Υ3(k2 − k2(t)) + Υ4(k1 − k1(t))) ξ(t), (3.8)
V̇2(yt) ≤ ξT (t)Θ2ξ(t), (3.9)

V̇3(yt) = (k1 + k2)ẏT (t)Rẏ(t) −
∫ t

t−k1−k2

ẏT (s)Rẏ(s) ds

= (k1 + k2)ẏT (t)Rẏ(t) −
∫ t

t−k1(t)
ẏT (s)Rẏ(s) ds −

∫ t−k1(t)

t−k1(t)−k2(t)
ẏT (s)Rẏ(s) ds (3.10)

−

∫ t−k1(t)−k2(t)

t−k1(t)−k2

ẏT (s)Rẏ(s) ds −
∫ t−k1(t)−k2

t−k1−k2

ẏT (s)Rẏ(s) ds.

Using the Wirtinger-based integral inequality (2.3) to estimate the upper bounds of the derivative of
V3(t).

V̇3(yt) ≤ (k1 + k2)ẏT (t)Rẏ(t) −
σT

1 (t)R̃σ1(t)
k1(t)

−
σT

2 (t)R̃σ2(t)
k2(t)

−
σT

3 (t)R̃σ3(t)
k2 − k2(t)

−
σT

4 (t)R̃σ4(t)
k1 − k1(t)

= (k1 + k2)ẏT (t)Rẏ(t)

+


σ1(t)
σ2(t)
σ3(t)
σ4(t)


T 
− 1

k1(t) R̃ 0 0 0
∗ − 1

k2(t) R̃ 0 0
∗ ∗ − 1

k2−k2(t) R̃ 0
∗ ∗ ∗ − 1

k1−k1(t) R̃



σ1(t)
σ2(t)
σ3(t)
σ4(t)

 . (3.11)

By using Lemma 2.6,

V̇(yt) = ξT (t)

Θ3 −
1

k1 + k2


E1

E2

E3

E4


T 

k1+k2
k1(t) R̃ 0 0 0
∗

k1+k2
k2(t) R̃ 0 0

∗ ∗
k1+k2

k2−k2(t) R̃ 0
∗ ∗ ∗

k1+k2
k1−k1(t) R̃



E1

E2

E3

E4


 ξ(t)
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≤ ξT (t)
(
Θ3 +

1
k1 + k2

ET [a2k2
2(t) + b2k2

1(t) + a1k2(t) + b1k1(t) + c2k1(t)k2(t) + c1]E
)
ξ(t).

Therefore,

V̇(yt) ≤ ξT (t)
(
â2k2

2(t) + b̂2k2
1(t) + â1k2(t) + b̂1k1(t) + ĉ2k1(t)k2(t) + ĉ1

)
ξ(t). (3.12)

Using Lemma 2.2, from the negative determined condition, V̇ < 0 holds if the LMIs conditions (3.1)–
(3.3) hold.

On the other hand, there are some necessary conditions for the new reciprocally convex matrix
inequalities (2.6)–(2.11):

A j ≤ 0, for j = 1, 2, . . . , 6.

Similarly, using Lemma 2.2 again,

A j =
(
α

j
2k2

2(t) + β j
2k2

1(t) + α j
1k2(t) + β j

1k2(t) + γ j
1

)
≤ 0. (3.13)

This is ensured by the LMIs (3.4)–(3.6)) based on Lemma 2.2. Consequently, if the LMIs (3.1)
to (3.6) are feasible, there exists a sufficiently small ε > 0 such that V̇(yt) < −ε∥y(t)∥2. This
condition guarantees that system (2.1) with additive time-varying delays and satisfying condition (2.2)
is asymptotically stable. The proof is complete.

Remark 3.2. When using Lemma 2.6, we can let α = k1(t)
k1+k2

; β = k2(t)
k1+k2

; γ = k2−k2(t)
k1+k2

; δ = k1−k1(t)
k1+k2

. In this
way, the derivative of V(yt) can become a bivariate quadratic function. In the same way, the necessary
condition A j ≤ 0 for the Lemma (2.6) can also be written as a bivariate quadratic function. The only
difference is that the coefficients of k1(t) and k2(t) are 0.

Remark 3.3. The LMIs presented in Theorem 3.1 are based on the newly derived bivariate quadratic
reciprocally convex inequality. This inequality allows for a more comprehensive application of
bivariate quadratic negative definiteness conditions, enabling the formulation of LMIs that effectively
utilize the delay information of the systems under discussion. Furthermore, the resulting stability
criteria exhibit lower conservativeness without significantly increasing the number of decision
variables (NoDVs). Thus, the advantage of the LMIs lies in their foundation on this inequality, which
enhances the applicability of negative definiteness conditions while maintaining practical relevance in
stability analysis.

4. Numerical experiments

Example 4.1. Consider the time-varying delay system (2.1) with the given matricesA and B,

A =

[
−2 0
0 −0.9

]
,B =

[
−1 0
−1 −1

]
.

The upper bounds for the delay derivatives, µ1 and µ2, are set at 0.1 and 0.8. Our objective is to
determine the upper bounds of delays k1(t) and k2(t), specifically finding k1 and k2 when one is known.
Some previous methods use traditional RCI like [31], which do not achieve results as favorable as
those obtained by applying BQRCI. Table 1 compares different k1 values with the results from previous
studies, including some recent research [32–34], and Theorem 3.1 under different delay conditions.
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As shown in Table 1, the upper bound of k2 obtained using the current method is greater than that
of several recent results, such as those in [32–34], while the NoDVs is smaller than in [33]. Therefore,
this method effectively controls the increase in computational complexity without significantly raising
the number of decision variables, while also achieving less conservativeness for the system.

Table 1. The time-varying delay upper bound k2 for various k1.

k1 1.0 1.2 1.5 NoDVs
[32] 0.982 0.782 0.482 -
[33] 0.999 0.972 0.680 202n2 + 25n
[34] 1.163 0.965 0.669 32n2 + 10n
[35] 0.415 0.376 0.248 12.5n2 + 4.5n
[36] 0.512 0.406 0.283 7.5n2 + 3.5n
[37] 0.595 0.462 0.312 -
[38] 0.873 0.673 0.452 7.5n2 + 5n
Theorem 3.1 1.171 0.975 0.715 100.5n2 + 27.5n

Example 4.2. Consider the time-varying delay system (2.1) with the given matricesA and B,

A =

[
−2 0
0 −0.9

]
,B =

[
−1 0
−1 −1

]
.

We also assess the decay rates for different values of k2. From Table 2, it can be observed that
the upper bound of k2 obtained by the current method is greater than that of several recent results,
including [31, 33, 34, 39], and NoDVs is smaller than [31, 33, 39]. Therefore, this method controls the
increase of computation without excessively increasing NoDVs. The proposed method can yield an
improved stability criterion for additive time-varying delay systems.

Table 2. The time-varying delay upper bound k1 for various k2.

k2 0.3 0.4 0.5 NoDVs
[31] 1.967 1.883 1.788 149n2 + 25n
[32] 1.682 1.582 1.482 -
[33] 1.880 1.779 1.675 202n2 + 25n
[34] 1.875 1.773 1.671 32n2 + 10n
[35] 1.324 1.039 0.806 12.5n2 + 4.5n
[36] 1.453 1.214 1.021 19.5n2 + 3.5n
[37] 1.531 1.313 1.140 -
[38] 1.808 1.593 1.424 7n2 + 5n
[39] 1.913 1.813 1.713 195.5n2 + 30.5n
Theorem 3.1 2.280 2.010 1.806 100.5n2 + 27.5n

Example 4.3. Consider the time-varying delay system (2.1) with the given matricesA and B,

A =

[
−2 0
0 −9

]
,B =

[
−1 0
−1 −1

]
.
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From Table 3, it can be seen that the upper bound of k1 and k2 obtained by the current method is
greater than that of several recent results, including [10, 32, 40]. Therefore, this method achieves less
conservativeness for the system.

Table 3. The time-varying delay upper bound for different cases.

Method k1 =1 k1 =1.2 k1 =1.5 k2 =0.3 k2 =0.4 k2 =0.5
[8] 0.415 0.340 0.248 1.324 1.039 0.806
[10] 0.873 0.673 0.373 1.573 1.473 1.373
[32] 0.982 0.782 0.482 1.682 1.582 1.482
[36] 0.512 0.406 0.283 1.453 1.214 1.021
[40] 0.872 0.672 0.371 1.572 1.472 1.372
Theorem 3.1 2.163 1.928 1.598 7.111 5.309 4.230

Example 4.4. By introducing the virtual state and measurement output vectors defined as y(t) =[
∆ f ∆Pm ∆Pv

∫
ACE

]T
and z(t) =

[
ACE

∫
ACE

]T
, the closed-loop LFC system can be

represented as the linear system (2.1), which includes two additive time-varying delays. The system
parameters are presented in the following format:

x(t) =


∆ f
∆Pm

∆Pv∫
ACE

 ,A =

− D
M

1
M

0 0
0 − 1

Tch

1
Tch

0
− 1
RTg

0 − 1
Ts

0
ϖ 0 0 0

 ,B =


0 0 0 0
0 0 0 0
−
KPϖ
Tg

0 0 −
KI
Tg

0 0 0 0


with the parameters given in [31]:M = 10,D = 1,Tch = 0.3,Tg = 0.1,R = 0.05, ϖ = 21.

To facilitate comparison with existing results, Figure 1 presents the findings for the case whereKI =

0.2, KP = 0.1,
∣∣∣k̇1(t)

∣∣∣ ≤ 0.1, and
∣∣∣k̇2(t)

∣∣∣ ≤ 0.8. A simple simulation is conducted with the assumption
of time-varying delays defined as k1(t) = 1

2 sin(0.2x(t)) + 1
2 and k2(t) = 3.278

2 sin
(

1.6
3.278y(t)

)
+ 3.278

2 . The
results of this simulation are illustrated in Figure 1, where the LFC achieves its objectives, and the
control system remains stable for MAUB k = 3.278. The state responses converge to zero, confirming
that system 2.1 is stable as shown in Figure 1 under condition Example 4.4.
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Figure 1. Trajectory of Example 4.3.

5. Conclusions

In this study, we successfully generalize a bivariate quadratic reciprocally convex inequality that is
effectively applied to additive time-varying delay systems, significantly reducing the conservativeness
typically associated with stability analyses. By employing the Lyapunov–Krasovskii function method
in conjunction with this new inequality, we derive a novel stability criterion. Ensure that the
conservativeness of the system decreases while controlling the excessive growth of the NoDVs
without significantly increasing the computational burden. The effectiveness of the new approach
is demonstrated through four numerical examples, underscoring its practical applicability in enhancing
the stability analysis of additive time-varying delay systems.
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