Research article Special Issues

An introduction to the theory of OBCI-algebras

  • Received: 12 August 2024 Revised: 21 November 2024 Accepted: 18 December 2024 Published: 30 December 2024
  • MSC : 03B05, 03G25, 06F35

  • The purpose of this paper was to introduce the concept of "OBCI-algebras" as a partially ordered generalization of BCI-algebras. The notion of OBCI-algebras was introduced, and related properties were investigated. The notions of OBCI-subalgebras and (closed) OBCI-filters of OBCI-algebras were defined and the relationship between the OBCI-subalgebras and OBCI-filters was discussed. In addition, the direct product OBCI-algebra was discussed, and the OBCI-filter related to it was also addressed.

    Citation: Eunsuk Yang, Eun Hwan Roh, Young Bae Jun. An introduction to the theory of OBCI-algebras[J]. AIMS Mathematics, 2024, 9(12): 36336-36350. doi: 10.3934/math.20241723

    Related Papers:

  • The purpose of this paper was to introduce the concept of "OBCI-algebras" as a partially ordered generalization of BCI-algebras. The notion of OBCI-algebras was introduced, and related properties were investigated. The notions of OBCI-subalgebras and (closed) OBCI-filters of OBCI-algebras were defined and the relationship between the OBCI-subalgebras and OBCI-filters was discussed. In addition, the direct product OBCI-algebra was discussed, and the OBCI-filter related to it was also addressed.



    加载中


    [1] P. Cintula, Weakly Implicative (Fuzzy) Logics Ⅰ: Basic properties, Arch. Math. Logic, 45 (2006), 673–704. http://doi.org/10.1007/s00153-006-0011-5 doi: 10.1007/s00153-006-0011-5
    [2] P. Cintula, R. Horčík, C. Noguera, Non-associative substructural logics and their semilinear extensions: Axiomatization and completeness properties, Rev. Symbolic Logic, 6 (2013), 394–423. http://doi.org/10.1017/S1755020313000099 doi: 10.1017/S1755020313000099
    [3] P. Cintula, C. Noguera, Implicational (semilinear) logics Ⅰ: A new hierarchy, Arch. Math. Logic, 49 (2010), 417–446. http://doi.org/10.1007/s00153-010-0178-7 doi: 10.1007/s00153-010-0178-7
    [4] P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, In: Handbook of Mathematical Fuzzy Logic, London: College Publications, 2011,103–207.
    [5] P. Cintula, C. Noguera, Implicational (semilinear) logics Ⅲ: Completeness properties, Arch. Math. Logic, 57 (2018), 391–420. http://doi.org/10.1007/s00153-017-0577-0 doi: 10.1007/s00153-017-0577-0
    [6] J. M. Dunn, Partial gaggles applied to logics with restricted structural rules, Substructural Logics, 2 (1993), 63–108.
    [7] J. M. Dunn, G. Hardegree, Algebraic Methods in Philosophical Logic, Oxford: Oxford Univ Press, 2001.
    [8] G. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: An algebraic glimpse at substructural logics, Amsterdam: Elsevier, 2007.
    [9] G. Galatos, H. Ono, Cut elimination and strong separation for substructural logics, Ann. Pure Appl. Logic, 161 (2010), 1097–1133. http://doi.org/10.1016/j.apal.2010.01.003 doi: 10.1016/j.apal.2010.01.003
    [10] Y. S. Huang, BCI-algebra, Beijing: Science Press, 2006.
    [11] P. M. Idziak, Lattice operations in BCK-algebras, PhD thesis, Jagiellonian University, 1984.
    [12] P. M. Idziak, Lattice operations in BCK-algebras, Math. Jpn., 29 (1984), 839–846.
    [13] Y. Imai, K. Iséki, On axiom systems of proposition calculi, Proc. Jpn. Acad., 42 (1966), 19–22. http://doi.org/10.3792/pja/1195522169 doi: 10.3792/pja/1195522169
    [14] K. Iséki, An algebra related with a propositional calculus, Proc. Jpn. Acad., 42 (1966), 26–29. http://doi.org/10.3792/pja/1195522171 doi: 10.3792/pja/1195522171
    [15] K. Iséki, On BCI-algebras, Math. Semin. Notes, 8 (1980), 125–130.
    [16] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Math. Jpn., 23 (1978), 1–26.
    [17] G. Metcalfe, F. Montagna, Substructural Fuzzy Logics, J. Symbolic Logic, 72 (2007), 834–864. http://doi.org/10.2178/jsl/1191333844 doi: 10.2178/jsl/1191333844
    [18] A. N. Prior, Formal logic, 2 Eds., Oxford: Oxford University Press, 1962.
    [19] J. G. Raftery, Order algebraizable logics, Ann. Pure Appl. Logic, 164 (2013), 251–283. http://doi.org/10.1016/j.apal.2012.10.013 doi: 10.1016/j.apal.2012.10.013
    [20] E. Yang, J. M. Dunn, Implicational tonoid logics: Algebraic and relational semantics, Log. Universalis, 15 (2021), 435–456. http://doi.org/10.1007/s11787-021-00288-z doi: 10.1007/s11787-021-00288-z
    [21] E. Yang, J. M. Dunn, Implicational Partial Galois Logics: Relational semantics, Log. Universalis, 15 (2021), 457–476 (2021). http://doi.org/10.1007/s11787-021-00290-5 doi: 10.1007/s11787-021-00290-5
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(123) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog