Research article

The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications

  • Received: 11 October 2024 Revised: 05 December 2024 Accepted: 13 December 2024 Published: 30 December 2024
  • MSC : 34A08, 26A33

  • In this paper, we introduce the concept of the weighted generalized Atangana-Baleanu fractional derivative. We prove the existence of the stability of solutions of non-local differential equations and non-local differential inclusions, in Banach spaces, with this new fractional derivative in the presence of instantaneous and non-instantaneous impulses. We considered the case in which the lower limit of the fractional derivative was kept at the initial point and where it was changed to the impulsive points. To prove our results, we established the relationship between solutions to each of the four studied problems and those of the corresponding fractional integral equation. There has been no previous study of the weighted generalized Atangana-Baleanu fractional derivative, and so, our findings are new and interesting. The technique we used based on the properties of this new fractional differential operator and suitable fixed point theorems for single valued and set valued functions. Examples are given to illustrate the theoretical results.

    Citation: Muneerah AL Nuwairan, Ahmed Gamal Ibrahim. The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications[J]. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722

    Related Papers:

  • In this paper, we introduce the concept of the weighted generalized Atangana-Baleanu fractional derivative. We prove the existence of the stability of solutions of non-local differential equations and non-local differential inclusions, in Banach spaces, with this new fractional derivative in the presence of instantaneous and non-instantaneous impulses. We considered the case in which the lower limit of the fractional derivative was kept at the initial point and where it was changed to the impulsive points. To prove our results, we established the relationship between solutions to each of the four studied problems and those of the corresponding fractional integral equation. There has been no previous study of the weighted generalized Atangana-Baleanu fractional derivative, and so, our findings are new and interesting. The technique we used based on the properties of this new fractional differential operator and suitable fixed point theorems for single valued and set valued functions. Examples are given to illustrate the theoretical results.



    加载中


    [1] V. E. Tarasov, Handbook of fractional calculus with applications, Berlin: De Gruyter, 2019. https://doi.org/10.1515/9783110571660
    [2] D. Baleanu, A. M. Lopes, Applications in engineering, life and social sciences, part B, 1 Eds, Walter de Gruyter, Berlin, 2019. Available from: https://www.amazon.com/Applications-Engineering-Sciences-Gruyter-Reference/dp/3110570920
    [3] F. Benito, M. Salgado, R Sampayo, A. Torres, C. Fuentes, Application of fractional calculus to oil industry, Frac. Anal. Appl. Phys. Eng. Tech., 2017. https://doi.org/10.5772/intechopen.68571 doi: 10.5772/intechopen.68571
    [4] M. Al Nuwairan, Bifurcation and analytical solutions of the space-fractional stochastic Schrődinger, Fractal Fract., 7 (2023), 157. https://doi.org/10.3390/fractalfract7020157 doi: 10.3390/fractalfract7020157
    [5] M. Almulhim, M. Al Nuwairan, Bifurcation of traveling wave solution of sakovich equation with beta fractional derivative, Fractal Fract., 7, (2023), 372. https://doi.org/10.3390/fractalfract7050372 doi: 10.3390/fractalfract7050372
    [6] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. Available from: https://www.researchgate.net/publication/290484465
    [7] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
    [8] S. Asma, S. Shabbir, K. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional differential equations involving Atangana–Baleanu fractional derivative, Adv. Differ. Equ., 2021 (2021), 395. https://doi.org/10.1186/s13662-021-03551-1 doi: 10.1186/s13662-021-03551-1
    [9] A. Devi, A. Kumar, Existence and uniqueness results for integro fractional differential equations with atangana-baleanu fractional derivative, J. Math. Exten., 15 (2021), 1–24. https://doi.org/10.30495/JME.SI.2021.2128 doi: 10.30495/JME.SI.2021.2128
    [10] S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palermo, (2022), 647–663. https://doi.org/10.1007/s12215-021-00622-w doi: 10.1007/s12215-021-00622-w
    [11] K. A. Abro, A. Atangana, A comparative analysis of electromechanical model of piezoelectric actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Math. Methods Appl. Sci., 43 (2020), 9681–9691. https://doi.org/10.1002/mma.6638 doi: 10.1002/mma.6638
    [12] B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives: Designing ABC-fractional masks in image processing, Physica A Stat. Mech. Appl., 542 (2020), 123516. https://doi.org/10.1016/j.physa.2019.123516 doi: 10.1016/j.physa.2019.123516
    [13] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-Cov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [14] K. Dishlieva, Impulsive differential equations and applications, J. Appl. Computat. Math., 1 (2012). Available from: https://www.hilarispublisher.com/archive/jacm-volume-1-issue-6-year-2012.html
    [15] K. Church, Applications of impulsive differential equations to the control of malaria outbreaks and introduction to impulse extension equations: A general framework to study the validity of ordinary differential equation models with discontinuities in state, Université d'Ottawa/Univ. Ottawa, 2014, 125227011. https://doi.org/10.20381/RUOR-6771 doi: 10.20381/RUOR-6771
    [16] X. Liu, G. Ballinger, Boundedness for impulsive delay differential equations and applications in populations growth models, Nonlinear Anal. T. M. A., 53 (2003), 1041–1062. https://doi.org/10.1016/S0362-546X(03)00041-5 doi: 10.1016/S0362-546X(03)00041-5
    [17] M. Benchohra, E. Karapınar, J. E. Lazreg, A. Salim, Fractional differential equations with instantaneous impulses, Adv. Top. Fract. Diff. Equ., 2023, 77–116. https://doi.org/10.1007/978-3-031-26928-8_4 doi: 10.1007/978-3-031-26928-8_4
    [18] J. R. Wang, M. Fečkan, Non-instantaneous impulsive differential equations, Iop Publishing Ltd, 2018. https://doi.org/10.1088/2053-2563/aada21
    [19] R. Agarwal, S. Hristova, D. O'Regan, Non-instantaneous impulses in differential equations, Springer, 2017. Available from: https://link.springer.com/book/10.1007/978-3-319-66384-5
    [20] Z. Alsheekhhussain, A. G. Ibrahim, M. M. Al-Sawalha. Y. Jawarneh, The existence of solutions for $g$-weighted $\varphi $-Hilfer fractional differential inclusions of order $\alpha \in(1, 2)$ with non-instantaneous impulses in Banach spaces, Fractal Fract., 8 (2024) 144. https://doi.org/10.3390/fractalfract8030144 doi: 10.3390/fractalfract8030144
    [21] Z. Alsheekhhussain, A. G. Ibrahim, M. M.Al-Sawalha, K. A. Rashedi, Mild solutions for $g$-weighted, $\varphi $-Hilfer, non-instantaneous impulsive semilinear differential inclusions of order $\alpha\in(1, 2)$ in Banach Spaces, Fractal Fract., 8 (2024), 289. https://doi.org/10.3390/fractalfract8050289 doi: 10.3390/fractalfract8050289
    [22] Z. Alsheekhhussain, A. G. Ibrahim, M. M. Al-Sawalha, O. U. Ababneh, Antiperiodic solutions for impulsive $w $-weighted $\varphi$–Hilfer fractional differential inclusions in Banach Spaces, Fractal Fract., 8 (2024), 376. https://doi.org/10.3390/fractalfract8070376 doi: 10.3390/fractalfract8070376
    [23] M. Al Nuwairan, A. G. Ibrahim, Nonlocal impulsive differential equations and inclusions involving Atangana-Baleanu fractional derivative in infinite dimensional spaces, AIMS Math., 8 (2023), 11752–11780. https://doi.org/10.3934/math.2023595 doi: 10.3934/math.2023595
    [24] M. Al Nuwairan, A. G. Ibrahim, Solutions and anti-periodic solutions for impulsive differential equations and inclusions containing Atangana-Baleanu fractional derivative of order $\alpha\in(1, 2)$ in infinite dimensional Banach spaces, AIMS Math., 9 (2024), 10386–10415. https://doi.org/10.3934/math.2024508 doi: 10.3934/math.2024508
    [25] J. V. da C. Sousa, E. C. de Oliveira, On the $\psi $-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 72–91. https://doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
    [26] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simulat., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [27] H. Vu., B. Ghanbari, N. Van Hoa, Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative, Fuzzy Sets Syst., 429 (2022), 1–27. https://doi.org/10.1016/j.fss.2020.11.017 doi: 10.1016/j.fss.2020.11.017
    [28] K. Benia, M. S. Souid, F. Jarad, M. A. Alqudah, T. Abdeljawad, Boundary value problem of weighted fractional derivative of a function with a respect to another function of variable order, J. Inequal. Appl., 2023 (2023), 127. https://doi.org/10.1186/s13660-023-03042-9 doi: 10.1186/s13660-023-03042-9
    [29] F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. https://doi.org/ 10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113
    [30] M. Alshammari, S. Alshammari, M. S. Abdo, Existence theorems for hybrid fractional differential equations with $w$-weighted Caputo-Fabrizio derivatives, J. Math., 2023 (2023), 13. https://doi.org/10.1155/2023/8843470 doi: 10.1155/2023/8843470
    [31] M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Adv. Differ. Equ., 2020 (2020), 3. https://doi.org/10.1186/s13662-019-2471-z doi: 10.1186/s13662-019-2471-z
    [32] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Solit. Fract., 117 (2018), 6–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006
    [33] M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana-Baleanu fractional derivative: Analysis and applications, Chaos Solit. Fract., 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013
    [34] H. Afsharia, V. Roomib, M. Nosratia, Existence and uniqueness for a fractional differential equation involving Atangana-Baleanu derivative by using a new contraction, Lett. Nonlinear Anal. Appl., 1 (2023), 52–56. Available from: https://www.lettersinnonlinearanalysis.com/index.php/lnaa/article/view/v1n2a06/v1n2a06
    [35] T. Cardinali, P. Rubbioni, Impulsive mild solution for semilinear differential inclusions with nonlocal conditions in Banach spaces, Nonlinear Anal. T. M. A., 75 (2012), 871–879. https://doi.org/10.1016/j.na.2011.09.023 doi: 10.1016/j.na.2011.09.023
    [36] D. Bothe, Multivalued perturbation of m-accerative differential inclusions, Isr. J. Math., 108 (1998), 109–138. https://doi.org/10.1007/BF02783044 doi: 10.1007/BF02783044
    [37] M. Kamenskii, V. Obukhowskii, P. Zecca, Condensing multivalued maps and semilinear differential inclusions in Banach spaces, Walter de Gruyter, 2001. https://doi.org/10.1515/9783110870893
    [38] S. Hu, N. S. Papageorgiou, Handbook of multi-valued Analysis, Latest Edition, Springer, 1979. Available from: https://link.springer.com/book/9780792346821
    [39] R. Agarwal, S. Hristova, D. O'Regan, Generalized proportional Caputo fractional differential equations with noninstantaneous impulses: Concepts, integral representations and Ulam-type stability, Mathematics, 10 (2022), 2315. https://doi.org/10.3390/math10132315 doi: 10.3390/math10132315
    [40] D. Filali, A. Ali, Zeeshan Ali, M. Akram, M. Dilshad, Atangana-Baleanu-Caputo differential equations with mixed delay terms and integral boundary conditions, Math. Method. Appl. Sci., 46 (2023), 10435–10449. https://doi.org/10.1002/mma.9131 doi: 10.1002/mma.9131
    [41] A. Samadi, S. K. Ntouyas, A. Cuntavepaint, J. Tariboon, Hilfer proportional nonlocal fractional integro-multipoint boundary value problems, Open Math., 21 (2023), 20230137. https://doi.org/10.1515/math-2023-0137 doi: 10.1515/math-2023-0137
    [42] H. Zhu, Y. Ru, F. Wang, Analysis of solutions for the fractional differential equations with Hadamard-type, Open Math., 21 (2023), 20230131. https://doi.org/10.1515/math-2023-0131 doi: 10.1515/math-2023-0131
    [43] W. Al-Sadi, Z. Wei, I. Moroz. A.W. Alkhazzan, Existence and stability of solutions in Banach space for an impulsive system for involving Atangana–Baleanu and Caputo Fabrizio drivatives, Fractals, 31 (2023), 2340085. https://doi.org/10.1142/S0218348X23400856 doi: 10.1142/S0218348X23400856
    [44] Q. Li, H. Wei, D. Hua, J. Wang, J. Yang, Stabilization of semi-Markovian jumping uncertain complex-valued networks with time-varying delay: A sliding-mode control approach, Neural Process. Lett., 56 (2024), 56–111. https://doi.org/10.1007/s11063-024-11585-1 doi: 10.1007/s11063-024-11585-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(108) PDF downloads(17) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog