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1. Introduction

The study of systems with time delays poses a significant challenge for control researchers and
engineers, primarily because stability and performance are often compromised. While most existing
research focuses on systems with a single time-varying delay, many practical control applications,
particularly in networked systems, necessitate the consideration of multiple time-varying delays [1-4].
This is due to the fact that signals transmitted from one point to another frequently encounter successive
delays with varying characteristics. Such systems are commonly found in practical applications,
including network control systems, mechanical systems, and biological systems [5—7]. Consequently,
investigating the stability of systems with multiple time delays is essential. Specifically, the practical
significance of linear systems with two-time delays has attracted considerable attention in recent
years [8—11].

The Lyapunov stability theory is a classical method for analyzing the stability of delay systems [ 12—
14]. By constructing an appropriate Lyapunov, the changes in the system’s energy or state over
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time can be examined to determine the stability of the system [15-18]. Additionally, the linear
matrix inequalities (LMIs) method is a commonly used technique in modern control theory [19].
This method transforms the stability conditions of delay systems into solvable matrix inequalities,
allowing numerical optimization tools to be employed to obtain stability criteria for the system.
Numerical simulation is also an effective tool for studying the stability of delay systems. By simulating
the dynamic behavior of the system on a computer, the response of the system under different
parameters and initial conditions can be observed, thereby analyzing its stability. In practical analyses,
multiple methods are often combined, such as integrating the Lyapunov method with matrix inequality
approaches, which can yield stronger stability results, especially in complex or high-dimensional delay
systems. It is noteworthy that the time delays are assumed to be differentiable, which is a more stringent
condition than that in some existing studies [20,21]. This limitation may affect the general applicability
of our results. Future research could consider relaxing this assumption to include non-differentiable
time delays, thereby broadening the scope of the proposed method and enhancing its relevance to
practical applications. Addressing this issue could significantly enrich the understanding of the stability
of systems with more complex delay structures.

Recently, many studies have constructed enhanced Lyapunov—Krasovskii functions (LKFs) by
introducing time-weighted or space-weighted terms and have incorporated various integral inequalities
to obtain less conservative stability criteria [22-24]. For example, the Wirtinger inequality [25],
the Bessel-Legendre inequality [26], and the reciprocally convex inequality (RCI) [17] are popular
integral inequalities that have been widely applied. Consequently, an increasing number of studies are
beginning to improve upon these inequalities to better apply them in different integrals. It is noteworthy
that the quadratic function associated with time delay frequently arises in the derivative of the LKFs.
Determining the negative definiteness condition (NDC) of this quadratic function has been a crucial
topic in developing tractable LMIs over the years. Numerous studies have been conducted on the
conditions for ensuring the negative definiteness of quadratic functions; their work has established
conditions for constructing the quadratic form reciprocally convex inequality [27,28].

The RCI effectively addresses these nonlinear characteristics, enhancing the accuracy of stability
analysis. Thus, extending the concept of RCI becomes essential. In light of the recent extensive
research on negative determination conditions for quadratic functions, their work has provided the
necessary conditions for applying quadratic reciprocally convex inequalities in additive delay systems.
The proposed bivariate quadratic reciprocally convex matrix inequality in this paper is inspired by
their results. We have derived a bivariate quadratic reciprocally convex matrix inequality (BQRCI)
which generalizes the original RCI, facilitating its application to bivariate quadratic functions [27]. By
utilizing this inequality, we have successfully reduced the conservativeness of the stability criteria,
leading to improved stability conditions. In addition, the application of the generalized BQRCI
may be diverse, and future research could explore the integration of T-S fuzzy models with the
proposed BQRCI framework. This may involve developing stability analysis methods that utilize T-S
fuzzy representations to more effectively address complex nonlinear systems [29, 30]. Furthermore,
investigating the robustness of the BQRCI under various uncertainties within T-S fuzzy models could
provide new insights and enhance the applicability of our findings in reality scenarios. Such extensions
could make significant contributions to the field, offering a more comprehensive understanding of
stability for systems characterized by time-varying delays and T-S fuzzy dynamics.

The main contributions of this paper can be summarized as follows:
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1) This paper generalized a new bivariate quadratic reciprocally convex inequality and applied
this inequality to additive time-varying delay systems to reduce the conservativeness of system
stability.

2) Using the Lyapunov—Krasovskii functional method and the new bivariate quadratic reciprocally
convex inequality, we obtained a new stability criterion and validated the effectiveness of the
proposed method through some numerical examples.

The structure of this paper is as follows: In the second section, we introduce a new inequality related

to bivariate quadratic functions, referred to as the improved RCI, called BQRCI. In the next section, we
demonstrate the application of this new inequality in LKFs, leading to enhanced stability results and
presenting the main theoretical findings. In the final section, we provide four numerical experiments
to validate the new stability criterion.
Notations: Let R” and R denote the sets of n-dimensional Euclidean real vectors space and nxm real
matrices. The symbols S" and S’} represent the collections of n X n symmetric matrices and symmetric
positive-definite matrices. The notation diag refers to diagonal matrices, while zeros (m, n) indicates
the m X n matrices in R where all entries are zero. The identity matrix in R™" is denoted by 1,,; let * be
the symmetric part of a matrix. Lastly, we define sym(A) = A + AT, where T denotes the transpose of
a matrix, and we set uy; = up — uy and hyy = hy — hy.

2. Preliminaries

2.1
y(t) = ¢(t)a re [_kl - kZ’ 0]’

where y(f) € R” represents the state vector, the initial conditions of time delay are ¢(f) € R”, and

A, B € R™" are the given matrices. The time-varying delays k;(¢) and k,(¢) are differentiable functions

that satisfy the following condition:

{y(t) = Ay(t) + By(t — k(D) — ko()), 120,

0<kit) <k, O<k(t)<u, (2.2)

where k; and y; (i = 1,2) are given positive constants.
Next, some important lemmas are introduced as follows:

Lemma 2.1. [25] For a matrix R € S'}, real scalars a and b, if there exists a continuous differentiable
function x : [a,b] — R”, the following integral inequality holds:

b 1 [&a]'[R o]l
.T . 1 1
fa y <s>Ry<s)dszm[§2] [0 3RH&]’ (2.3)

where
& = y() — ¥(a),

2 b
& =3(b) +y(@) - —— f (s ds.

AIMS Mathematics Volume 9, Issue 12, 36273-36292.



36276

Lemma 2.2. [27] For a bivariate quadratic function f(x,y) = p»X>+ p1x+q2y* +q,y+rxy+r, where

P2 P92 q1, 72,1 €R, and 0 < hy S x < hp,py <y < o, Bf f(x,y) <0 for V(x,y) € [hy, ho] X [p1, p2],
the following inequalities hold:

g1(hy) = poht + (p1 + )y + (gop} + qu + 11) <0,

g1(h) = poh + (1 + rap)ho + (qopt} + quy + 11) <0,

ML @2pyhy + pr + o) + g1(hy) <0,

g () = poht + (p1 + Py + (gapt3 + qupn + 11) <0,

g(h) = poh + (p1 + rap)ho + (gapt5 + qup + 11) < 0,

BL2pshy + pi+ o) + g2(h) <0,

g3(h) = pahy + (p1 + rapy + Zr)hy + [y + p7) + (B + ) + 1] <
g3(ha) = pah3 + (p1 + ropy + ”21 CLrhy + [ga(uaipy + 1) + (5B + ) + 1] <
BLQ2pahy + pr + gty + ) + g3(hy) < 0.

<0,
<0,

Lemma 2.3. [I7] Let hy,h,,...,hy : R" — R be functions that take positive values in an open
subset H of R". Then, the reciprocally convex combination of h; defined over H satisfies the following
equations:

1
min Z—ht :Zh~t+max2b~t,
forlar>0.3,; =1} £ ; i{0) i {0 bi) £ (0

subject to {bi,j :R" =R, b;(t) = b; (1), [;’((tt)) [;;J((tt))] > 0}.
b J

Corollary 2.4. For any real positive scalars a,,7y,9, and holds a + B+ 7y + 6 = 1, for given R; €
St =1,2,...,4), and free matrices Hyy, Hy3, H\4, Hy3, Hya, H34, 1f the size of the matrix is 4 X 4, the
reciprocally convex inequality shows:

éRl 0 0 0 Ry Hy, Hj3 Hy
* /lgRZ 0 0 S| * R Hy Hu 2.4)
* * $R3 O | | = = Ry Hyul
* * * %R4 * * * Ry

where the following restrictive conditions hold:

|:R1 HIZ] >0 [Rl H13] >0 [Rl H14] >0

x Ry % R3 xRy
Rl H12 Rl H13 Rl H14
> > >
|:>!< Rz]_o’ [* R3:|_O’ [* R4:|_O.

Remark 2.5. The reciprocally convex inequality can be efficiently applied in the stability of systems
with time-varying delays; if the size of the matrix is n X n, the number of restrictive conditions of the
matrix inequality is "(" D,

Next, we introduce the bivariate quadratic reciprocally convex inequality based on Lemma 2.3 and
Corollary 2.4, and also provide a detailed proof for this novel inequality.
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Lemma 2.6. Bivariate quadratic reciprocally convex inequality (BORCI). For any real positive scalars
a,B,v,0, and holds a« + B+ 7y + 0 = 1, for given R, € ST(i = 1,2,...,4), and free matrices
$15>82j,835,84j,85),S6js Urj, Uaj, Usj, Usj, Usj, Ugj, Uqj, Ugj, Ugj, Uroj, Urj, Urpy € RP(j = 1,2),
such that the following inequality holds:

ki 00 0 R 0 0 0 My My My My
* éRZ 0 0 > * Rz 0 0 " * M22 M23 M24 (25)
* * %Rs O [7] = = Ry O * * M3z My
% % % %R4 x % x Ry * * ¥ My
When the condition below is satisfied:
>CL’U11+CL’2U12—R1 (02+ﬁ2)512+511 0 0]
* ﬁUQ] +ﬁ2U22 —Rz 00
A= * * 0 0 (<0, (2.6)
* * * 0
[ CL’U31+CL’2U32—R1 0 (02+ﬁ2)522+521 0 ]
* 0 0 0
AQ = * * ’)/U41 + ’}/2U42 - R; 01]< 0, (27)
* * * 0
[ a/U51+a/2U52—R1 00 (C¥2+32)S32+531 1
% 00 0
As = * x 0 0 <0, (2.8)
* x* % O0Ug +52U62—R4
[ 0 0 0 0 |
x* BUn +BUn—Ry (@®+B)Sp+Su 0
Ay = * * yUsi +y*Us, =Ry 0 | <0, (2.9)
* * * 0
0 0 0 0
x BUy +B*Up—Ry 0 (a*+B)S52+ S5
As = * * 0 0 <0, (2.10)
¢ * x 6Uyo1 + 6*Uipn — Ry
0 0 0 0
x 0 0 0
Ag = x % UL +BUIn—Ry (@ +B)Se+Se | <0, (2.11)
* ok * oU +62U122—R4
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where

My = (@ +B5)S 12+ S,
My = (@® + 5S35 + S,
My, = (@* + S5 + Ss1,

M3 = (@* +B)S 2 + S,
Mo = (@ + S 4 + Sa1,
Ms, = (@ +B)Se + Se1,

My, =BU +aBUy + yUs + ayUsy + 6Us) + adUs,,
My = aUsy + afUxn + yUq + ByUs, + 6Ug + B6Uy,,

M3
My,

Proof: We first write the difference of inequality in six parts,

iR, 0
% éRz

ES ES

*k %k
SR, 0

a
* 0
+

3k %k
ES ES

0 0

0 0

§R3 10

* 5R4
0 —S31 0
0 O N *
0 O *
%k %R4 k

For the first part,

where

§R1 =-Su
* %Rz
* *
* *
Ui Su 00
* 0O 0O
*= 0 0
* x % 0
Unr Si
+a?| ¥ 0
* *
* *

AIMS Mathematics

Ry S Sau
* Ry Sy
% % R;
ES %k ES
0
%Rz —13541
7K
%k

S3i
Ssi

Sel
Ry

0
0

0
0

00

00

00

= 0
0 Si
* Uy

% %

k k
I 0
7

o

*

*

*

¥ © O O

ERy —=Su O
* %Rz 0
* * 0
* * *
0O 0 O
BRZ 0 =S5
* 0 0
® ok §R4

BU +apUy,

*¥ N O O

(@ +B5)S 1
CKU21 + a’ﬂUzz

0 Sq 00

*« 0 0 0

* % 0 0

* % % 0
0 R, O
0 _ * R2
0 * %
0 * %

0

0

0

1

o O O O

aUy + ayUy + BUg + ByUss + 6U 11 + yoUy1a,
aUs; + adUgy + BU 101 + BoU 02 + yUr21 +y0U 2.

gRl 0
+ 0
+
k %
% %
00 O
*= 0 0
P
ok ;R3
k ES k
00
0 0
00
x* 0
0 Si
+d = 0
* k
ES ES
00
00
= 0

IR
=
w

S O oo

* O O O
o O O O
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In other words,

R, =511 0 0 BUL +aBU;n  (@2+B5)S5, 0 0
* QRQ 00 * alUy + a/,8U22 00
B — T
% * 00 * * 00 DIZAIDU
* % x 0 * * x 0
When Eq (2.6) holds,
Ry, =11 0 0 BUL+aBU;n  (@+B5)S1n, 0 0
* %Rz 00 S * alUy + aﬂU22 00
* * 0 0|~ * * 0 0
* * % 0 % * x 0
Similarly, the other five parts can be described by
gRl 0 —521 0 | [ ’)/U31 + a)/U32 0 ((1/2 +,82)S22 0
* * %R3 0 N * * CZU41 + ayU42 0 B DBAZDB,
%k 0] [ * * * 0
gRl 00 —S31 1 [ 6U51 +C¥6U52 00 (a2+ﬂ2)S32
* 0 0 O _ * 00 0 T
" « 0 0 - % « 0 0 - D14A3D14»
| % % % %R4 I 0 * x* % alUg + aoUg
[0 O 0] 1o 0 0 0
Y _
* ﬁR2 ﬁS41 0 _ * ’}/U71 +ﬁ’yU72 (a/2 +ﬁ2)S42 0 _ D2T3A4D23,
* % ;R3 0 * * BUsi + ByUsg, 0O
| * * 0 | | * ES % 0
[0 0 O O [ O 0 0 0
x SRy 0 —Sg x 6Ug +B6Us 0 (a*+B2)S
B _ 91 9 52 | _pr
« % 0 0 | |= % 0 0 D285 Das,
|+ % §R4 I L= * * BUo1 + BoU 102
[0 0 O 0 [0 O 0 0
* 0 0 0 = 0 0 0 T
o $R3 ~Se1 | | * x Uiy +yUnn, @ +)Sq | D346Dss.
* % % IRy | [ x = * YU +y6Ui22
where
20 0 0 Jir oo o ro 00
a Y
D3 = Dy = * 10 0 |p.= g ,
* * \/%I 0 * = I 0 * % \/él 0
% % ® i * * K \/%I * * % 1

AIMS Mathematics
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1 0 0 0 I 0 0 0
Doy = * * 1 0 Dsa = | w \/él 0
* * ® g[ * % * %I

Hence, the lemma is proved whenever (2.7)—(2.11) hold.

Remark 2.7. Ifthefree matrix U]j, U2j’ U3j, U4j, U5j, U()j, U7j, Ugj, Ugj, Ule, U11j7 U]Qj, fOl”j =1,2is
the zero matrix and S ;; is also the zero matrix fori = 1,2, - - - 6, the BORCI will become the traditional

reciprocally convex inequality.

Remark 2.8. As far as we know, a bivariate quadratic reciprocally convex matrix inequality is
proposed for the first time, and the new lemma effectively addresses the bivariate quadratic terms
generated in the system. Lemma 2.6 has broader applications and achieves less conservativeness.

3. Stability analysis based on the bivariate quadratic reciprocally convex inequality and the

improved Lyapunov—Krasovskii functional

For brevity, the following symbols are defined:

1) = y(t) —y(t - kl(t)t) l
ST DO Ay - k@) - F o Y9 ds]
() = ' ¥t = ka(e) =yt = ki (1) = k(1)
T - k@) 43—k - k) - 25 [0 v(s)ds|’

o) = Y = k(D) = ka(0) = 3t~ k(1) ~ ko) o ]
Yt = ki (0) = k(D) + y(t = ki (D) = ko) = = [t V() ds|”
) = ’ Y=k~ k) =yt —ki k) ]
Yt = ki (D) = ko) + 31 = ki = ko) = 7= [y, Y9 5|

) = |y (0, Y (t = ki(0), Y (t = ki () — ka (1)), " (t = k1 (1) — ko),

. 1 t . 1 1—ki (1) .
-k —k»—f y (s)ds,—f ¥ (5)ds.
Tk 1) =ty 0 ko () iy (-t 0)

1 1=k ()—ka () . 1 i~k ()—ka . T
— y(ds, ———— f v (s) dS]
ky — ko (1) ft—kl(t)—kz ky = ki(®) Jiky—1,
e = [zeros(n, (i—Dn) I, zeros(n,(9 - i)n)] ,i=1,2,...,9.
The important notations are denoted as

R O
0 3R

€ — €iy]
e+ e — 2es

i

] (i=1,2,3,4), R:[

], E=|E|,E;, ELEIT,
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=S12 —S» -S3 Usy =S12 —S» —S3
(ki+k2)?  (ki+k)?>  (ki+ko)? (ki+k2)?  (ki+ka)?  (ki+k2)?  (ki+k2)?
Un -S4 —Ss2 " 0 =S4 —Ss2
a = (ki+k2)?  (ki+k)?>  (ki+k)? b, = (ki+k2)?  (ky+kp)?
2= % % Ug, —Se2 P2 = * % 0 —Se2 >
(ki+k2)?  (ki+k2)? (kll}'kZ)z
62
| * * 0 * * * A
r —Upn+Us
(k1+k2)? U 0 U 0 0
—U»n+Ug
cr = ' itk OU X
42—U112 ’
* * ki+ky U OU
102—U122
L * * (k1 +k2)
a= -Uy + Us o = Uz koU7y + ki Ugy
- T T 7 < 22 — - ’
YD) ki+tk  (k+k)?
- —Usg kyUgy — kyUniz das = Uit + Ui kiU — kiU
33— - ’ 44 — - ’
ki + ko (ki + ky)? (k1 +k2) (ki + ky)?
bii = Us, kyUsy + ki Usy _ —Ua + Uy
- - ’ 22 — = 5 5 >
"Thtk) (k)P ki + ko
b = “Un+Uin  kUpn kU, _ -Ug kiU — kaU122
33 — - ) 44 — - )
kl + k2 (kl + k2)2 k] + k2 (k1 + k2)2
o= —koUs — k1 Usy B e = —koyU7y — ki Uy ~
11 — A 22 — -,
(k1 + k2) (k1 + k2)
kiU —kikoUpnn o 4 kUi —kikyUiy 4
C3z3 = + 2 —R,cyy = + ) — R,
ki +ky (ki +ky) ki +ky (ki + k)
a, = diag(ay1, ax, a3, dss), by = diag(b1, by, b3z, bas), ¢ = diag(ciy, ¢, €33, Cas),
I S U S ]
0 (kll'}'kz)z 00 (ki+ka)?  (ky+ko)? 00 0 19 0 0
22 21
afé = * (k1 +k2)? 00 , ﬁ% = * 0 00 , a,l — ki+k 00 ,
* « 00 * « 00 ! « % 00
* * x 0 % * * 0 | * * x 0
U > r S»
G0 0 0 R S1, 00 00 7% 0
,31 = 0 00 1 = —R 0 0 ) 0 0 0
1 = s ')’1 = s az = Uy s
*= % 0 0 * * 0 0 S Py 0
* * % 0 * * % 0 % % * 0
Uz S»
(k1+k2)? 0 (k1+k2)? 0 00 0 0
Bz * O O 0 2 * O 0 0
2 = ’ all = —U41 —2k2U42 B
« o+ 0 0 * % Grky T Gatky O
* * * 0 % % * 0
Ui, _R
ik 0 0O R 0O S 0
g « 00 0 5 * 0 0 0
1 = s 7/1 = koUygy k%Uz;z P )
* *» 00 X F Gk T Ty RO
* * % 0 * % * 0
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- S3 Usy S3
000 (k1+k)? (k1 +k2)? 00 (ky+k2)?
*= 0 0 0 * 00 0
@ = B = X
* % 0 0 * x* 0 0
U
[+ x x 0 R T Ty
oo o R 00
s | = 00 0 ; | 00
B = % * 0 0 V= * % 0
—Ug) =2k Usp k1 U
R Tk T k) oo ko)
[ O 0 0 0 [0 O 0 0
Up S S
a,‘z‘ - ¥ Ttk (kll}-f;)z 0 , IB‘Zt = * 0 (k1+ko)? 0 , 13411 =
* * (k1+k2)? 0 o 0 0
* * s 0 * ok * 0
[ O 0 0 0] 0 O
Uz _R
ot = * Ttk 0 0 s_|* R
17| . % —Usi =2k Us o\l Y= % % ko Usi
(k1+k2) (k1+k2)? (k1+k2)
* * * 0 | * %
[ 0 0 0 0 [0 0 O 0
Uy Ssp Ssp
@ = ¥ Ttk 0 (ky+k2)? 135 = * 00 (ky+k2)?
2 * * 0 0 2 * % 0 0 ’
Uipz
o0 ox 0 R Ty
[ 0 0 00 0 0O 0
Ugy
S=|F @k 00 B = * 00 0
1 N « 0 0|™ x * 0 0 ’
~Ujor =2k Ui
* ox %0 R Ttk T k)
[0 0 O 0 0 0 0
5 * —R O S51 6 k) O O
Yi= ] % « 0 0 @, = % Uiz
U U B (k1+k2)?
1U101
Ok Ty T T R e
[0 0 O 0 00 0 0
5 * 00 0 = 0 0 0
2 = N “Uin =2k U112 >
* x 0 ® hay? * % Tty T Tarky O
122
* ok ok gl * * 0
[0 0 O 0
6 *= 0 0 0
ﬁ =
1 x % 0 0 ’
-Ujp —2k1U122
FOER Gy T ik
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*¥ ¥ x O
* % O O
* O O O
= elole)

S3i
0
0

K Us
(k1+k2)?

0

-R

00
00
x 0
%k *

* ¥ ¥

0
S
k%ng
(ky+k2)?
%k

-R

S O OO oo oo

0
0

Se62
(k1+ka)?

0
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00 0 0
] x 0 0 0
Y= ko Urig kUi D
* —
Gk ¥ Ty — R § o1
% % " kUi kUi -R

(k1+k2) (k1+k2)?

Then, we propose a new delay-dependent stability criterion for the system based on the bivariate
quadratic reciprocally convex matrix inequality and the improved Lyapunov—Krasovskii functional.

Theorem 3.1. For known k; > 0, u; > 0 (i = 1,2), the time delays of the additive system:

ki(t) and ky(t) follow conditions (2.2); the additive system (2.1) is asymptotically stable if there
. . [Pl ) N

exists a matrix, . e S

p e Zi € S) (1 = 1,2,3,4), R, € S, forany | = 1,2,3,4,5,6,
3

Slj’SZj’S3j’S4j’SSj’SGj9 Ulj’ U2j’ U3j5 U4j9 U5j9 U6j’ U7j9 USj’ U9j’ Ule’ Ullja U12j € Rnxn(j = 1’2)
such that LMIs (3.1)—(3.6) hold.

P(0) <0, (k) <0, %a] +¥,(0) < 0, (3.1)
¥,(0) <0, Wik <O, %(&1 + Cky) +2(0) < O, (3.2)
P3(0) <0, Ws(ky) <0, %(al + %ez) +¥5(0) < 0, (3.3)
Q/0)<0, Q(k)<0, %a{ +Q1(0) <0, (3.4)
QJ0) <0, Qk) <0, %a{ +QJ(0) <0, (3.5)
Ql(0) <0, Ql(k) <0, %a{ +QJ(0) < 0. (3.6)

The important notations are defined:
W (h) = ah® + ash + &1,  Wa(h) = ah® + (@) + &k)h + (k> + biky + &) < 0,
k ~ k
Ws(h) = ah® + (4 + Eléz)h + (1)15l +¢) <0,
Ql(h)y = ajh* +alh+y] <0, Qi(h) = ajh* + ajh + (Bik; + Bk +¥)) <0,
. ) . k .
Ql(h) = ajh* + alh + (B{EI +v)) <0,
@1 = Sym{elT(PlA + Pz)el + e{PlB€3 — €{P2€5},
@y = el (Z) +Zy + Z3 + Zy)er — (1 — wy)el Ziey — (1 — g — po)el Zyes
— (1 — wy)es Zzeq — el Zyes,

@3 = (ky + ko)(e] ATRAe, + e} B'RBes + Sym{e] AT RBes)),
T; = Sym{e{ (A" Py + P3)eis + e5 B' Preiys — el Pserys) (i =1,2,3,4),

N ETCle ~ EszE N ETCZE N % Yr + ETalE
a = 4 =7 1> G = PR ay = - s
2 k1+k2 2 k1+k2 2 k1+k2 ! 2 3 k1+k2
N ETb,E ETc\E

b= =Tyt —= 2 =0+ 0+ 0s + kT3 + Ky Ly +

k1+k2, k1+k2‘
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Let us prove this theorem:
Proof: Choose some LKFs candidate first,

V() = Vi) + Vo) + Vi), (3.7)

where

Vi( )_[t y(t) lT[PI PZH’ y(1) }
10 = ft_kl_kzy(s)ds *  Ps j;—kl—kzy(s)ds )

Va(y,) = f Y ($)Ziy(s)ds + f Y ($)Zay(s) ds

—ki(n) 1=ki()—ka (1)

+ f Y (9)Zsy(s)ds + f Y (9)Zsy(s) ds,

—ki (t)_k2 t—ki—ko

0 t
Vi(y) = f f Yy ($)Ry(s) ds dé.
—kl—k2 t+60

Then, we calculate the derivatives of the functionals, which are given by:

Vi) = (1) (O + Y1k (1) + T2ky(1) + T3k — ka(0)) + Va(ky — ki(1))) €(0), (3.8)
Vo) < E1(0@£(), (3.9)
Vi) = (ky + ka)y" (DRy(1) — f - V' ($)Ry(s) ds
t =k (1)
= (ky + ko)y" (DRy(1) — f ¥ ($)Ry(s)ds — f V' ($)Ry(s) ds (3.10)
t—k; () 1=k (t)—ka()
t—ki (1)—ka(t) 1=k (1)—k2
- f 3" ($)Ry(s) ds — f ' ($)Ry(s)ds.
t—k1(t)—ky t—ki1—ko

Using the Wirtinger-based integral inequality (2.3) to estimate the upper bounds of the derivative of
Vi(1).

olWRe (1) i (ORoy0)  ThORes()  of(ORou()

Va(n) < (ks + kp)y" (DRy(2) —

ky(2) ko (1) ky — k(1) ki — ky(2)
= (ki + k2)y" (ORY(1)
r -
O [~aak 0 0 0 o
N IOl I L | CEl 3.11)
o5(1) * * _kz—kz(t)R 0 ) o3(1)
o4(t) % * * —mR o4(1)
By using Lemma 2.6,
E\l [ 2R k 2 0 0 (&,
. E * B R 0 0 E
_ 4T _ 2 ka (1) . 2
E, * * * qu—z?t) R 4
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<€) (®3 + 2 !

y ET[ay)3(8) + bok(£) + ayky(£) + biki (1) + ok (D)ky () + cl]E) &(1).
1 2

Therefore,
V) < E7(0) (k3 () + baki (1) + aka(t) + biky () + eaki (Da(0) + 1) £(0). (3.12)

Using Lemma 2.2, from the negative determined condition, V < 0 holds if the LMIs conditions (3.1)—
(3.3) hold.
On the other hand, there are some necessary conditions for the new reciprocally convex matrix
inequalities (2.6)—(2.11):
A; <0, for j=12,...,6.

Similarly, using Lemma 2.2 again,
Aj = (g0 + (D) + alka(t) + Blka(t) +7]) < 0. (3.13)

This is ensured by the LMIs (3.4)—(3.6)) based on Lemma 2.2. Consequently, if the LMIs (3.1)
to (3.6) are feasible, there exists a sufficiently small & > 0 such that V(y,) < —&lly@®)|>. This
condition guarantees that system (2.1) with additive time-varying delays and satisfying condition (2.2)
is asymptotically stable. The proof is complete.

: _ k.o kO®.. _ k-k®.c¢ _ k-k@® .
Remark 3.2. When using Lemma 2.6, we can let @ = k1+k2’ﬁ = Y = e 0 = T In this

way, the derivative of V(y,) can become a bivariate quadratic function. In the same way, the necessary
condition A; < 0 for the Lemma (2.6) can also be written as a bivariate quadratic function. The only
difference is that the coefficients of k(t) and ky(t) are O.

Remark 3.3. The LMIs presented in Theorem 3.1 are based on the newly derived bivariate quadratic
reciprocally convex inequality. This inequality allows for a more comprehensive application of
bivariate quadratic negative definiteness conditions, enabling the formulation of LMIs that effectively
utilize the delay information of the systems under discussion. Furthermore, the resulting stability
criteria exhibit lower conservativeness without significantly increasing the number of decision
variables (NoDVs). Thus, the advantage of the LMlIs lies in their foundation on this inequality, which
enhances the applicability of negative definiteness conditions while maintaining practical relevance in
stability analysis.

4. Numerical experiments

Example 4.1. Consider the time-varying delay system (2.1) with the given matrices ‘A and B,

2 0 -1 0
ﬂ‘[ 0 —0.9]’8‘[—1 -1 ]

The upper bounds for the delay derivatives, u; and u,, are set at 0.1 and 0.8. Our objective is to
determine the upper bounds of delays k() and k,(t), specifically finding k; and k, when one is known.
Some previous methods use traditional RCI like [31], which do not achieve results as favorable as
those obtained by applying BQRCI. Table 1 compares different k; values with the results from previous
studies, including some recent research [32-34], and Theorem 3.1 under different delay conditions.
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As shown in Table 1, the upper bound of k, obtained using the current method is greater than that
of several recent results, such as those in [32-34], while the NoDVs is smaller than in [33]. Therefore,
this method effectively controls the increase in computational complexity without significantly raising
the number of decision variables, while also achieving less conservativeness for the system.

Table 1. The time-varying delay upper bound k, for various k;.

ki 1.0 1.2 1.5 NoDVs

[32] 0.982 0.782 0.482 -

[33] 0.999 0.972 0.680 202n* + 25n
[34] 1.163 0.965 0.669 32n* + 10n

[35] 0.415 0.376 0.248 12.5n% + 4.5n
[36] 0.512 0.406 0.283 7.5n% +3.5n
[37] 0.595 0.462 0.312 -

[38] 0.873 0.673 0.452 7.5n% + 5n
Theorem 3.1 1.171 0.975 0.715 100.57% + 27.5n

Example 4.2. Consider the time-varying delay system (2.1) with the given matrices A and B,

-2 0 -1 0
ﬂ_[ 0 -09 ]’B_[ -1 -1 ]
We also assess the decay rates for different values of k,. From Table 2, it can be observed that
the upper bound of k, obtained by the current method is greater than that of several recent results,
including [31,33,34,39], and NoDVs is smaller than [31,33,39]. Therefore, this method controls the

increase of computation without excessively increasing NoDVs. The proposed method can yield an
improved stability criterion for additive time-varying delay systems.

Table 2. The time-varying delay upper bound k; for various k;.

ky 0.3 0.4 0.5 NoDVs

[31] 1.967 1.883 1.788 149n° + 25n
[32] 1.682 1.582 1.482 -

[33] 1.880 1.779 1.675 202n* + 25n
[34] 1.875 1.773 1.671 32n% + 10n

[35] 1.324 1.039 0.806 12.5n* + 4.5n
[36] 1.453 1.214 1.021 19.5n% + 3.5n
[37] 1.531 1.313 1.140 -

[38] 1.808 1.593 1.424 Tn? + 5n

[39] 1.913 1.813 1.713 195.5n% + 30.5n
Theorem 3.1 2.280 2.010 1.806 100.5n% + 27.5n

Example 4.3. Consider the time-varying delay system (2.1) with the given matrices ‘A and B,
-2 0 -1 0
=l S)ee[ 4]
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From Table 3, it can be seen that the upper bound of k; and k, obtained by the current method is
greater than that of several recent results, including [10,32,40]. Therefore, this method achieves less

conservativeness for the system.

Table 3. The time-varying delay upper bound for different cases.

Method kl =1 kl =1.2 kl =1.5 k2 =0.3 k2 =0.4 k2 =0.5
[8] 0.415 0.340 0.248 1.324 1.039 0.806
[10] 0.873 0.673 0.373 1.573 1.473 1.373
[32] 0.982 0.782 0.482 1.682 1.582 1.482
[36] 0.512 0.406 0.283 1.453 1.214 1.021
[40] 0.872 0.672 0.371 1.572 1.472 1.372
Theorem 3.1 2.163 1.928 1.598 7.111 5.309 4.230

Example 4.4. By introducing the virtual state and measurement output vectors defined as y(f) =

[Af AP, AP, fﬂCE ]T and z(r) = [&ZICE fﬂCE]T, the closed-loop LFC system can be
represented as the linear system (2.1), which includes two additive time-varying delays. The system
parameters are presented in the following format:

Af -2 & 0 0 00 O

_| 4p, |0 == & 0|l _ | 0 00 0
W= e, AT 00 oL o BT Km0 0 K
[ACE @ 0 0 0 0 00 O

with the parameters givenin [31]: M=10,D=1,7,4=0.3,7, =0.1,R =0.05, w = 21.
To facilitate comparison with existing results, Figure 1 presents the findings for the case where K; =
0.2, Kp = 0.1, |k1(t)| < 0.1, and |k2(t)| < 0.8. A simple simulation is conducted with the assumption

of time-varying delays defined as k;(¢) = 1 sin(0.2x(¢)) + 1 and k(1) = 228 sin (%y(t)) + 228 The
results of this simulation are illustrated in Figure 1, where the LFC achieves its objectives, and the
control system remains stable for MAUB k = 3.278. The state responses converge to zero, confirming

that system 2.1 is stable as shown in Figure 1 under condition Example 4.4.
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t

Figure 1. Trajectory of Example 4.3.

5. Conclusions

In this study, we successfully generalize a bivariate quadratic reciprocally convex inequality that is
effectively applied to additive time-varying delay systems, significantly reducing the conservativeness
typically associated with stability analyses. By employing the Lyapunov—Krasovskii function method
in conjunction with this new inequality, we derive a novel stability criterion. Ensure that the
conservativeness of the system decreases while controlling the excessive growth of the NoDVs
without significantly increasing the computational burden. The effectiveness of the new approach
is demonstrated through four numerical examples, underscoring its practical applicability in enhancing
the stability analysis of additive time-varying delay systems.
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