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Abstract: In this paper, we introduce the concept of the weighted generalized Atangana-Baleanu
fractional derivative. We prove the existence of the stability of solutions of non-local differential
equations and non-local differential inclusions, in Banach spaces, with this new fractional derivative
in the presence of instantaneous and non-instantaneous impulses. We considered the case in which the
lower limit of the fractional derivative was kept at the initial point and where it was changed to the
impulsive points. To prove our results, we established the relationship between solutions to each of
the four studied problems and those of the corresponding fractional integral equation. There has been
no previous study of the weighted generalized Atangana-Baleanu fractional derivative, and so, our
findings are new and interesting. The technique we used based on the properties of this new fractional
differential operator and suitable fixed point theorems for single valued and set valued functions.
Examples are given to illustrate the theoretical results.
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1. Introduction

Fractional calculus has applications to numerous real-world problems in different branches of
science, like physics [1], engineering and Social Sciences [2], and many other branches [3–5]. To
overcome the problems arising from the presence of singular kernel in many well-known fractional
integral and differential operators, Caputo and Fabrizio [6] proposed a definition based on the
exponential function, and then, Atangana-Baleanu [7] generalized the Caputo- Fabrizio definition
and introduced a new fractional derivative and integral with kernel based on the Mittag-Leffler
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function. Several studies on differential equations involving Atangana-Baleanu fractional derivative
in the Caputo sense (ABCD) were carried out [8–10], and many applications of this fractional derivative
were investigated [11–13].

Impulsive differential equations and impulsive differential inclusions are used to model sudden
changes in several real life problems. Some model changes occur instantaneously using instantaneous
impulse differential equations or instantaneous impulse differential inclusions. For examples of the
applications of such equations in studying diseases and population growth, see [14–16]. Other
changes remain active over a certain period of time. These types of changes are modeled using non-
instantaneous impulse differential equations and non-instantaneous impulsive differential inclusions.
In [17–19], the authors provided an extensive study of impulsive fractional differential equations
and impulsive differential inclusions. See also the recent research on non-instantaneous impulsive
differential inclusions [20–22]. It should be noted that there are two approaches in the literature to
problems containing impulses; one by keeping the lower limit of the fractional derivative at zero and
the other by changing it to the impulsive points.

In [23], the authors studied non-local impulsive differential equations and inclusions with the
differential operator ABCD of order γ ∈ (0, 1) in spaces with infinite dimensions, and in more
recent research [24], the authors investigated the existence of solutions and anti-periodic solutions
for impulsive differential equations and inclusions containing ABCD of order α ∈ (1, 2) in infinite
dimensional Banach spaces. Many researchers introduced new concepts of fractional differential
operators, which contributed to the development of fractional calculus and its increased application
in more fields.

Sousa et al. [25] introduced the concept of the ϕ-Hilfer fractional derivative, which generalizes
the ϕ-Caputo fractional derivative presented by Almeida [26] where ϕ : L = [0,T ] → R is a
strictly increasing and continuously differentiable function with ϕ′(υ) , 0,∀υ ∈ L. Vu et al. [27]
introduced the ϕ-Atangana-Baleanu fractional derivative, and studied the existence and uniqueness of
solutions for initial value problems of fuzzy differential equations involving these derivatives. Since
weighted fractional derivatives can be used in the solution of several types of integral equations,
differential equations and differential inclusions containing these derivatives have been studied by
several authors. For example, in [20], the authors investigated the existence of solutions for a
differential inclusion involving w-weighted ϕ-Hilfer fractional derivative. For more studies on
weighted fractional differential equations and inclusions, see [28–30]. In [31], Al-Refai presented
the concept of g-weighted Atangana-Baleanu fractional derivative and proved some of their properties,
where g : L→ (0,∞) is continuously differentiable.

Motivated by the research mentioned above, especially [20, 27, 31], and the authors previous
work [23, 24], we introduce the concept of w-weighted ϕ-Atangana-Baleanu fractional derivative with
lower limit at a ∈ [0,T ] for some T ∈ R+, and then establish the existence of solutions for non-local
differential equations and non-local differential inclusions involving this new fractional differential
operator, in the presence of instantaneous and non-instantaneous impulses. We consider the case in
which the lower limit of the fractional derivative is kept at the initial point and where it is changed to
the impulsive points.

The key contributions of this work is as follows:

- A new concept of the fractional differential operator is introduced (Definition 1). This
new differential operator generalizes both the Atangana-Baleanu [7], the ϕ-Atangana-Baleanu
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derivative introduced by HoVu, Behzad Ghanbari [27], and the g-weighted Atangana-Baleanu
derivative defined by Al-Refai [31]. Some properties for the new differential operator are obtained
(Lemmas 1– 3).

- Using the new differential operator, we form a list of initial value problems (Problems (2.1)–(2.4),
in Section 2). The formulas of their solutions are also given (relations (4.6), (5.7), (6.3) and (7.3)).

- The relationship between solution to Problems (2.1)–(2.4) and the corresponding fractional
integral equations are derived (Lemmas 4, 5, 8, 9).

- Two existence/uniqueness of solutions to Problem (2.1) are proven (Theorems 1 and 2), and three
existence results of solutions to Problems (2.2)–(2.4) are proven (Theorems 3–5).

- The stability of the solution to Problem (2.1) is analyzed (Theorem 6), and in the same manner,
the stability of solutions to the other considered problems can be studied.

To clarify the importance of this work and its relationship to other results, we mention the
following points:

(?) The introduction of new fractional differential operators contributes to the development of
fractional calculus and its increasing applications. The obtained results about this new fractional
generalizes many other ones such as:

- Theorems 4.3 and 5.1, in [23], if one substitutes g(υ) = 1 and ϕ(υ) = υ; υ ∈ L in Theorems 1
and 5

- Theorem 3.1 in [31], if one substitutes ϕ(υ) = υ; υ ∈ L in Lemma 3.
- Theorem 2.3 in [27], if one substitutes g(υ) = 1; υ ∈ L in Lemma 3
- Problem (2.1) is studied in Theorem 3.1 in [32], Theorem 3.2 in [33], and Theorem 2.2

in [34] in the special cases: g(υ) = 1, ϕ(υ) = υ; υ ∈ L, <(x) = =0,∀x ∈ PCg(L,Φ), Φ = R

and Ii(x) = 0∀x ∈ Φ.

(?) The methods used in this work can generalize many of the above mentioned results when the
fractional derivative in these results is replaced by the g-weighted ϕ-Atangana-Baleanu fractional
derivative and where the right hand side represents a set-valued function, instead of function in
infinite dimensional Banach spaces.

The paper is structured as follows. In Section 2, we introduce the notion of the g-weighted ϕ-
Atangana-Baleanu fractional derivative in the Caputo sense of order γ and with lower limit at a, denoted
by ABCDγ,ϕ,g

a,υ . We also formulate the problems that will be considered. In Section 3, we present some
properties of the new fractional derivative. Section 4 to Section 7 are concerned with the existence and
uniqueness of solutions to these problems. The stability of such solutions are discussed in Section 8.
Four examples are given in the last section for illustration.

2. Main definition and problem formulation

In this section, we introduce the definition of ABCDγ,ϕ,g
a,υ , and present the related initial value

problems. The following notations will be used in the rest of the paper.

Notation 1.

- For each r ∈ N, let N0,r = {0, 1, 2, .., r}, N1,r = {1, 2, .., r}.
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- γ ∈ (0, 1), L = [0,T ], where T ∈ R+, 0 = θ0 ≤ θ1 ≤ ... ≤ θr+1 = T, and 0 = τ0 < b1 ≤ τ1 < b2 ≤

τ2 < ... < τr < br+1 = T are two partitions of L, Li = (τi, bi+1]; i ∈ N0,r, and Mi = (bi, τi] ; i ∈ N1,r,
- Φ is a Banach space, =0 ∈ Φ is a fixed point, and z : L × Φ→ Φ

- ϕ : L→ R is a strictly increasing and continuously differentiable function with ϕ′(υ) , 0,∀υ ∈ L.
- g : L→ (0,∞) is a continuously differentiable function and g−1(υ) = 1

g(υ) ; υ ∈ L.
- Lq,ϕ

g ((0,T ),Φ), q ∈ [1,∞) is the Banach space of all Lebesgue measurable functions z such that
zg(ϕ′)

1
q ∈ Lq((0,T ),Φ), where ||z||Lq,ϕ

g ((0,T ),Φ) = (
∫ T

0
||z(υ)g(υ)||qϕ′(υ)dυ)

1
q .

- %1 = supυ∈L |g(υ)|, and %2 = supυ∈L |ψ(υ)|,
- M denote a normalizing function satisfying M(0) = M(1) = 1, and Eγ = Eγ,1,

where Eγ,β is the well known Mittag-Leffler function described by:

Eγ,β(µ) =

∞∑
k=0

µk

Γ(γk + β)
, β ∈ R, µ ∈ C.

We also fix the notation for the following sets

Pb(Φ) := {Z ⊆ Φ : Z is not empty, and bounded },
Pck(Φ) = {z ⊆ Φ : z is not empty, convex and compact},
Pcc(Φ) := {Z ⊆ Φ : Z is not empty, convex and closed }.
H1((0,T ),Φ) := {= ∈ L2((0,T ),Φ) : =(1) ∈ L2((0,T ),Φ)},
C(L,Φ) is the Banach space of continuous functions from L to Φ.

Cg(L,Φ) := {x : L→ Φ : gx ∈ C(L,Φ)},
PCg(L,Φ) := {= : L→ Φ : =g is continuous except at θi, i ∈ N0,r,=(θ+

i ) and =(θ−i )
exist with =(θi) = =(θ−i ) ;∀i ∈ N0,r},

PCgH1(L,Φ) := {= : L→ Φ, g=|(θi ,θi+1) ∈ H1((θi,θi+1),Φ), =(θ+
i ) and =(θ−i ) exist with

=(θi) = =(θ−i ) ;∀i ∈ N1,r},

PC∗g(L,Φ) = {= : L→ Φ : g= is continuous on(τi, bi+1), i ∈ N0,r , = is continuous on
(bi, τi),=(τ+

i ) = =(τ−i ) ,=(b+
i ) and =(b−i ) exist with =(bi) = =(b−i ) ;∀i ∈ N1,r}.

PCgH1,∗(L,Φ) := {= : L→ Φ : g=|(τi,bi+1) ∈ H1((τi, bi+1),Φ);∀i ∈ N0,r

=|(bi,τi) ∈ C((bi, τi),Φ),=(τ+
i ) = =(τ−i ),∀i ∈ N1,r}.

The spaces Cg(L,Φ), PCg(L,Φ), PCgH1(L,Φ), PC∗g(L,Φ), and PCgH1,∗(L,Φ) are Banach spaces,
where the norms function on them are given by

- ||x||Cg(L,Φ) := max ‖|g(θ)x(θ)|| : θ ∈ L}.
- ||x||PC(L,Φ) := max ‖|g(θ)x(θ)|| : θ ∈ L}.
- ||x||PCgH1(L,Φ) := max{||g(θ)x(θ)|| : θ ∈ L}.
- ||=||PC∗g(L,Φ)) = max{maxυ∈[τi,bi+1]

i∈N0,r

||g(υ)=(υ)||,maxυ∈[bi,τi]
i∈N1,r

||=(υ)||}.

- ||=||PCgH1,∗(L,Φ) = max{maxm∈N0,r ||g =|Lm
||H1(Lm ,Φ),maxυ∈[bm,τm]

m∈N1,r

||=(υ)||}.

where for any function z ∈ H1((0,T ),Φ),

D1,ϕ,g
υ z(υ) := g−1(υ)[

1
ϕ′(υ)

d
dυ

g(υ)z(υ)],

and for any k = N − {1}

Dk,ϕ,g
υ z(υ) := D1,ϕ,g

υ Dk−1,ϕ,g
υ z(υ) = g−1(υ)[

1
ϕ′(υ)

d
dυ

]k(z(υ)g(υ)), k = N − {1}.
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We also fix the notations for Ψ,<, and<i to be the maps Ψ : L ×Φ→ Pck(Φ),< : PCg(L,Φ)→
Φ, and<i : [bi, τi] × Φ→ Φ. For more on the definition of H1((0,T ),Φ), see [20].

In the following, we introduce the main definitions that will be used to formulate the problems
studied in this work.

Definition 1. Let a ∈ (0,T ), and = : [a,T ]→ Φ such that = ∈ H1((a,T ),Φ).

(1) The g-weighted ϕ-Atangana-Baleanu fractional integral for = of order γ and with lower limit at
a is defined by

ABIγ,ϕ,ga,υ =(υ) :=
1 − γ
M(γ)

=(υ) +
γ

M(γ)
Iγ,ϕ,ga,υ =(υ), υ ∈ L,

where

Iγ,ϕ,ga,υ =(υ) =
1

g(υ)Γ(γ)

∫ υ

a
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)=(s)ds.

(2) The g-weighted ϕ-Atangana-Baleanu fractional derivative for = of order γ in the Caputo sense,
with lower limit at a is defined by

ABCDγ,ϕ,g
a,υ =(υ) :=

M(γ)
(1 − γ)g(υ)

∫ υ

a
Eγ(ηγ(ϕ(υ) − ϕ(s))γ)ϕ′(s)g(s)D1,ϕ,g

s =(s)ds

=
M(γ)

(1 − γ)g(υ)

∫ υ

a
Eγ(ηγ(ϕ(υ) − ϕ(s))γ)(g=)′(s)ds,

where ηγ =
−γ

1−γ

The above definition can be generalize for an order in (n, n + 1) foe any n ∈ N as follows.

Definition 2. Let a ∈ (0,T ), and = : [a,T ]→ Φ with =(n) ∈ H1((a,T ),Φ).

(1) The g-weighted ϕ-Atangana-Baleanu fractional integral for a function of order σ ∈ (n, n + 1); n ∈
N with lower limit at a is defined by

ABIσ,ϕ,ga,υ =(υ) := In,ϕ,g
a,υ

ABIσ−n,g,ϕ
a,υ =(υ),

where

I1,ϕ,g
a,υ =(υ) = g−1(υ)

∫ υ

a
g(s)ϕ′(s)=(s)ds,

and In,ϕ,g
a,υ = I1,ϕ,g

a,υ In−1,ϕ,g
a,υ if n ≥ 2.

(2) The g-weighted ϕ-Atangana-Baleanu fractional derivative for = of order σ ∈ (n, n + 1); n ∈ N in
the Caputo sense, with lower limit at a is defined by

ABCDσ,ϕ,g
a,υ =(υ) :=ABC Dσ−n,ϕ,g

a,υ Dn,ϕ,g
υ =(υ).

Remark 1.

• If g(υ) = 1 and ϕ(υ) = υ; υ ∈ [a,T ], then Part 2 in Definitions 1, 2 coincide with definitions of the
Atangana-Baleanu fractional derivative given by [7].
• If ϕ(υ) = υ; υ ∈ [a,T ], then Part 2 in Definitions 1, 2 coincide with Definitions 2.1 and 2.2 in [31].
• g(υ) = 1, ; υ ∈ [a,T ], then Definitions 1, 2 coincide with Definitions 2.1, 2.2 in [27]
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Using the above definitions and notations, we form the following initial value problems:

P1. A fractional differential equation containing ABCDγ,ϕ,g
0,υ in the presence of instantaneous impulses

with the lower limit at the initial point 0:
ABCDγ,ϕ,g

0,υ =(υ) = z(υ,=(υ)), υ ∈ (θi, θi+1), i ∈ N0,r

=(0) = =0g−1(0) − g−1(0)<(=),
=(θ+

i ) = =(θ−i ) + g−1(θ−i )Ii(=(θ−i )), i ∈ N1,r,

(2.1)

where Ii : Φ→ Φ; i ∈ N1,r.

P2. A fractional differential inclusion involving ABCDγ,ϕ,g
θi,υ

in the presence of instantaneous impulses
with changing the lower limit at the impulsive points θi, i ∈ N0,r:

ABCDγ,ϕ,g
θi,υ
=(υ) ∈

∫ υ

θi
Ψ(s,=(s))ds, υ ∈ (θi, θi+1), i ∈ N0,r,

=(0) = =0g−1(0) − g−1(0)<(=),
=(θ+

i ) = =(θ−i ) + g−1(θ−i )Ii(=(θ−i )), i ∈ N1,r.

(2.2)

P3. A fractional differential fractional equation containing ABCDγ,ϕ,g
0,υ in the presence of non-

instantaneous impulses with the lower limit at the initial point 0:
ABCDγ,ϕ,g

0,υ =(υ) = z(υ,=(υ)), υ ∈ ∪i=r
i=0Li,

=(υ) = <i(υ,=(b−i )), υ ∈ [bi, τi]; i ∈ N1,r,

=(0) = =0g−1(0) − g−1(0)<(=).
(2.3)

P4. A fractional differential inclusion containing ABCDγ,ϕ,g
τi,υ in the presence of non-instantaneous

impulses with changing the lower limit at the impulsive points τi, i ∈ N0,r:
ABCDγ,ϕ,g

τi,υ =(υ) ∈
∫ υ

τi
Ψ(s,=(s))ds, υ ∈ ∪i=r

i=0Li,

=(υ) = <i(υ,=(b−i )), υ ∈ [bi, τi]; i ∈ N1,r,

=(0) = =0g−1(0) − g−1(0)<(=),
(2.4)

Note that Problems (2.1)–(2.4) are distinct. In fact, the impulses in problems (2.1) and (2.2)
are instantaneous while those in problems (2.3) and (2.4) are non-instantaneous. Furthermore, the
lower limit of the differential operator g− weighted ϕ-Atangana-Baleanu fractional derivative in
Problems (2.1) and (2.3) are zero while those in problems (2.2) and (2.4) are the impulsive points
θi, i ∈ N0,r and τi, i ∈ N0,r. In addition, the right hand side in both of (2.1) and (2.3) is a single-valued
function, while in problems (2.2) and (2.4) is a multivalued function.

3. Basic Properties of g-weighted ϕ-Atangana-Baleanu fractional integral and derivative

In order to obtain some properties for ABCDγ,ϕ,g
a,υ =(υ), we present it as an infinite series. Note that

Eγ(υ) =

∞∑
k=0

υk

Γ(γk + 1)
, γ > 0,

is convergent series for all values of υ.
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Lemma 1. Let = ∈ H1((0,T ),Φ). For any υ ∈ [0,T ],

(i) I1,ϕ,g
a,υ (D1,ϕ,g

υ =(υ)) = g−1(υ)[g(υ)=(υ) − g(a)=(a)],
(ii) D1,ϕ,g

υ (I1,ϕ,g
a,υ =(υ)) = =(υ).

Proof.

To see (i), note that

I1,ϕ,g
a,υ (D1,ϕ,g

υ =(υ)) = g−1(υ)
∫ υ

a

d
ds

(g(s)=(s)]ds = g−1(υ)[g(υ)=(υ) − g(a)=(a).

For (ii)

D1,ϕ,g
υ (I1,ϕ,g

a,υ (=(υ)) = g−1(υ)
1

ϕ′(υ)
d

dυ

∫ υ

a
g(s)ϕ(s)=(s)ds = =(υ).

�

Lemma 2. Let = ∈ H1((0,T ),Φ) and a ∈ (0,T ). For any υ ∈ [a,T ],

ABCDγ,ϕ,g
a,υ =(υ) =

M(γ)
1 − γ

∞∑
k=0

ηk
γ(I

γk+1,g,ϕ
a,υ D1,ϕ,g

s =(s))(υ).

Proof. According to Definition 1, we have

ABCDγ,ϕ,g
a,υ =(υ) =

M(γ)
(1 − γ)g(υ)

∫ υ

a
Eγ(ηγ(ϕ(υ) − ϕ(s))γ)ϕ′(s)g(s)D1,ϕ,g

s =(s)ds

=
M(γ)

(1 − γ)g(υ)

∫ υ

a

∞∑
k=0

ηk
γ(ϕ(υ) − ϕ(s))kγ

Γ(γk + 1)
ϕ′(s)g(s)D1,ϕ,g

s =(s)ds

=
M(γ)

(1 − γ)

∞∑
k=0

ηk
γ

1
Γ(γk + 1)g(υ)

∫ υ

a
(ϕ(υ) − ϕ(s))kγϕ′(s)g(s)D1,ϕ,g

s =(s)ds

=
M(γ)

(1 − γ)

∞∑
k=0

ηk
γ(I

γk+1,,g,ϕ
a,υ D1,ϕ,g

s =(s))(υ).

Since g= ∈ C1(L,Φ), this series is convergent for all υ ∈ [a,T ]. �

Lemma 3. If = ∈ H1((a,T ),Φ) and g ∈ C1(L, (0,∞)), then

(i) ABIγ,ϕ,ga,υ (ABCDγ,ϕ,g
a,υ =(υ)) = =(υ) − g−1(υ)g(a)=(a).

(ii) ABCDγ
a,υ(ABIγa,υ=(υ)) = =(υ) − g−1(υ)g(a)=(a).

Proof.

(i) Let υ ∈ L be fixed. It follows from Lemma 2 that

ABIγ,ϕ,ga,υ (ABCDγ,ϕ,g
a,υ =(υ)) =

1 − γ
M(γ)

ABCDγ,ϕ,g
a,υ =(υ) +

γ

M(γ)
Iγ,ϕ,ga,υ (ABCDγ,ϕ,g

a,υ =(υ))
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=

∞∑
k=0

ηk
γ(I

γk+1,,ϕ,g
a,υ D1,ϕ,g

s =(s))(υ) +
γ

1 − γ

∞∑
k=0

ηk
γIγ,ϕ,ga,υ Iγk+1,g,ϕ

a,υ D1,ϕ,g
s =(s))(υ)

=

∞∑
k=0

ηk
γ(I

γk+1,ϕ,g
a,υ D1,ϕ,g

s =(s))(υ) − ηγ
∞∑

k=0

ηk
γIγ(k+1)+1,g,ϕ

a,υ D1,g,ϕ
s =(s))(υ)

=

∞∑
k=0

ηk
γ(I

γk+1,,g,ϕ
a,υ D1,g,ϕ

s =(s))(υ) −
∞∑

k=0

ηk+1
γ Iγ(k+1)+1,g,ϕ

a,υ D1,g,ϕ
s =(s))(t)

=

∞∑
k=0

ηk
γ(I

γk+1,,g,ϕ
a,t D1,g,ϕ

s =(s))(t) −
∞∑

k=1

ηk
γ(I

γk+1,,g,ϕ
a,t D1,g,ϕ

s =(s))(t)

= I1,g,ϕ
a,t D1,g,ϕ

s =(s))(t) = g−1(t)
∫ t

a
g(s)=(s)ds = g−1(t)(g(t)=(t) − g(0)=(0)).

(ii) follows since

ABCDγ,ϕ,g
a,υ (ABCIγ,ϕ,ga,υ =(υ)) =

M(γ)
(1 − γ)

∞∑
k=0

ηk
γ Iγk+1,ϕ,g

a,υ (D1,g,ϕ
s (ABIγ,ϕ,ga,s =(s)))(υ)

=
M(γ)

(1 − γ)

∞∑
k=0

ηk
γ Iγk+1,ϕ,g

a,υ (D1,g,ϕ
s [

1 − γ
M(γ)

=(s) +
γ

M(γ)
Iγ,ϕ,ga,s =(s)](υ))

=

∞∑
k=0

ηk
γ Iγk+1,ϕ,g

a,υ (D1,ϕ,g
s =(s))(υ) − ηγ

∞∑
k=0

ηk
γ Iγk+1,ϕ,g

a,υ (D1,g,ϕ
s Iγ,ϕ,ga,s =(s))(υ)

=

∞∑
k=0

ηk
γ Iγk,ϕ,g

a,υ I1,ϕ,g
a,υ (D1,ϕ,g

s =(s))(υ) − ηγ
∞∑

k=0

ηk
γ Iγk,ϕ,g

a,υ I1,ϕ,g
a,υ (D1,ϕ,g

s Iγ,ϕ,ga,s =(s))(υ)

=

∞∑
k=0

ηk
γ Iγk,ϕ,g

a,υ ((g=)(t) − g(a)=(a)) − ηγ
∞∑

k=0

ηk
γ Iγk,ϕ,g

a,υ [Iγ,g,ϕa,υ (=g)(υ) − Iγ,ϕ,ga,υ (=g)(a)]

=

∞∑
k=0

ηk
γ Iγk,ϕ,g

a,υ ((g=)(υ) − g(a)=(a)) − ηγ
∞∑

k=0

ηk+1
γ Iγ(k+1),ϕ,g

a,υ [(=g)(υ) − (=g)(a)]

=

∞∑
k=0

ηk
γ Iγk,ϕ,g

a,υ ((g=)(υ) − g(a)=(a)) −
∞∑

k=1

ηk
γ Iγk,ϕ,g

a,υ [(=g)(υ) − (=g)(a)]

= g−1(υ)((g=)(υ) − g(a)=(a)) = =(υ) − g(a)=(a)g−1(υ).

�

To improve the readability of the results in the following sections, we list the following hypothesis.

Hypothesis 1.

� (HΨ) The map Ψ : L × Φ→ Pck(Φ) satisfies

(i) For every x ∈ Φ, θ → Ψ(θ, x) is measurable.
(ii) For almost θ ∈ L, x→ Ψ(θ, x) is upper semi-continuous.
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(iii) There is a function τ ∈ L2(J,R+) with for any x ∈ Φ,

sup
y∈Ψ(υ,x)

||y|| ≤ τ(υ)(1 + ||x||), a.e., forυ ∈ L. (3.1)

(iv) There is a function η ∈ L1(L,R+) such that for any bounded subset B ⊂ Φ,

κ(Ψ(υ, B)) ≤ g(υ)η(υ)κ(B), for υ ∈ L, (3.2)

and
4ρ1ρ3(

1 − γ
M(γ)

+
6ϕ(T )γ

M(γ)Γ(γ)
) < 1, (3.3)

where κ is the measure of noncompactness on Φ, ρ1 = supυ∈Lg(υ), and ρ3 = ||η||L1(L,R+).

The norm of the function τ will be denoted by ρ2, i.e., ρ2 = ||τ||L1(L,R+).

� (Hz) The map z : L × Φ→ Φ is a function such that

(i) For any = ∈ PCg(L,Φ), the function v(υ) = z(υ,=(υ)) ∈ PCH1((0,T ),Φ) and z(0,=(0)) = 0.
(ii) For any υ ∈ L, x→ z(υ, x) is uniformly continuous on bounded sets.

(iii) There is a continuous function ψ such that

||z(υ, x)|| ≤ ψ(υ)(1 + ||x||), ∀(υ, x) ∈ L × Φ. (3.4)

(iv) There is a continuous function η : L→ R+ such that for any B ∈ Pb(Φ),

κ(z(υ, B)) ≤ η(υ)κ(B), for υ ∈ L, (3.5)

and
κ + 2κ

ϕ(T )γ

M(γ)Γ(γ)
< 1, (3.6)

Here κ = supυ∈L η(υ)

� (Hz)∗ The following are satisfied

(i) For any = ∈ PCg(L,Φ), the function W(υ) = z(υ,=(υ)) is in PCH1((0,T ),Φ) and W(0) = 0.
(ii) There is ξ1 > 0 such that, for any υ ∈ L, and any =, ς ∈ PCg(L,Φ),

||z(υ,=(υ)) − z(υ, ς(υ)|| ≤ ξ1||= − ς||PCg(L,Φ).

� (Hz)∗∗ The following hold

(i) For any = ∈ PC∗g(L,Φ), the function W(υ) = z(υ,=(υ)) is in PCH1,∗((0,T ),Φ) and W(0) = 0
(ii) There is ξ1 > 0 such that, for any υ ∈ L, and any =, ς ∈ PC∗g(L,Φ),

||z(υ,=(υ)) − z(υ, ς(υ)|| ≤ ξ1||=(υ) − ς(υ)||Φ.

� (H<) The function < : PCg(L,Φ) → Φ is continuous, compact and there are two positive real
numbers c, d such that

||<(x)| ≤ c||x||PCg(L,Φ) + d,∀x ∈ PCg(L,Φ). (3.7)
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� (H<)∗ There is ξ2 > 0 such that for any =, ς ∈ PCg(L,Φ),

||<(=) −<(ς)|| ≤ ξ2||= − ς||PCg(L,Φ).

� (H<)∗∗ The function < : PC∗g(L,Φ) → Φ is continuous, compact and there two positive real
numbers c, d such that

||<(x)| ≤ c||x||PC∗g(L,Φ) + d,∀x ∈ PCg(L,Φ).

� (HI) For every i = 1, 2, .., r, Ii : Φ→ Φ is continuous and compact on bounded subsets, and there
is λ > 0 with

||Ii(=(υ))|| ≤ λg(υ)||=(υ)||; υ ∈ L. (3.8)

� (HI)∗ There is ξ3 > 0 such that for any =, ς ∈ PCg(L,Φ), and any i ∈ N1,r∥∥∥Ii(=(θi) − Ii(ς(θi))
∥∥∥ ≤ ξ3||= − ς||PCg(L,Φ).

� (H<i) There is ξ4 > 0 such that for any =, ς ∈ PC∗g(L,Φ) and any i ∈ N1,r,

||<i(υ,=(b−i )) −<i(υ, ς(b−i ))|| ≤ ξ4||= − ς||PCg(L,Φ). (3.9)

� (H<i)∗ For every i ∈ N1,r <i : [bi, τi] × Φ→ Φ is such that, for any υ ∈ [bi, τi], the function x→
<i(υ, x) is uniformly continuous and compact on bounded subsets.

4. Existence of solutions of Problem (2.1)

In the following Lemma, we state and prove the relationship between solutions of Problem (2.1)
and those of the corresponding fractional integral equation.

Lemma 4. Let W : L→ Φ be continuous with W(0) = 0 and g ∈ C1(L, (0,∞)).

(1) If = ∈ PCH1((0,T ),Φ) is a solution for the following nonlocal impulsive g-weighted ϕ-
Attangana- Baleanu: 

ABCDγ,ϕ,g
0,υ =(υ) = W(υ), υ ∈ (θi, θi+1), i ∈ N0,r,

=(0) = =0g−1(0) − g−1(0)<(=),
=(θ+

i ) = =(θ−i ) + g−1(θ−i )Ii(=(θ−i )), i ∈ N1,r,

(4.1)

then, for any υ ∈ L

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ v(υ), υ ∈ [0, θ1],

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,ϕ,g0,υ v(υ), υ ∈ (θi, θi+1], i ∈ N1,r.
(4.2)

(2) If W ∈ PCH1((0,T ),Φ) and = is defined by (4.2), then = ∈ PCH1((0,T ),Φ) and = is a solution
for (4.1).
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Proof.

(1) Suppose that = ∈ H1((0,T ),Φ) is the solution of (4.1) and let υ ∈ (θ0, θ1), then{ ABCDγ,ϕ,g
0,υ =(υ) = W(υ), υ ∈ (0, θ1],

=(0) = =0g−1(0) − g−1(0)<(=).
(4.3)

Applying ABIγ,g,ϕ0,υ on both sides of (4.3), we get by Lemma (3),

=(υ) = =(0)g(0)g−1(υ) +AB Iγ,ϕ,g0,υ W(υ)

= g(0)g−1(υ)(=0g−1(0) − g−1(0)<(=)) +AB Iγ,ϕ,g0,υ W(υ)

= =0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ);∀υ ∈ [0, θ1].

Let υ ∈ (θ1, θ2]. The equations in (4.1) gives,{ ABCDγ,ϕ,g
0,υ =(υ) = W(υ), υ ∈ (θ1, θ2],

=(θ1) = =(θ−1 ) + g−1(θ1)I1(=(θ−1 )).

Applying ABIγ,g,ϕ0,υ on both sides of ABCDγ,ϕ,g
0,υ =(υ) = W(υ) and using Lemma (3), we get

=(υ) = c1g−1(υ) +AB Iγ,ϕ,g0,υ W(υ);∀υ ∈ (θ1, θ2]. (4.4)

To find c1, we use the boundary condition =(θ1) = =(θ−1 ) + g−1(θ1)I1(=(θ−1 )), to obtain,

c1g−1(θ1) +AB Iγ,ϕ,g0,θ1
W(υ) = =0g−1(θ1) − g−1(θ1)<(=) +AB Iγ,ϕ,g0,θ1

W(υ) + g−1(θ1)I1(=(θ−1 )),

where
c1 = =0 −<(=) + I1(=(θ−1 )).

Substitution the value of c1 into (4.4) gives

=(υ) = =0g−1(υ) − g−1(υ)<(=) + g−1(υ)I1(=(θ−1 )) + Iγ,ϕ,g0,υ W(υ);∀υ ∈ (θ1, θ2].

Next, let υ ∈ (θ2, θ3]. Applying ABIγ,g,ϕ0,υ on both sides of ABCDγ,ϕ,g
0,υ =(υ) = W(υ) and using

Lemma (3), to get
=(υ) = c2g−1(υ) +AB Iγ,ϕ,g0,υ (υ);∀υ ∈ (θ2, θ3]. (4.5)

Using the boundary condition =(θ+
2 ) = =(θ−2 ) + g−1(θ2)I2(=(θ−2 )), we obtain

c2g−1(θ2)+AB Iγ,ϕ,g0,θ2
(υ) = =0g−1(θ2)−g−1(θ2)<(=)+g−1(θ2)I1(=(θ−1 ))+AB Iγ,ϕ,g0,θ2

(υ)+g−1(θ2)I2(=(θ−2 )),

and therefore,
c2 = =0 −<(=) + I1(=(θ−1 )) + I2(=(θ−2 )).

Substitution the value of c1 into (4.5) gives

=(υ) = g−1(υ)=0 − g−1(υ)<(=) + g−1(υ)I1(=(θ−1 )) + g−1(υ)I2(=(θ−2 )) +AB Iγ,g,ϕ0,υ W(υ);∀υ ∈ (θ2, θ3].

The same arguments leads to relation (4.2) for i ≥ 2.
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(2) Let = given by (4.2) and W(0) = 0. Clearly, = ∈ PCH1(L,Φ). If υ ∈ [0, θ1], then

=(υ) = =0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ).

By applying Lemma 3, and since W ∈ PCH1(L,Φ) and W(0) = 0, we obtain

ABCDγ,ϕ,g
0,υ =(υ) =ABC Dγ,ϕ,g

0,υ (=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ)

=ABC Dγ,ϕ,gAB
0,υ Iγ,ϕ,g0,υ W(υ)

= g−1(υ)g(0)W(0) + W(υ) = W(υ),∀υ ∈ (0, θ1].

Moreover, =(0) = =0g−1(0) − g−1(0)<(=).
Similarly, ABCDγ,ϕ,g

0,υ =(υ) = W(υ), υ ∈ (θi, θi+1], i ∈ N1,r. Note that

=(θ+
i ) = =(θ+

i ) = =(θ−i ) + g−1(θ−i )Ii(=(θ−i )), i ∈ N1,r,

which completes the proof.

�

Remark 2. When g(υ) = 1 and ϕ(υ) = υ,∀υ ∈ L, the formula of solution function (4.3) coincides with
the formula (2.8) in [23].

Based on Lemma 4, we have the following corollary

Corollary 1. A function = ∈ PCH1((0,T ),Φ) is a solution of Problem (2.1) if z(0,=(0)) = 0 and =
satisfies the fractional integral equation:

=(υ) =



=0g−1(υ) − g−1(υ)<(=) +
1−γ
M(γ)z(υ,=(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +
1−γ
M(γ)z(υ,=(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds , υ ∈ (θi, θi+1], i ∈ N1,r,

(4.6)

Theorem 1. If (Hz), (H<) and (HI) hold, then Problem (2.1) has a solution provided that

c +
1 − γ
M(γ)

%1%2 + λr +
%2%1ϕ(T )γ

M(γ)Γ(γ)
< 1, (4.7)

Proof. Let Υ : PCg(L,Φ)→ PCg(L,Φ) defined by:

Υ(=)(υ) =



=0g−1(υ) − g−1(υ)<(=) +
1−γ
M(γ)z(υ,=(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +
1−γ
M(γ)z(υ,=(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ (θi, θi+1], i ∈ N1,r.

(4.8)

AIMS Mathematics Volume 9, Issue 12, 36293–36335.



36305

Note that, if = is a fixed point for Υ, then it will be in the form of (4.6). If we define W : L →
Φ; W(υ) = z(υ,=(υ)), then

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 Ik(=(θ−k ))
+ABIγ,ϕ,g0,υ W(υ), υ ∈ (θi, θi+1], i ∈ {1, 3, ..., r}.

(4.9)

But, assumption (Hz)(i) gives that W ∈ PCH1((0,T ),Φ) and W(0) = 0. Therefore, by the second part
of Lemmas (4) and (4.9), = will be a solution of Problem (2.1). We will use Schauder’s fixed point,
after establishing the following claims, to prove that Υ has a fixed point.

Claim 1. There is a natural number k0 such that Υ(∆k0) ⊆ ∆k0 , where
∆k0 = {u ∈ PCg(L,Φ) : ‖gu‖PCg(L,Φ) ≤ k0}.

Pf: If this is not true, then for every natural number n there is =n with ||=n||PCg(L,Φ) ≤ n, but
||Υ(=n)||PCg(L,Φ) > n. Let υ ∈ [0, θ1]. Using (3.4), (3.7) and (4.9), we obtain

||g(υ)Υ(=n)(υ)|| ≤ ||=0|| + c n + d +
1 − γ
M(γ)

%1%2(1 + n)

+
γ%2%1(1 + n)

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)ds

≤ ||=0|| + cn + d +
1 − γ
M(γ)

%1%2(1 + n) +
%2%1(1 + n)ϕ(T )γ

M(γ)Γ(γ)
. (4.10)

Let υ ∈ (θi, θi+1], i ∈ N1,r. It follows from (3.4), (3.7), (3.8) and (4.8) that

||g(υ)Υ(=n)(υ)|| ≤ ||=0|| + cn + d +
1 − γ
M(γ)

%1%2(1 + n)

+ λrn +
%2%1(1 + n)ϕ(T )γ

M(γ)g(υ)Γ(γ)
. (4.11)

From (4.10) and (4.11), we get

n < ||Υ(x)||PCg(L,Φ) ≤ ||=0|| + cn + d +
1 − γ
M(γ)

%1%2(1 + n) + λrn +
%2%1(1 + n)ϕ(T )γ

M(γ)Γ(γ)
. (4.12)

By dividing both sides of (4.12) by n and then, taking the limit when n→ ∞, we get

1 < c +
1 − γ
M(γ)

%1%2 + λr +
%2%1ϕ(T )γ

M(γ)Γ(γ)
, (4.13)

which contradicts (4.7). ¶

Claim 2. Υ : ∆k0 → ∆k0 is continuous.
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Pf: Suppose that =m ∈ Bk0 ,=m → = . By definition of Υ,

Υ(=m)(υ) =



=0g−1(υ) − g−1(υ)<(=m) +
1−γ
M(γ)z(υ,=m(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=m(s))ds, υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=m)) + g−1(υ)
∑k=i

k=1 Ik(=m(θ−k )) +
1−γ
M(γ)z(υ,=m(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=m(s))ds, υ ∈ (θi, θi+1], i ∈ N1,r.

(4.14)

By the continuity of z, < and Ik, k ∈ N1,r, we obtain from Lebesgue dominated convergence theorem
that limm→∞Υ(=m) = Υ(=) in PCg(L,Φ).¶

Claim 3. The sets ∆1|Li , for any i ∈ N0,r, where ∆1 = Υ(∆k0) and

∆1|Li = {=∗ ∈ (Li,Φ) : =∗(υ) = g(υ)=(υ), υ ∈ (υi, υi+1],=∗(υi) = lim
υ→υ+

i

g(υ)=(υ),= ∈ ∆1}.

are equicontinuous.

Pf: Let = = Υ(W); W ∈ ∆k0 . Then

=(υ) =



=0g−1(υ) − g−1(υ)<(W) +
1−γ
M(γ)z(υ,W(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +
1−γ
M(γ)z(υ,=(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ (θi, θi+1], i ∈ N1,r.

and so,

=∗(υ) =



=0 −<(W) +
1−γ
M(γ)g(υ)z(υ,W(υ))

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ [0, θ1]

=0 −<(=)) +
∑k=i

k=1 Ik(=(θ−k )) +
1−γ
M(γ)g(υ)z(υ,=(υ))

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ (θi, θi+1], i ∈ N1,r.

(4.15)

Case 1. i = 0. Let υ, υ + δ be two points in L0 = [0, θ1]. From (4.15) and the uniform continuity of z
on bounded sets, we obtain

lim
δ→0
||=∗(υ + δ) − =∗(υ)||

≤
1 − γ
M(γ)

lim
δ→0

[g(υ + δ)z(υ + δ,W(υ + δ)) − g(υ)z(υ,W(υ))]

+ lim
δ→0

γ

M(γ)Γ(γ)
||

∫ υ+δ

0
(ϕ(υ + δ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds

−

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))||

=
γ

M(γ)Γ(γ)
lim
δ→0

∫ υ

0
|((ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)
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− (ϕ(υ) − ϕ(s))γ−1)ϕ′(s)| ||g(s)z(s,=(s))||ds

+
γ

M(γ)Γ(γ)
lim
δ→0

∫ υ+δ

υ

|((ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)| ||g(s)z(s,=(s))||ds

≤
%1%2γ(1 + k0)

M(γ)Γ(γ)
lim
δ→0

∫ υ

0
|((ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s) − (ϕ(υ) − ϕ(s))γ−1)ϕ′(s)ds|

+
%1%2γ(1 + k0)

M(γ)Γ(γ)
lim
δ→0

∫ υ+δ

υ

|((ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)|ds = 0,

independently of =.

Case 2. i ∈ N1,r. Let υ, υ+δ be two points in (θi, θi+1].Using the same arguments as in Case 1, we have,

lim
δ→0
||=∗(υ + δ) − =∗(υ)|| ≤

1 − γ
M(γ)

lim
δ→0

[g(υ + δ)z(υ + δ,W(υ + δ)) − g(υ)z(υ,W(υ))]

+ lim
δ→0

[g−1(υ + δ) − g−1(υ + δ)]
k=i∑
k=1

Ik(=(θ−k ))

+ lim
δ→0

γ

M(γ)Γ(γ)
||

∫ υ+δ

0
(ϕ(υ + δ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds

−

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))|| = 0,

independently of =, and the claim is proved. ¶

Claim 4. The set ∆ = ∩k=1∆k is compact, where ∆0 = ∆k0 and ∆k = Υ(∆k−1), k ≥ 1.

Pf: From Claim 1 and Claim 2, ∆k; k ≥ 1 is a non-empty, convex, bounded, and closed set; thus,
∆ is bounded and closed. Moreover, ∆2 = Υ(∆1) = Υ(Υ(∆k0)) ⊆ Υ(∆k0) = ∆1. So, by induction, (∆k)
is a non-increasing sequence. We show that ∆ is relatively compact, and hence it is compact. By the
Generalized Cantor’s intersection property [35], it is enough to prove that

lim
n→∞
κPCg(∆n) = 0, (4.16)

where κPCg is the Hausdorff measure of noncompactness in PCg(L,Φ) which is defined by:
χPCg(L,Φ)) : Pb(PCg(L,Φ))→ [0,∞),

χPCg(L,Φ)(D) := max
i∈N0,r

χi(D||[θi ,θi+1]), (4.17)

where

D|
|[θi ,θi+1] := {h∗ ∈ C([θi, θi+1],Φ) : h∗(%) = g(%)h(%), % ∈ (θi, θi+1],

h∗(θi) = lim
%→θ+

i

h∗(%), h ∈ D}. (4.18)

and χi is the Hausdorff measure of noncompactness on C([θi, θi+1],Φ). To prove (4.16), let ε > 0, and
n ≥ 1 be fixed. Then, (see [36]) there is a sequence (=k) in ∆n such that

χPCg(L,Φ)(∆n) ≤ 2χPCg(L,Φ){=m : m ≥ 1} + ε. (4.19)
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Set Π = {=m : m ≥ 1}. It follows from (4.17) and (4.19) that

χPCg(L,Φ)(∆n) ≤ 2 max
i∈N0,r

χi(Π||[θi ,θi+1]) + ε, (4.20)

but, from Claim 3, the sets Π|
|[θi ,θi+1];i ∈ N0,r are equicontinuous, and

consequently, inequality (4.20) becomes

χPCg(L,Φ)(∆n) ≤ 2 max
i∈N0,r

max
υ∈[θi,θi+1]

χ{g(υ)=m(υ) : m ≥ 1} + ε

≤ 2 max
υ∈L

χ{g(υ)=m(υ) : m ≥ 1} + ε. (4.21)

To evaluate the quantity χ{g(υ)=m(υ) : m ≥ 1}; υ ∈ L, we note that, since =m ∈ ∆n = Υ(∆n−1), there is
Wm ∈ ∆n−1 with =m = Υ(Wm), and hence, for any m ≥ 1,

g(υ)=m(υ) =



=0 −<(Wm) +
1−γ
M(γ)g(υ)z(υ,Wm(υ))

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,Wm(s))ds, υ ∈ [0, θ1]

=0 −<(Wm) +
∑k=i

k=1 Ik(Wm(θ−k )) +
1−γ
M(γ)g(υ)z(υ,Wm(υ))

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,Wm(s))ds, υ ∈ (θi, θi+1], i ∈ N1,r.

(4.22)

In view of (3.5), for υ ∈ L,

χ{g(υ)z(υ,Wm(υ)) : m ≥ 1} ≤ η(υ)χ{g(υ)Wm(υ) : m ≥ 1 ≤ κχPCg(L,Φ)(∆n−1), (4.23)

where κ = supυ∈L η(υ). However,

Λ(υ) = χ{

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,Wm(s))ds : k ≥ 1}.

From the properties of χ and (4.23), it follows that for υ ∈ (θi, θi+1], i ∈ N0,r,

Λ(υ) ≤ 2
∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)χ{g(s)z(s,Wm(s)) : m ≥ 1}ds

≤ 2κχPCg(L,Φ)(∆n−1)
∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)ds

≤ 2κχPCg(L,Φ)(∆n−1)
ϕ(T )γ

γ
. (4.24)

From the compactness of both< and Ii; i ∈ N1,r, we have

χ{<(Wm) : m ≥ 1} = 0 and χ{
k=i∑
k=1

Ik(Wm(θ−k )) : m ≥ 1} = 0.

Thus, from (4.21-4.24) it follows that

χPCg(L,Φ)(∆n) ≤ κχPCg(L,Φ)(∆n−1) + 2κχPCg(L,Φ)(∆n−1)
ϕ(T )γ

M(γ)Γ(γ)
+ ε
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= χPCg(L,Φ)(∆n−1)[κ + 2κ
ϕ(T )γ

M(γ)Γ(γ)
] + ε.

Since ε is arbitrary, we get

χPCg(L,Φ)(∆n) ≤ χPCg(L,Φ)(∆n−1)[κ + 2κ
ϕ(T )γ

M(γ)Γ(γ)
].

Since this relation is true for each n, we get

χPCg(L,Φ)(∆n) ≤ χPCg(L,Φ)(∆1)[κ + 2κ
ϕ(T )γ

M(γ)Γ(γ)
]n−1.

But, (3.6) gives that κ + 2κ ϕ(T )γ

M(γ)Γ(γ) < 1, so the relationship (4.16) is achieved, and ∆ is compact. ¶
Applying Schauder’s fixed point theorem to the mapping Υ : ∆ → ∆, we conclude that Υ has a

fixed point, which will be the solution for Problem (2.1). �

Remark 3. If g(υ) = 1 and ϕ(υ) = υ ; υ ∈ L, <(=) = 0,∀= ∈ PCg(L,Φ) and there are no impulses
(Ii(x) = 0,∀x ∈ Φ, and ∀i ∈ N1,r ), then Conditions (4.7) reduces to

1 − γ
M(γ)

%2 +
%2T γ

M(γ)Γ(γ)
< 1,

This inequality appears in the literature, see for example, Theorem 3.1 in [29].

In the following, we give another existence result for Problem (2.1).

Theorem 2. If (Hz)∗, (H<)∗, and (HI)∗ are satisfied, then Problem (2.1) has a unique solution under
the condition that

[ξ2 + rξ3 + ξ1(
(1 − γ)ρ1

M(γ)
+

ρ1ϕ(T )γ

M(γ)Γ(γ)
)] < 1. (4.25)

Proof. We are going to show that the function Υ : PCg(L,Φ) → PCg(L,Φ), defined by (4.8), is a
contraction. Let =, ς ∈ PCg(L,Φ). For any υ ∈ [0, θ1], we have

||g(υ)Υ(=)(υ) − g(υ)Υ(ς)(υ)||

≤ ||<(=) −<(ς)|| +
(1 − γ)ρ1

M(γ)
ξ1||= − ς||PCg(L,Φ)

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)g(s)||z(s,=(s)) − z(s, ς(s)||ds

≤ ξ2||= − ς||PCg(L,Φ) +
(1 − γ)ρ1

M(γ)
ξ1||= − ς||PCg(L,Φ) + ||= − ς||PCg(L,Φ)

ρ1ξ1ϕ(υ)γ

M(γ)Γ(γ)

= ||= − ς||PCg(L,Φ)[ξ2 +
(1 − γ)ρ1

M(γ)
ξ1 +

ρ1ξ1ϕ(T )γ

M(γ)Γ(γ)
].

Let υ ∈ (θi, θi+1], i ∈ N1,r. In view (HI)∗

k=i∑
k=1

||Ik(=(θ−k ) − Ikς(θ−k )|| ≤ rξ3||= − ς||PCg(L,Φ).
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But

||g(υ)Υ(=)(υ) − g(υ)Υ(ς)(υ)|| = ||= − ς||PCg(L,Φ).[ξ2 + rξ3 +
(1 − γ)ρ1

M(γ)
ξ1 +

ξ1ϕ(T )γ

M(γ)Γ(γ)
].

Therefore,

||Υ(=) − Υ(ς)||PCg(L,Φ) ≤ ||= − ς||PCg(L,Φ)[ξ2 + rξ3 + ξ1(
(1 − γ)ρ1

M(γ)
+

ρ1ϕ(T )γ

M(γ)Γ(γ)
)]

By (4.25), Υ is a contraction. By Banach fixed-point theorem, it has a unique fixed point that gives a
solution to Problem (2.1). �

5. Existence of solutions of Problem (2.2)

Lemma 5. Let = : L→ Φ, W : L→ Φ continuous with W(θi) = 0,∀i ∈ N0,r.

(1) If = ∈ PCH1((0,T ),Φ) is a solution for the following initial problem:
ABCDγ,ϕ,g

θi,υ
=(υ) = W(υ), υ ∈ (θi, θi+1), i ∈ N0,r,

=(0) = =0g−1(0) − g−1(0)<(=),
=(θ+

i ) = =(θ−i ) + g−1(θ−i )Ii(=(θ−i )), i ∈ N1,r,

(5.1)

then, for any υ ∈ L

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
W(υ)

+g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
W(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

(5.2)

(2) If W ∈ PCH1(L,Φ) and = satisfies (5.2), then = ∈ PCH1(L,Φ) and = is a solution for (5.1)

Proof.

(1) Let υ ∈ (0, θ1). Then, { ABCDγ,ϕ,g
0,υ =(υ) = W(υ), υ ∈ (0, θ1],

=(0) = =0g−1(0) − g−1(0)<(=),

As in the proof of Lemma (4), we get that for υ ∈ (0, θ1]

=(υ) = =0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ). (5.3)

Next, consider the fractional differential equation:{
ABCDγ,ϕ,g

θ1,υ
=(υ) = W(υ), υ ∈ (θ1, θ2],

=(θ+
1 ) = =(θ−1 ) + g−1(θ1)I1(=(θ−1 )).

Applying ABIγ,ϕ,gθ1,υ
on both sides of ABCDγ,ϕ,g

θ1,υ
=(υ) = W(υ) and using Lemma 3, we obtain

=(υ) = c1g−1(υ) +AB Iγ,ϕ,gθ1,υ
W(υ), υ ∈ (θ1, θ2]. (5.4)
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Using the boundary condition =(θ+
1 ) = =(θ−1 ) + g−1(θ1)I1(=(θ−1 )), we get

c1g−1(θ1) = =0g−1(θ1) − g−1(θ1)<(=) +AB Iγ,ϕ,g0,θ1
W(υ) + g−1(θ1)I1(=(θ−1 )),

which gives that
c1 = =0 −<(=) + g(θ1)ABIγ,ϕ,g0,θ1

W(υ) + I1(=(θ−1 )),

Substituting the value of c1 in ( 5.3), we obtain for υ ∈ (θ1, θ2],

=(υ) = =0g−1(υ) − g−1(υ)<(=) + g−1(υ)g(θ1)ABIγ,ϕ,g0,θ1
W(υ)

+ g−1(υ)I1(=(θ−1 )) +AB Iγ,ϕ,gθ1,υ
W(υ). (5.5)

Next, consider the fractional differential equation:{
ABCDγ,ϕ,g

θ2,υ
=(υ) = W(υ), υ ∈ (θ2, θ3],

=(θ+
1 ) = =(θ−1 ) + g−1(θ1)I1(=(θ−1 )).

Applying ABIγ,ϕ,gθ2,υ
to both sides of ABCDγ,ϕ,g

θ2,υ
=(υ) = W(υ) and using Lemma 3, we obtain

=(υ) = c2g−1(υ) +AB Iγ,ϕ,gθ2,υ
W(υ), υ ∈ (θ1, θ2]. (5.6)

Using the boundary condition =(θ+
2 ) = =(θ−2 ) + g−1(θ2)I2(=(θ−2 )), we get

c2g−1(θ2) = =0g−1(θ2) − g−1(θ2)<(=) + g−1(θ2)g(θ1)ABIγ,ϕ,g0,θ1
W(υ)

+ g−1(θ2)I1(=(θ−1 )) +AB Iγ,ϕ,gθ1,θ2
W(υ) + g−1(θ2)I2(=(θ−2 )),

which gives us

c2 = =0 −<(=) + g(θ1)ABIγ,ϕ,g0,θ1
W(υ) + I1(=(θ−1 )) + g(θ2)ABIγ,ϕ,gθ1,θ2

W(υ) + I2(=(θ−2 )),

Substituting the value of c2 in (5.6 ), yields for υ ∈ (θ1, θ2]

=(υ) = =0g−1(υ) − g−1(υ)<(=) + g−1(υ)g(θ1)ABIγ,ϕ,g0,θ1
W(υ) + g−1(υ)I1(=(θ−1 ))

+ g−1(υ)g(θ2)ABIγ,ϕ,gθ1,θ2
W(υ) + g−1(υ)I2(=(θ−2 )) +AB Iγ,ϕ,gθ2,υ

W(υ).

By repeating the same procedures, we get Eq (5.2).
(2) Suppose that = is defined by (5.2) and W(0) = 0. Let υ ∈ (0, θ1). Then,

=(υ) = =0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ).

Applying Lemma 3 and noting that ABCDγ,ϕ,g
0,υ g−1(υ) = 0, we obtain

ABCDγ,ϕ,g
0,υ =(υ) = W(υ). Similarly, if υ ∈ (θi, θi+1); i ∈ i ∈ N1,r, then

=(υ) = g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
k=i∑
k=1

g(θk) ABIγ,g,ϕθk−1,θk
W(υ)

+ g−1(υ)
k=i∑
k=1

Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
W(υ).

AIMS Mathematics Volume 9, Issue 12, 36293–36335.



36312

Again, since W ∈ PCH1(L,Φ), W(θi) = 0 and ABCDγ,ϕ,g
0,υ g−1(υ) = 0, it follows by Lemma 3,

ABCDγ,ϕ,g
θi,υ
=(υ) = W(υ),

giving us = ∈ H1((0,T ),Φ). In addition, it is easy to check that

=(θ+
i ) = =(θ−i ) + g−1(θ−i )Ii(=(θ−i )), i ∈ N1,r

Therefore, = is a solution for (5.1).

�

Remark 4.
- We can’t omit the assumption W(0) = 0, in the second assertion of Lemma 3, since

ABCDγ
0,υ

ABIγ0,υW(υ) = W(υ) − g(0)W(0)g−1(υ) , W(υ).

- If W is continuous and not in H1((0,T ),Φ), then Eq (4.6) does not lead to the existence of ABCDγ
0,υ=(υ).

Thus, without the assumption W ∈ H1((0,T ),Φ), we can not conclude that ABCDγ
0,υ=(υ) exists.

Using Lemma (5), we give the formula for a solution to Problem (2.2).

Corollary 2. For any x ∈ PCg(L,Φ), let

S 2
Ψ(.,x(.)) = {z ∈ L2(J,Φ) : z(s) ∈ Ψ(s, x(s)), a, e.}.

A function = ∈ PCH1((0,T ),Φ) is a solution of Problem (2.2) if it satisfies the fractional
integral equation:

=(υ) =



=0g−1(υ) − g−1(υ)<(x) +
1−γ
M(γ)W0(υ)

+
γ

M(γ)Γ(γ)g(υ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)W0(s)ds, υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(x) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
Wi(υ)

+g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
Wi(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

(5.7)

where Wi(υ) =
∫ υ

θi
z(s)ds, z ∈ S 2

Ψ(.,x(.)), υ ∈ (θi, θi+1], i ∈ N0,r.

We need to the following fixed points theorems for multivalued functions.
Let U ∈ Pcc(Φ), ρ a non-singular measure of noncompactness defined on subsets of =, Π : U →

Pck
(
=
)

a closed multifunction and Fix(Π) = {x ∈ = : x ∈ Π(x)}.

Lemma 6. [ [37], Corollary 3.3.1]. If Π : U → Pck (U) is ρ−condensing then Fix(Π) is not empty.

Lemma 7. [ [37], Proposition.3.5.1]]. In addition to the assumptions of Lemma (6), if ρ is a monotone
measure of noncompactness defined on U and Fix(Π) is a bounded, then it is compact.

For more information about multi-valued functions, we refer the reader to [38].

Theorem 3. If (HΨ), (H<) and (HI) hold, then the solution set for Problem (2.2) is non-empty and
compact, provided that

c +
ρ1ρ2(1 − γ)

M(γ)
+

2ρ1ρ2ϕ(T )γ

M(γ)Γ(γ)
+ λr +

ρ1ρ3ϕ(T )γ

M(γ)Γ(γ)
< 1, (5.8)
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Proof. Due to (i), (ii) and (iii) of (HΨ), the set S 2
Ψ(.,x(.)) is not empty, and so, a multivalued function

Ξ : PCg(L,Φ)→ 2PCg(L,Φ) − {φ}, where φ is the empty set, can be defined by: = ∈ R(x) if and only if

=(υ) =


=0g−1(υ) − g−1(υ)<(x) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(x) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
Wi(υ)

+g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
Wi(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

(5.9)

where Wi(υ) =
∫ υ

θi
z(s)ds, z ∈ S 2

Ψ(.,x(.)), υ ∈ (θi, θi+1], i ∈ N0,r. Note that, if = is a fixed point for R, then

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(=)) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
Wi(υ)

+g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
Wi(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

where Wi(υ) =
∫ υ

θi
z(s)ds, z(s) ∈ Ψ(s,=(s)), a.e.; υ ∈ (θi, θi+1], i ∈ N0,r, which gives that Wi(υ) ∈∫ υ

θi
Ψ(s,=(s))ds; υ ∈ (θi, θi+1], i ∈ N0,r and W(θi) = 0,∀i ∈ N0,r, and therefore, by the second statement

of Lemma (5), = is a solution for Problem (2.2). So, our aim is using Lemma (5), to show that Ξ has a
fixed point. The proof will divided into several claims.

Claim 5. There is a natural number ζ0 such that Ξ(∆ζ0) ⊆ ∆ζ0 .

Pf: If this was not true, then for every natural number n there are xn,=n with ||=n||PCg(L,Φ) > n,
||xn||PCg(L,Φ) ≤ n and =n ∈ Ξ(xn). By definition of Ξ,

=n(υ) =


=0g−1(υ) − g−1(υ)<(xn) +AB Iγ,ϕ,g0,υ W0,n(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(xn) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
Wi,n(υ)

+g−1(υ)
∑k=i

k=1 Ik(=n(θ−k )) +AB Iγ,g,ϕθi,υ
Wi,n(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

(5.10)

where Wi,n(υ) =
∫ υ

θi
zn(s)ds, zn ∈ S 2

Ψ(.,xn.))
, υ ∈ (θi, θi+1], i ∈ N0,r. Using (iii) of (HΨ), we get for any

υ ∈ L,

||Wi,n(υ)|| ≤
∫ υ

θi

||zn(s)||ds ≤ (1 + n)
∫ υ

θi

τ(s)ds ≤ (1 + n)||τ||L2(L,R+) ≤ (1 + n)ρ2. (5.11)

Let υ ∈ [0, θ1]. Making use of (5.9), (5.10) and (H<), we obtain

||g(υ)=n(υ)|| ≤ ||=0|| + cn + d +
1 − γ
M(γ)

ρ1ρ2(1 + n) +
γρ1ρ2(1 + n)

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)ds

≤ ||=0|| + cn + d +
1 − γ
M(γ)

ρ1ρ3(1 + n) +
ρ1ρ2(1 + n)ϕ(T )γ

M(γ)Γ(γ)
. (5.12)

Let υ ∈ (θi θi+1], i ∈ N1,r. By (5.9), (5.10), (H<) and (HI), we obtain

||g(υ)=n(υ)|| ≤ ||=0|| + cn + d + ρ1(
1 − γ
M(γ)

(1 + n)ρ2
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+
γ

M(γ)Γ(γ)

∫ θk

θk−1

(ϕ(υ) − ϕ(s))γ−1ϕ′(s)g(s)W(s)ds)

+ λrζ +
γ

M(γ)Γ(γ)

∫ υ

θi

(ϕ(υ) − ϕ(s))γ−1ϕ′(s)g(s)W(s)ds

≤ ||=0|| + cn + d +
ρ1ρ2(1 − γ)(1 + n)

M(γ)

+
ρ1ρ22(1 + n)ϕ(υ)γ

M(γ)Γ(γ)
+ λrn +

ρ1ρ2(1 + n)ϕ(υ)γ

M(γ)Γ(γ)
. (5.13)

From (5.12) and (5.13), it follows that

n <
∥∥∥=n

∥∥∥
PCg(J,Φ)

≤ ||=0|| + cn + d +
ρ1ρ2(1 − γ)(1 + n)

M(γ)

+
2ρ1ρ2(1 + n)ϕ(T )γ

M(γ)Γ(γ)
+ λrn +

ρ1ρ2(1 + n)ϕ(T )γ

M(γ)Γ(γ)
.

Dividing both sides of this relation by n and then letting n→ ∞, we get

1 < c +
ρ1ρ2(1 − γ)

M(γ)
+

2ρ1ρ3ϕ(T )γ

M(γ)Γ(γ)
+ λr +

ρ1ρ2ϕ(T )γ

M(γ)Γ(γ)
,

which contradicts (5.8). ¶

Claim 6. If xk ∈ ∆ζ0 ,=n ∈ Ξ(xn), xn → x and =n → =, in PCg(L,Φ), then = ∈ Ξ(x).

Pf: From the definition of Ξ,

=n(υ) =


=0g−1(υ) − g−1(υ)<(xn) +AB Iγ,ϕ,g0,υ W0,n(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(xn) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
Wi,n(υ)

+g−1(υ)
∑k=i

k=1 Ik(=n(θ−k )) +AB Iγ,g,ϕθi,υ
Wi,n(υ), υ ∈ (θi, θi+1], i ∈ N1,r,

where Wi,n(υ) =
∫ υ

θi
zn(s)ds, zn ∈ S 2

Ψ(.,xn(.)), υ ∈ (θi, θi+1], i ∈ N0,r.
It follows from (iii) in (HΨ), that ||zn(υ)|| ≤ τ(υ)(1 + ζ0), a.e,. Thus, {zn : n ≥ 1} is weakly compact

in L2(L,Φ). By Mazure’s lemma, we can find a subsequence (z∗n), n ≥ 1 of convex combinations of
(zn) and converging almost everywhere to a function z ∈ L2(L,Φ). By the upper semicontinuity of
Ψ(υ, .), a, e., it follows that z ∈ S 2

Ψ(,.x(.)). Set W∗
i,n(υ) =

∫ υ

θi
z∗n(s)ds; υ ∈ (θi, θi+1]. Then, W∗

i,n(υ) →

Wi(υ) =
∫ υ

θi
z(s)ds ∈

∫ υ

θi
Ψ(s, x(s))ds. From the continuity of both< and Ii, we have

=(υ) =


=0g−1(υ) − g−1(υ)<(x) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(x) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
W(υ)

+g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
Wi(υ), υ ∈ (θi, θi+1], i ∈ N1,r,

which implies to = ∈ Ξ(x).¶

Claim 7. Ξ(x); x ∈ ∆ζ0 is compact.

AIMS Mathematics Volume 9, Issue 12, 36293–36335.



36315

Pf: Suppose that (=k) is a sequence in Ξ(x) : x ∈ ∆ζ0 . By arguing as in Claim 2, there is a
subsequence of (=k) converging to = ∈ Ξ(x).¶

Claim 8. The set D1|[θi,θi+1] is equicontinuous for any i ∈ N0,r, where

D1|[θi,θi+1] = {=∗ ∈ C([θi, θi+1],Φ) : =∗(υ) = g(υ)=(υ), υ ∈ (θi, θi+1],
=∗(θi) = lim

υ→θ+
i

g(υ)=(υ),= ∈ D1}. (5.14)

Pf: Let = ∈ Ξ(x); x ∈ ∆ζ . Then

=(υ) =


=0g−1(υ) − g−1(υ)<(x) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(x) + g−1(υ)
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
W(υ)

+g−1(υ)
∑k=i

k=1 Ik(=(θ−k )) +AB Iγ,g,ϕθi,υ
Wi(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

where Wi(υ) =
∫ υ

θi
z(s)ds, z ∈ S 2

Ψ(.,x(.)), υ ∈ (θi, θi+1], i ∈ N0,r. So,

=∗(υ) = g(υ)=(υ) =


=0 −<(x) + g(υ)ABIγ,ϕ,g0,υ W0(υ), υ ∈ [0, θ1]

=0 −<(x)) +
∑k=i

k=1 g(θk)ABIγ,g,ϕθk−1,θk
Wi(υ)

+
∑k=i

k=1 Ik(Wi(θ−k )) + g(υ)ABIγ,g,ϕθi,υ
Wi(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

(5.15)

and =∗(θi) = limυ→θ+
i

g(υ)=(υ). From (3.1), for any υ ∈ (θi, θi+1], i ∈ N0,r we have

||g(υ)Wi(υ)|| ≤ ρ1

∫ υ

θi

||z(s)||ds ≤ ρ1(1 + ζ0)
∫ υ

θi

τ(s)ds ≤ ρ1(1 + ζ0)||τ||L1(L,R+) ≤ ρ1ρ2(1 + ζ0). (5.16)

Case 1. i = 0. Let υ, υ + δ be two points in [0, θ1]. From the continuity of W0 and the previous
inequality, we get

lim
δ→0
||=∗(υ + δ) − =∗(υ)|| ≤

1 − γ
M(γ)

lim
δ→0

[g(υ)||W0(υ + δ) −W0(υ)|| + ||W0(υ + δ)|||g(υ + δ) − g(υ)|]

+ lim
δ→0

γ

M(γ)Γ(γ)
||

∫ υ+δ

0
(ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)g(s)W0(s)ds

−

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)g(s)W0(s)ds||

≤
γ

M(γ)Γ(γ)
lim
δ→0

[
∫ υ

0
|(ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)

− (ϕ(υ) − ϕ(s))γ−1ϕ′(s)| ||g(s)W0(s)||ds]

+
γ

M(γ)Γ(γ)
lim
δ→0

∫ υ+δ

υ

(ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)||g(s)W(s)||ds

≤
γρ1ρ2(1 + ζ0)

M(γ)Γ(γ)
lim
δ→0

[
∫ υ

0
|(ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s) − (ϕ(υ) − ϕ(s))γ−1ϕ′(s)|ds

+
γρ1ρ2(1 + ζ0)

M(γ)Γ(γ)
lim
δ→0

∫ υ+δ

υ

(ϕ(υ) − ϕ(s))γ−1ϕ′(s)ds = 0, (5.17)
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independently of x.
Case 2. If υ, υ+δ are in (θi, θi+1),i ∈ N1,r, then by using similar arguments to those in Case 1, we obtain
limδ→0 ||=

∗(υ + δ) − =∗(υ)|| = 0.
Case 3. If υ = θi,i ∈ N1,r and δ > 0. As in Case 1, we obtain

lim
δ→0
||=∗(θi + δ) − =∗(θi)|| = lim

δ→0
lim
λ→θ+

i

||=(θi + δ) − =(λ)||

≤ lim
δ→0

lim
λ→θ+

i

||g(θi + δ)Wi((θi + δ)) − g(λ)Wi(λ)||

+
γ

M(γ)Γ(γ)
lim
δ→0

lim
λ→θ+

i

||

∫ υ+δ

0
(ϕ(υ + δ) − ϕ(s))γ−1ϕ′(s)g(s)Wi(s)ds

−

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)g(s)W(s)ds|| = 0.

Establishing the claim. ¶

Claim 9. The set D = ∩k=1Dk is compact, where D1 = Ξ(∆ζ0) and Dk = Ξ(Dk−1), k ≥ 2.

Pf: From Claims 1 and 2, it follows that (Dk) is a non-increasing sequence of bounded closed
convex subsets. So, by the Generalized Cantor’s intersection property, D will be compact, if we
prove that

lim
n→∞
κPCg(Dn) = 0. (5.18)

Let ε > 0 and n ≥ 1 be fixed. As in Claim 4, in Theorem 1,

χPCg(L,Φ)(Dn) ≤ 2 max
υ∈L

χ{g(υ)=m(υ) : m ≥ 1} + ε, (5.19)

Since =m ∈ Dn = Ξ(Dn−1), there is xm ∈ Dn−1with =m ∈ Ξ(xm), and hence

g(υ)=m(υ) =



=0 −<(xm) +
1−γ
M(γ)g(υ)W0,m(υ)

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)Wm(s))ds, υ ∈ [0, θ1],

=0 −<(xm) +
∑k=i

k=1 g(θk) ABIγ,g,ϕθk−1,θk
Wi,m(υ)

+
∑k=i

k=1 Ik(Wi,m(θ−k ))
+g(υ)ABIγ,g,ϕθi,υ

Wi,m(υ), υ ∈ (θi, θi+1], i ∈ N1,r.

where Wi,m(υ) =
∫ υ

θi
zm(s)ds, zm ∈ S 2

Ψ(.,xm(.)), υ ∈ (θi, θi+1], i ∈ N0,r. and m ≥ 1. Note that, in view
of (3.2), for υ ∈ L,

χ{g(υ)Wi,m(υ) : m ≥ 1} ≤ χ{g(υ)
∫ υ

si

zm(s)ds : m ≥ 1}

≤ 2g(υ)
∫ υ

si

χ{zm(s) : m ≥ 1}ds

≤ 2g(υ)
∫ υ

si

χ{Ψ(s, {xm(s) : m ≥ 1})}ds

≤ 2g(υ)
∫ υ

si

η(s)χ{g(s)xm(s) : m ≥ 1}
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≤ 2ρ1χχPCg(L,Φ)(Dn−1)
∫ υ

si

η(s)ds

≤ 2ρ1ρ3χPCg(L,Φ)(Dn−1). (5.20)

Now, as in (4.24), Relation (5.20) leads to

χ{

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)W0,m(s))ds : k ≥ 1} ≤ 4ρ1ρ3χPCg(L,Φ)(Dn−1)

ϕ(υ)γ

γ
, υ ∈ [0, θ1], (5.21)

χ{

∫ θi

θi−1

(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)Wi,m(s))ds : k ≥ 1} ≤ 4ρ1ρ3χPCg(L,Φ)(Dn−1)
ϕ(υ)γ

γ
, i ∈ N1,r, (5.22)

and

χ{

∫ υ

θi

(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)Wi,m(s))ds : k ≥ 1} ≤ 4ρ1ρ3χPCg(L,Φ)(Dn−1)
ϕ(T )γ

γ
, υ ∈ (θi, θi+1], i ∈ N0,r.

(5.23)

Thus, by (5.21) it follows that for υ ∈ [0, θ1]

χ{g(υ)=m(υ) : m ≥ 1} ≤
1 − γ
M(γ)

2ρ1ρ3χPCg(L,Φ)(Dn−1) +
4ϕ(T )γ

M(γ)Γ(γ)
ρ1ρ3χPCg(L,Φ)(Dn−1)

= χPCg(L,Φ)(Dn−1)ρ1ρ3[
2(1 − γ)

M(γ)
+

4ϕ(T )γ

M(γ)Γ(γ)
]. (5.24)

Next, from the compactness of both< and Ii; i ∈ N1,r it follows that

χ{<(xm) : m ≥ 1} = 0 and χ{
k=i∑
k=1

Ik(=m(θ−k )) : m ≥ 1} = 0,

and so, by (5.22) and (5.23), we get for υ ∈ (θi, θi+1], i ∈ N1,r,

χ{g(υ)=m(υ) : m ≥ 1} ≤ 8ρ1ρ3χPCg(L,Φ)(Dn−1)
ϕ(T )γ

γ
. (5.25)

Relations (5.19), (5.24) and (5.25) give

χPCg(L,Φ)(Dn) ≤ χPCg(L,Φ)(Dn−1)2ρ1ρ3[
2(1 − γ)

M(γ)
+

12ϕ(T )γ

M(γ)Γ(γ)
] + ε.

Since ε is arbitrary, we get

χPCg(L,Φ)(Dn) ≤ χPCg(L,Φ)(Dn−1)2ρ1ρ3[
2(1 − γ)

M(γ)
+

12ϕ(T )γ

M(γ)Γ(γ)
].

Since this relation is true for each n, we get

χPCg(L,Φ)(Dn) ≤ χPCg(L,Φ)(D1)[2ρ1ρ3(
2(1 − γ)

M(γ)
+

12ϕ(T )γ

M(γ)Γ(γ)
)]n−1. (5.26)

Taking the limit as n→ ∞ in (5.26), while keeping in mind (3.3), we get (5.18) and D is compact.¶
Applying Lemma (6), it follows that there is = ∈ D such that = ∈ Ξ(=) and as discussed above, such
= is a solution for Problem (2.2). In addition, by arguing as in Claim 1, one can show that the set of
fixed points of Ξ is bounded, hence, by Lemma (7), the solution set for Problem (2.2) is compact. �
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6. Existence of solutions of Problem (2.3)

Lemma 8. Let = : L → Φ, <i : [bi, τi] × Φ → Φ; i ∈ N1,r, and W : L → Φ be continuous with
W(0) = 0.

(1) If = ∈ PCH1,∗((0,T ),Φ) is a solution to the fractional differential equation
ABCDγ,ϕ,g

0,υ =(υ) = W(υ), υ ∈ ∪i∈N0,r Li,

=(υ) = <i(υ,=(b−i )), υ ∈ [bi, τi]; i ∈ N1,r,

=(0) = =0g−1(0) − g−1(0)<(=),
(6.1)

then

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ [0, b1],
<i(υ,=(b−i )), υ ∈ (bi, τi], i ∈ N1,r,

<i(τi,=(b−i )) − ABIγ,ϕ,g0,τi
W(υ)

+ABIγ,ϕ,g0,υ W(υ), υ ∈ (τi, bi+1], i ∈ N1,r.

(6.2)

(2) If W ∈ PCH1,∗(L,Φ), and = is defined by (6.2), then = ∈ PCH1,∗(L,Φ) and = is a solution
of (6.1).

Proof.

(1) Suppose = is a solution of (6.1) and υ ∈ (0, b1]. Then, ABCDγ,ϕ,g
0,υ =(υ) = W(υ). By applying the

operator ABIγ0,υ to both sides of this equation and using the first statement of Lemma (3), we get

=(υ) = c0 + ABIγ,ϕ,g0,υ W(υ).

From the boundary condition, =(0) = =0g−1(0) − g−1(0)<(=), it follows that c0 = =0g−1(0) −
g−1(0)<(=), and hence,

=(υ) = =0g−1(υ) − g−1(0)<(=) +AB Iγ,ϕ,g0,υ W(υ); υ ∈ [0, b1]

likewise,
=(υ) = ci +AB Iγ,ϕ,g0,υ W(υ), υ ∈ (τi, bi+1], i ∈ N1,r.

Since = is continuous at τi; i ∈ N1,r, it follows that

<i(τi,=(b−i )) = ci + ABIγ,ϕ,g0,τi
W(υ),

hence, ci = <i(τi,=(b−i )) − ABIγ0,τi
W(υ), and thus

=(υ) = <i(τi,=(b−i )) −AB Iγ,ϕ,g0,τi
W(υ) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ (τi, bi+1), i ∈ N1,r.

Therefore, = satisfies (6.2).
(2) Suppose that = satisfies (6.2). Then

=(υ) = =0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ [0, b1]
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Since ABCDγ,ϕ,g
0,υ (=0g−1(υ)−g−1(υ)<(=)) = 0 and W(0) = 0, it follows from the second statement of

Lemma (3), that = ∈ H1((0, b1),Φ) and ABCDγ,ϕ,g
0,υ =(υ) = W(υ);∀υ ∈ [0, b1]. Let υ ∈ (τi, bi+1], i ∈

N1,r. From (6.2), we have

=(υ) = <i(τi,=(b−i )) − ABIγ,ϕ,g0,τi
W(υ) +AB Iγ,ϕ,g0,υ W(υ).

Since ABCDγ,ϕ,g
0,υ (<i(τi,=(b−i )) − ABIγ,ϕ,g0,τi

W(υ)) = 0, it follows, from the second statement of
Lemma (3), that = ∈ H1((τi, bi+1)),Φ) and ABCDγ,ϕ,g

0,υ =(υ) = W(υ);∀υ ∈ [0, b1].
Let υ ∈ (τi, bi+1], i ∈ N1,r. From (6.2), we have ABCDγ,ϕ,g

0,υ =(υ) = W(υ);∀υ ∈ (τi, bi+1]. Since <i

are continuous for any i ∈ N1,r, = ∈ PCH1.∗(L,Φ). Obviously,=(0) = =0g−1(0) − g−1(0)<(=) and
for any i ∈ N1,r, thus

=(τ+
i ) = <i(τi,=(b−i )) = =(τ−i ),

proving the continuity of = at τi.

�

From Lemma (8), we obtain in the following corollary.

Corollary 3. A function = ∈ PCH1,∗(L,Φ) is a solution to Problem (2.3) if z(0,=(0)) = 0 and =
satisfies the fractional integral equation:

=(υ) =



=0g−1(υ) − g−1(υ)<(=) +
1−γ
M(γ)z(υ,=(υ))

+
γ

M(γ)Γ(γ)g(υ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s,=(s))ds, υ ∈ [0, b1],

<i(υ,=(b−i )), υ ∈ (bi, τi], i ∈ N1,r,

<i(τi,=(b−i )) −AB Iγ,ϕ,g0,τi
z(υ,=(υ))

+ABIγ,ϕ,g0,υ z(υ,=(υ)), υ ∈ (τi, bi+1], i ∈ N1,r.

(6.3)

In the following theorem, we prove the existence and uniqueness of solutions for Problem (2.3).

Theorem 4. Assume that (H<i), (H<)∗, and (Hz)∗∗ hold. If g : L→ [1,∞), then Problem (2.3) has a
unique solution under the condition

ρ1ξ4 + ξ1(
2(1 − γ)

M(γ)
+

ϕ(T )γ

M(γ)g(υ)Γ(γ)
+

ρ1ϕ(T )γ

M(γ)Γ(γ)
) < 1. (6.4)

Proof. Consider the operator Θ : PC∗g(L,Φ)→ PC∗g(L,Φ) defined by

Θ(=)(υ) =



=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ z(υ,=(υ)), υ ∈ [0, b1],

<iυ,=(b−i )), υ ∈ (bi, τi], i ∈ N1,r,

<i(τi,=(b−i )) −AB Iγ,ϕ,g0,τi
z(υ,=(υ)) +AB Iγ,ϕ,g0,υ z(υ,=(υ)), υ ∈ (τi, bi+1], i ∈ N1,r.

(6.5)

Note that if = is a fixed point for Θ, then

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ [0, b1],
<i(υ,=(b−i )), υ ∈ (bi, τi], i ∈ N1,r,

<i(τi,=(b−i )) − ABIγ,ϕ,g0,τi
W(υ)

+ABIγ,ϕ,g0,υ W(υ), υ ∈ (τi, bi+1], i ∈ N1,r,
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where W(υ) = z(υ,=(υ)). From (Hz)∗(i) and the second statement of Lemma 8, it follows that = is
a solution of Problem (2.3). So, we only need to show that the the function Θ is a contraction. Let
=, ς ∈ PC∗g(L,Φ). For any υ ∈ [0, b1], from (6.3), (6.5) and (H<)∗, it follows that

||g(υ)Θ(=)(υ) − g(υ)Θ(ς)(υ)|| ≤ ||<(=) −<(ς)|| +
1 − γ
M(γ)

ξ1||g(υ)=(υ) − g(υ)ς(υ)||

+
γ

M(γ)g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)g(s)||z(s,=(s)) − z(s, ς(s)||ds

≤ ξ2||= − ς||PCg(L,Φ) + ξ1||= − ς||PCg(L,Φ) + ||= − ς||PCg(L,Φ)
ξ1ϕ(T )γ

M(γ)g(υ)Γ(γ)

= ||= − ς||PCg(L,Φ)[ξ2 + ξ1 +
ξ1ϕ(T )γ

M(γ)g(υ)Γ(γ)
].

For υ ∈ (bi, τi], from (3.9) and (6.5), we have

||Θ(=)(υ) − Θ(ς)(υ)|| ≤ ||<i(υ,=(b−i )) −<i(υ, ς(b−i ))|| ≤ ξ4||= − ς||PCg(L,Φ).

Let υ ∈ (τi, bi+1], i ∈ N1,r. From (H<)∗, (6.3), (3.9), (6.5) and from the fact that g : L → [1,∞),
we obtain

||g(υ)Θ(=)(υ) − g(υ)Θ(ς)(υ)|| ≤ g(υ)||<i(τi,=(b−i )) −<i(τi, ς(b−i ))||

+
1 − γ
M(γ)

g(υ)||z(τi,=(τi)) − |z(τi, ς(τi))||

+
γg(υ)

M(γ)Γ(γ)g(τi)
||

∫ τi

0
(ϕ(τi) − ϕ(s))γ−1ϕ′(s)||g(s)||z(s,=(s)) − (s, ς(s)||ds

+
1 − γ
M(γ)

g(υ)||z(υ,=(υ)) − |z(υ, ς(υ))||

+
γ

M(γ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1ϕ′(s)||g(s)||z(s,=(s)) − z(s, ς(s)||ds

≤ ρ1ξ4||= − ς||PCg(L,Φ) +
1 − γ
M(γ)

ξ1||= − ς||PCg(L,Φ) + ||= − ς||PCg(L,Φ)
ρ1ξ1ϕ(υ)γ

M(γ)Γ(γ)

+
1 − γ
M(γ)

ξ1||= − ς||PCg(L,Φ) + ||= − ς||PCg(L,Φ)
ξ1ϕ(υ)γ

M(γ)Γ(γ)

= ||= − ς||PCg(L,Φ)[ρ1ξ4 + ξ1(
2(1 − γ)

M(γ)
+

ϕ(T )γ

M(γ)g(υ)Γ(γ)
+

ρ1ϕ(T )γ

M(γ)Γ(γ)
)].

This inequality and (6.4) gives that

||Θ(=) − Θ(ς)||PC∗g(L,Φ) < ||= − ς||PC∗g(L,Φ),

which means that Θ is a contraction, and hence, by the Banach fixed-point theorem, it has a unique
fixed point which is a solution of Problem (2.3). �

7. Existence of solutions of Problem (2.4)

Lemma 9. Let = : L → Φ, <i : L × Φ → Φ; i ∈ N1,r, be continuous and W : L → Φ be continuous
with W(τi) = 0, i ∈ N1,r.
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(1) If = ∈ PCH1,∗((0,T ),Φ) is a solution of the fractional differential equation:
ABCDγ,ϕ,g

τi,υ =(υ) = W(υ), υ ∈ ∪i=r
i=0Li,

=(0) = =0g−1(0) − g−1(0)<(=),
=(υ) = <i(υ,=(b−i )), υ ∈ [bi, τi]; i ∈ N1,r.

(7.1)

Then,

=(υ) =


=0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ), υ ∈ [0, b1],
<i(υ,=(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi,=(b−i )) +AB Iγ,ϕ,gτi,υ W(υ), υ ∈ Li, i ∈ N1,r.

(7.2)

(2) If W ∈ PCH1,∗((0,T ),Φ) and = satisfy (7.2), then = ∈ PCH1,∗((0,T ),Φ) and = is a solution to
Problem (2.4).

Proof.

(1) Suppose that = ∈ PCH1,∗((0,T ),Φ) is a solution for (7.1). By following the same arguments in
the proof of Lemma (8), we obtain

=(υ) = =0g−1(υ) − g−1(υ)<(=) +AB Iγ,ϕ,g0,υ W(υ); υ ∈ [0, b1],

and
=(υ) = ci +AB Iγ,ϕ,gτi,υ

W(υ), υ ∈ (τi, bi+1); i ∈ N1,r.

Since = is continuous at τi; i ∈ N1,r, we have

<i(τi,=(b−i )) = =(τ−i ) = =(τ+
i ) = ci + ABIγ,ϕ,gτi,τi

W(υ) = ci,

hence
=(υ) = <i(τi,=(b−i )) +AB Iγ,ϕ,gτi,τi

W(υ); υ ∈ (τi, bi+1), i ∈ N1,r.

Therefore, = satisfies (7.2).
(2) By following the same arguments in the proof of Lemma (8), we can show that if W ∈

PCH1,∗((0,T ),Φ), and = is defined by(7.2), then = ∈ PCH1,∗((0,T ),Φ) and = is a solution to
Problem (7.1).

�

Based on Lemma (9), we obtain the following corollary.

Corollary 4. A function = ∈ PCH1,∗(L,Φ) is a solution to Problem (2.4) if it satisfies the fractional
integral equation:

=(υ) =


=0g−1(υ) − g−1(0)<(x) +

1−γ
M(γ)W0(υ)

+
γ

M(γ)Γ(γ)g(υ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)W0(s)ds, υ ∈ [0, b1],

<i(υ, x(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi, x(b−i )) +AB Iγ,ϕ,gτi,υ Wi(υ), υ ∈ Li, i ∈ N1,r,

(7.3)

where Wi(υ) =
∫ υ

τi
z(s)ds, z ∈ S 2

Ψ(.,x(.)), υ ∈ (τi, bi+1], i ∈ N0,r.
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In the following theorem, we give an existence result of solutions to Problem(2.4).

Theorem 5. Assume that (HΨ) holds after replacing (3.3) with

2ρ1ρ2[
1 − γ
M(γ)

+
2ϕ(T )γ

M(γ)Γ(γ)
] < 1. (7.4)

and suppose that (H<)∗∗, (H<i)∗ hold. If there is ξ5 > 0 such that for any x ∈ PCg(L,Φ),

||<i(υ, x(b−i ))|| ≤ ξ5||x||PCg(L,Φ), ∀υ ∈ ∪
r
i=1[bi, τi],

then the solution set to Problem (2.4) is non-empty and compact provided that

c +
ρ1ρ2(1 − γ)

M(γ)
+ ξ5 +

ρ1ρ3ϕ(T )γ

M(γ)Γ(γ)
< 1, (7.5)

where ρ2 = ||τ||L1(L,R+).

Proof. As in the proof of Theorem 3, we define a set-valued function Ω : PC∗g(L,Φ)→ 2PC∗g(L,Φ) − {φ},
where φ is the empty set, as follows: = ∈ Ω(x) if and only if

=(υ) =


=0g−1(υ) − g−1(0)<(x) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [0, b1],
<i(υ, x(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi, x(b−i )) +AB Iγ,ϕ,gτi,υ Wi(υ), υ ∈ Li, i ∈ N1,r,

where Wi(υ) =
∫ υ

τi
z(s)ds, z ∈ S 2

Ψ(.,x(.)), υ ∈ (τi, bi+1], i ∈ N0,r.

Note that if = is a fixed point for Ω, then

=(υ) =


=0g−1(υ) − g−1(0)<(=) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [[0, b1],
<i(υ,=(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi,=(b−i )) +AB Iγ,ϕ,gτi,υ Wi(υ), υ ∈ Li, i ∈ N1,r.

where Wi(υ) =
∫ υ

τi
z(s)ds, z(s) ∈ Ψ(s,=(s)), a.e. Let W : L→ Φ be the function defined by

W(υ) =


∫ υ

0
z(s)ds, υ ∈ [0, b1],

0, υ ∈ (bi, τi], i ∈ N1,r,∫ υ

τi
z(s)ds, υ ∈ (τi, bi+1], i ∈ N1,r,

then W ∈ PCH1,∗((0,T ),Φ), W(υ) ∈
∫ υ

τi
Ψ(s,=(s))ds and W(τi) = 0,∀i ∈ N0,r, and therefore, by the

second statement of Lemma (9), = is a solution for Problem (2.4). We will use Lemma (5), to show
that Ω has a fixed point. Since we will follow the same method as in proving Theorem 2, we omit some
details and focus on the differences with that proof.

Claim 10. There is a natural number ζ∗0 such that R(∆ζ∗0
) ⊆ ∆ζ∗0

.

Pf: If this is not true, then for every natural number n there are xn,=n with ||=n||PCg(L,Φ) > n,
||xn||PCg(L,Φ) ≤ n and =n ∈ R(xn). By the definition of R,

=n(υ) =


=0g−1(υ) − g−1(0)<(xn) +AB Iγ,ϕ,g0,υ W0,n(υ), υ ∈ [0, b1],
<i(υ, xn(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi, xn(b−i )) +AB Iγ,ϕ,gτi,υ Wi,n(υ), υ ∈ Li, i ∈ N1,r.

(7.6)
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where Wi,n(υ) =
∫ υ

τi
zn(s)ds, zn ∈ S 2

Ψ(.,xn(.)), υ ∈ (τi, bi+1], i ∈ N0,r. Using (iii) of (HΨ), we get for
any υ ∈ L, and any i ∈ N0,r.

||Wi,n(υ)|| ≤
∫ υ

τi

||zn(s)||ds ≤ (1 + n)
∫ υ

τi

τ(s)ds ≤ (1 + n)||τ||L2(L,R+) ≤ (1 + n)ρ2. (7.7)

As in (5.12), we obtain

||g(υ)=n(υ)|| ≤ ||=0|| + cn + d +
1 − γ
M(γ)

ρ1ρ2(1 + n) +
ρ1ρ2(1 + n)ϕ(T )γ

M(γ)Γ(γ)
,∀υ ∈ [0, b1]. (7.8)

If υ ∈ (bi, τi], then by (H<i)∗,

||=n(υ)|| = ||<i(υ, xn(b−i ))|| ≤ ξ5||xn||PCg(L,Φ). (7.9)

Let υ ∈ (τi bi+1], i ∈ N1,r. Then, from (7.3), (7.6), (7.7) and (H<), we obtain that

||g(υ)=n(υ)|| ≤ ξ5||xn||PCg(L,Φ) + ρ1(
1 − γ
M(γ)

(1 + n)ρ2 +
ρ1ρ2(1 + n)ϕ(T )γ

M(γ)Γ(γ)
. (7.10)

Inequalities (7.6) and (7.8–7.10) gives

n <
∥∥∥=n

∥∥∥
PCg(J,Φ)

≤ ||=0|| + cn + d +
1 − γ
M(γ)

ρ1ρ2(1 + n) + ξ5n +
ρ1ρ2(1 + n)ϕ(T )γ

M(γ)Γ(γ)
,

thus
1 < c +

ρ1ρ2(1 − γ)
M(γ)

+ ξ5 +
ρ1ρ2ϕ(T )γ

M(γ)Γ(γ)
,

which contradicts (5.8). ¶

Claim 11. If xk ∈ ∆ζ∗0
,=n ∈ Ω(xn), xn → x and =n → =, in PCg(L,Φ), then = ∈ Ω(x).

Pf:
From the definition of Ω,

=n(υ) =


=0g−1(υ) − g−1(0)<(xn) +AB Iγ,ϕ,g0,υ W0,n(υ), υ ∈ [0, b1],
<i(υ, xn(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi, xn(b−i )) +AB Iγ,ϕ,gτi,υ Wi,n(υ), υ ∈ Li, i ∈ N1,r,

where Wi,n(υ) =
∫ υ

τi
zn(s)ds; υ ∈ (τi, bi+1], i ∈ N0,r, zn ∈ S 2

Ψ(.,xn(.)). It follows by (iii) in (HΨ), that
||zn(υ)|| ≤ τ(υ)(1 + ζ∗0), a.e,. Thus, {zn : n ≥ 1} is weakly compact in L2(L,Φ). By Mazure’s lemma,
we can find, without loss of generality, a sub sequence (z∗n), n ≥ 1 of convex combinations of (zn)
converging almost everywhere to a function z ∈ L2(L,Φ). By the upper semicontinuity of Ψ(υ, .), a, e.,
it follows that z ∈ S 2

Ψ(,.x(.)). Set W∗
i,n(υ) =

∫ υ

τi
z∗n(s)ds; υ ∈ (τi, bi+1] Then, W∗

i,n(υ) → Wi(υ) =
∫ υ

τi
z(s)ds ∈∫ υ

τi
Ψ(s, x(s))ds.

In addition, from the continuity of both< and<i(υ, .); υ ∈ L, it follows that

=(υ) =


=0g−1(υ) − g−1(0)<(x) +AB Iγ,ϕ,g0,υ W0(υ), υ ∈ [0, b1],
<i(υ, x(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi, x(b−i )) +AB Iγ,ϕ,gτi,υ Wi(υ), υ ∈ Li, i ∈ N1,r.

which implies = ∈ Ω(x). ¶
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Claim 12. For any x ∈ ∆ζ∗0
, the set Ω(x) is compact.

The proof is exactly as the proof of Claim 3, in the prrof of Theorem 3.

Claim 13. Let Λ1 = Ω(∆ζ∗0
). The set of functions

Λ1|[τi,bi+1] = {=∗ ∈ C([τi, bi+1],Φ) : =∗(υ) = g(υ)=(υ), υ ∈ (τi, bi+1],
=∗(τi) = lim

υ→τ+
i

g(υ)=(υ),= ∈ Λ1}, i ∈ N0,r,

and

Λ1|[bi,τi] = {=∗ ∈ C([bi, τi],Φ) : =∗(υ) = =(υ), υ ∈ (bi, τi],
=∗(bi) = lim

υ→b+
i

=(υ),= ∈ Λ1}, i ∈ N1,r.

are equicontinuous in C([τi, bi+1],Φ) and C([bi, τi],Φ) respectively.

Pf: From the definition of Ω and from the assumption that for any i ∈ N1,r and any υ ∈ L, the
function x→<i(υ, x) is uniformly continuous, we obtain the equicontinuity of Λ1|[bi,τi].

Now, let =∗ ∈ Λ1|[τi,bi+1]. Then

=∗(υ) =

{
=0 −<(x) + g(υ)ABIγ,ϕ,g0,υ W0(υ), υ ∈ [0, b1], if i = 0,
g(υ)<i(τi, x(b−i )) +AB Iγ,ϕ,gτi,υ Wi(υ), υ ∈ (τi, bi+1], i ∈ N1,r,

(7.11)

and =∗(τi) = limυ→τ+
i
=∗(υ), where Wi(υ) =

∫ υ

τi
z(s)ds, z ∈ S 2

Ψ(.,x(.)), υ ∈ (τi, bi+1], i ∈ N0,r. From (7.7),
for any υ ∈ (τi, bi+1], i ∈ N0,r, we have

||g(υ)Wi(υ)|| ≤ ρ1

∫ υ

τi

||z(s)||ds ≤ ρ1(1 + ζ0)
∫ υ

θi

τ(s)ds

≤ ρ1(1 + ζ0)||τ||L1(L,R+) ≤ ρ1ρ2(1 + ζ∗0). (7.12)

Using this inequality and the same arguments as in (5.17), we get

lim
δ→0
||=∗(υ + δ) − =∗(υ)|| = 0,∀υ ∈ (τi, bi+1], i ∈ N0,r.

If υ = τi, i ∈ N1,r and δ > 0, then limδ→0 ||=
∗(τi +δ)−=∗(τi)|| = limδ→0 limλ→θ+

i
||=(τi +δ)−=(λ)|| =

0.
establishing the claim. ¶

Claim 14. The set Λ = ∩n=1Λn is compact, where Λk+1 = R(Λk), k ≥ 1.

Pf: As in the proof of the theorem 3, it is sufficient to prove that,

lim
n→∞
κPCg(Λn) = 0. (7.13)

To prove (7.13), let ε > 0, and n ≥ 1 be fixed. Since the sets Λ1|[τi,bi+1], i ∈ N0,r and Λ1|[bi,τi] are
equicontinuous, it follows as in Claim 4, in Theorem 1, that

χPCg(L,Φ)(Λn) ≤ 2 max
υ∈L

χ{g(υ)=m(υ) : m ≥ 1} + ε, (7.14)
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Since =m ∈ Λn = Ω(Λn−1), there is xm ∈ Λn−1with =m ∈ Ω(xm), and hence

g(υ)=m(υ) =


=0g−1(υ) − g−1(0)<(xm) +AB Iγ,ϕ,g0,υ W0,m(υ), υ ∈ [0, b1],
<i(υ, xm(b−i )), υ ∈ Mi, i ∈ N1,r,

<i(τi, xm(b−i )) +AB Iγ,ϕ,gτi,υ Wi,m(υ), υ ∈ Li, i ∈ N1,r.

(7.15)

where Wi,m(υ) =
∫ υ

τi
zm(s)ds, zm ∈ S 2

Ψ(.,xm(.)), υ ∈ (τi, bi+1], i ∈ N0,r and m ≥ 1.
Let υ ∈ (τi, bi+1], i ∈ N0,r be fixed. Using (3.2), we get

χ{g(υ)Wi,m(υ) : m ≥ 1} ≤ χ{g(υ)
∫ υ

τi

zm(s)ds : m ≥ 1} ≤ 2g(υ)
∫ υ

τi

χ{zm(s) : m ≥ 1}ds

≤ 2g(υ)
∫ υ

τi

χ{Ψ(s, {xm(s) : m ≥ 1})}ds ≤ 2g(υ)
∫ υ

τi

τ(s)χ{g(s)xm(s) : m ≥ 1}

≤ 2ρ1χχPCg(L,Φ)(Λn−1)
∫ υ

si

τ(s)ds ≤ 2ρ1ρ2χPCg(L,Φ)(Λn−1). (7.16)

Thus

χ{

∫ υ

τi

(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)Wi,m(s))ds : m ≥ 1}

≤ 2
∫ υ

τi

(ϕ(υ) − ϕ(s))γ−1ϕ′(s)χ{g(s)Wi,m(s) : m ≥ 1}ds

≤ 4ρ1ρ2χPCg(L,Φ)(Λn−1)
ϕ(T )γ

γ
, υ ∈ (τi, bi+1], i ∈ N0,r. (7.17)

By (7.15) and ( 7.17), it follows that for υ ∈ [0, θ1]

χ{g(υ)ABIγ,ϕ,gτi,υ
Wi,m(υ) : m ≥ 1} ≤

1 − γ
M(γ)

2ρ1ρ2χPCg(L,Φ)(Λn−1) +
4ϕ(b)γ

M(γ)Γ(γ)
ρ1ρ2χPCg(L,Φ)(Λn−1)

= χPCg(L,Φ)(Λn−1)ρ1ρ2[
2(1 − γ)

M(γ)
+

4ϕ(T )γ

M(γ)Γ(γ)
]. (7.18)

From the compactness of both< and<i(υ, .), it follows from (7.14), (7.15) and (7.18) that

χPCg(L,Φ)(Dn) ≤ χPCg(L,Φ)(Λn−1)ρ1ρ2[
2(1 − γ)

M(γ)
+

4ϕ(T )γ

M(γ)Γ(γ)
] + ε.

Since ε is arbitrary, we get

χPCg(L,Φ)(Dn) ≤ χPCg(L,Φ)(Dn−1)2ρ1ρ2[
1 − γ
M(γ)

+
2ϕ(T )γ

M(γ)Γ(γ)
].

Since this relation is true for each n, we get

χPCg(L,Φ)(∆n) ≤ χPCg(L,Φ)(∆1)[4ρ1ρ2(
1 − γ
M(γ)

+
2ϕ(T )γ

M(γ)Γ(γ)
)]n−1.

Taking the limit as n→ ∞ while keeping in mind (7.3), we obtain (7.13) and Λ is compact. ¶
Applying Lemma (6), we have that there is = ∈ Λ such that = ∈ Ω(=) and as we pointed out

above, such = is a solution for Problem (2.4). In addition, by arguing as in Claim 1, one can show that
the set of fixed points of Ω is bounded, and hence by Lemma (7), the set of solutions of Problem (2.4)
is compact. �
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8. Ulam-Hyers stability of solitions to Problem (2.1)

Definition 3. [39] Problem(2.1) is Ulam-Hyers stable if there is a C > 0 such that for each ε > 0 and
each solution y ∈ PCH1((0,T ),Φ) of the inequality

||y(v) − =0g−1(υ) + g−1(υ)<(y) − 1−γ
M(γ)z(υ, y(υ))

−
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s, y(s))ds|| ≤ ε, υ ∈ [0, θ1]

||y(v) − g−1(υ)=0 + g−1(υ)<(y)) + g−1(υ)
∑k=i

k=1 Ik(y(θ−k ))
+

1−γ
M(γ)z(υ, y(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s, y(s))ds|| ≤ ε,

υ ∈ (θi, θi+1], i ∈ N1,r,

(8.1)

there is a solution x ∈ PCH1((0,T ),Φ) to Problem (2.1) such that

||x − y||PCg(L,Φ) ≤ Cε. (8.2)

Theorem 6. Under the assumptions of Theorem (2), Problem (2.1) is Ulam-Hyers stable.

Proof. Let
C =

ρ1

1 − [ξ2 + rξ3 +
(1−γ)ρ1

M(γ) ξ1 +
ρ1ξ1ϕ(T )γ

M(γ)Γ(γ) ]
. (8.3)

From the relation (4.25), we obtain that C is well defined. Suppose that y ∈ PCH1((0,T ),Φ) is a
solution to the inequality ( 9.1 ) and define x : [0,T ]→ Φ by

x(υ) =



=0g−1(υ) − g−1(υ)<(x)
+

1−γ
M(γ)z(υ, x(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s, x(s))ds, υ ∈ [0, θ1]

g−1(υ)=0 − g−1(υ)<(x))
+g−1(υ)

∑k=i
k=1 Ik(x(θ−k ))

+
1−γ
M(γ)z(υ, x(υ))

+
γ

M(γ)
1

g(υ)Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)z(s, x(s))ds,

υ ∈ (θi, θi+1], i ∈ N1,r.

(8.4)

By Corollary (1), x ∈ PCH1((0,T ),Φ) and is a solution to Problem (2.1). We show the existence of
C > 0 such that (8.2 ) hold. For υ ∈ [0, θ1], we have

||g(υ)y(v) − g(υ)x(v)|| ≤ g(υ)||y(v) − x(v)||

≤ g(υ)ε + ||<(y) −<(x)|| +
(1 − γ)g(v)

M(γ)
|z(υ, y(υ)) − z(υ, x(υ))||

+
γ

M(γ)
1

Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)||z(s, y(s)) − z(s, y(s))|ds

≤ ρ1ε + ||y − x||PCg(L,Φ)[ξ2 +
(1 − γ)ρ1

M(γ)
ξ1 +

ρ1ξ1ϕ(T )γ

M(γ)Γ(γ)
]. (8.5)
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For υ ∈ (θi, θi+1], i ∈ N1,r. In view (HI)∗

k=i∑
k=1

||Ik(y(θ−k ) − Ikx(θ−k )|| ≤ rξ3||= − ς||PCg(L,Φ).

Therefore,

||g(υ)y(v) − g(υ)x(v)|| ≤ g(υ)||y(v) − x(v)||

≤ g(υ)ε + ||<(y) −<(x)|| +
(1 − γ)g(v)

M(γ)
|z(υ, y(υ)) − z(υ, x(υ))||

+
γ

M(γ)
1

Γ(γ)

∫ υ

0
(ϕ(υ) − ϕ(s))γ−1g(s)ϕ′(s)||z(s, y(s)) − z(s, y(s))|ds

≤ ρ1ε + ||y − x||PCg(L,Φ)[ξ2 + rξ3 +
(1 − γ)ρ1

M(γ)
ξ1 +

ρ1ξ1ϕ(T )γ

M(γ)Γ(γ)
]. (8.6)

From ( 8.5 ) and (8.6 ), it follows that

||x − y||PCg(L,Φ) ≤ ρ1ε + ||y − x||PCg(L,Φ)[ξ2 + rξ3 +
(1 − γ)ρ1

M(γ)
ξ1 +

ρ1ξ1ϕ(T )γ

M(γ)Γ(γ)
].

So,
||x − y||PCg(L,Φ) ≤

ρ1ε

1 − [ξ2 + rξ3 +
(1−γ)ρ1

M(γ) ξ1 +
ρ1ξ1ϕ(T )γ

M(γ)Γ(γ) ]
= Cε,

which shows that Problem (2.1) is stable in the sense of Ulan-Hyers. �

Similarly, we can study the stability of solutions for the other problems.

9. Examples

Example 1. Let Φ be a Hilbert space, L = [0, 1], and θ0 = 0, θ1 = 1
4 , θ2 = 1

2 , θ3 = 3
4 , θ4 = 1, r = 3.

Suppose that g : L → (0,∞) is continuously differentiable with g−1(υ) = 1
g(υ) ; υ ∈ L and ϕ : L → R is

a strictly increasing and continuously differentiable function with ϕ′(υ) , 0,∀υ ∈ L. If Ψ : L × Φ →

Φ,<:PCg(L,Φ)→ Φ, and Ii : Φ→ Φ are such that for any = ∈ PCg(L,Φ),

z(υ,=(υ)) = £1

∫ υ

0
g(s)=(s) sin s ds; υ ∈ L, (9.1)

<(=) =

i=4∑
i=1

cig(θi)=(θi), (9.2)

and
Ii(=(υ)) = ξ3g(υ)=(υ), (9.3)

where, ci, £1 and ξ3 are positive real numbers. We have

(i) If = ∈ PCg(L,Φ) and W(υ) = z(υ,=(υ)); υ ∈ L, then W(0) = 0 and W ′(υ) = £1g(υ)=(υ) sin υ; υ ∈
L.
Since g and = are bounded on L, then W ∈ PCH1(L,Φ).
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(ii) For any υ ∈ L, and any =, ς ∈ PCg(L,Φ), we have

||z(υ,=(υ)) − z(υ, ς(υ)|| ≤ £1

∫ υ

0
||g(s)=(s) sin s − g(s)ς(s) sin s||ds ≤ υ£1||= − ς||PCg(L,Φ),

||<(=) −<(ς)|| ≤
i=4∑
i=1

cig(θi)||=(θi) − ς(θi)|| ≤
i=4∑
i=1

cig(θi)||=(θi) − ς(θi)||

≤ c|
i=4∑
i=1

g(θi)||=(θi) − ς(θi)||| ≤ c ||= − ς||PCg(L,Φ),

and for any i = 1, 2, 3, 4,∥∥∥Ii(=(θi) − Ii(ς(θi))
∥∥∥ ≤ ξ3g((θi)||=(θi) − ς(θi)|| ≤ ξ3||= − ς||PCg(L,Φ).

where c =
∑i=4

i=1 ci. So, (HΨ)∗ (H<)∗ and (HI)∗are satisfied with ξ1 = £1 and ξ2 = c.

By applying Theorem 2, with =0 = 0, there is a unique solution for the problem:
ABCDγ,ϕ,g

0,υ =(υ) = £1

∫ υ

0
g(s)=(s) sin s ds, υ ∈ (θi, θi+1), i ∈ N0,r,

=(0) = g−1(0)=0 − g−1(0)
∑i=4

i=1 cig(θi)=(θi),
=(θ+

i ) = =(θ−i ) + ξ3g(θ−i )=(θ−i ), i ∈ N1,r,

(9.4)

provided that

c + 3ξ3 + £1(1 +
ρ1ϕ(1)γ

M(γ)g(υ)Γ(γ)
) < 1. (9.5)

where Ψ,<, Ii; i = 1, 2, 3, 4 are defined by (9.1- 9.3). By choosing ϕ, g, c, ξ3 and £1 appropriately, we
obtain (9.4).

Remark 5. If g(υ) = υ + 1; υ ∈ L = [0, 1], then g ∈ H1(L,R), g(υ) ≤ 2 and 1
g(1) ≤ 1; υ ∈ L.

Example 2. Let Φ, L, θi; i = 1, 2, 3, 4, r = 3, γ, =0 ∈ Φ, K, g, ϕ be as in Example 1. Suppose that
K : Φ → Φ is a linear bounded compact operator and Z is a convex compact subset of Φ with 0 ∈ K.
Define Ψ : J × Φ→ Pck(Φ),<:PCg(L,Φ)→ Φ, and Ii : Φ→ Φ such that for any = ∈ PCg(L,Φ),

Ψ(υ, x) =
g(υ)ρ ||x|| sin υ
σ(1 + ||x||)

Z; (υ, x) ∈ L × Φ, (9.6)

<(=) =

i=4∑
i=1

cig(θi)K(=(θi)), (9.7)

and
Ii(=(υ)) = ξ3g(υ)K(=(υ)), (9.8)

where, ρ > 0, σ = S up{||z|| : z ∈ Z}. Note that for any = ∈ PCg(L,Φ), the function z(υ) =
g(υ)% =(υ) sin υ

σ (1+||=||) z0; z0 ∈ Z is an element of S 2
Ψ(.,=(.)) and z(υ) ∈ Ψ(υ,=(υ)); υ ∈ J, and hence S 2

Ψ(.,=(.)) is
not empty. Moreover, for any υ ∈ L and any x, y ∈ Φ , we have
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sup
y∈Ψ(υ,x)

||y|| ≤
g(υ)ρ ||x|| | sin υ|

(1 + ||x||)
≤ ρg(υ)| sin υ|.

and

H(Ψ(υ, x),Ψ(υ, y)) ≤ g(υ)ρ| sin υ| |
||x||

(1 + ||x||)
−

||y||
(1 + ||y||)

| ≤ ρg(υ)| sin υ| ||x − y||,

Thus Ψ(υ, .) is upper semicontinuous and for any bounded subset B ⊆ Φ,

κ(Ψ(υ, B)) ≤ g(υ)η(υ)κ(B), for υ ∈ L,

where η(υ) = ρ. The assumption (HΨ) is satisfied with τ(υ) = ρg(υ)| sin(υ)|, for υ ∈ L. Moreover,

||<(=)|| ≤
i=4∑
i=1

cig(θi)||K(=(θi))|| ≤
i=4∑
i=1

cig(θi)||K||||=(θi)|| ≤ c||=||PCg(L,Φ),

and
||Ii(=(υ)|| ≤ λg(υ)||=(υ)||,

where c = ||K||
∑i=4

i=1 ci and λ = ξ3||K||. By applying Theorem (3), we have that the set of solutions of
following problem: 

ABCDγ,ϕ,g
θi,υ
=(υ) ∈

∫ υ

θi

g(s)ρ ||=(s)|| sin s
σ (1+||=(s)||) Zds, υ ∈ (θi, θi+1), i ∈ N0,r,

=(0) = g−1(0)=0 − g−1(0)
∑i=4

i=1 cig(θi)(K(=(θi)),
=(θ+

i ) = =(θ−i ) + ξ3g(θ−i )K(=(θ−i )), i ∈ N1,r,

(9.9)

where Ψ is defined by (9.6) is not empty and compact provided that

||K||
i=4∑
i=1

ci +
ρ1ρ2(1 − γ)

M(γ)
+

2ρ1ρ2ϕ(1)γ

M(γ)Γ(γ)
+ 3ξ3||K|| +

ρ1ρ2ϕ(1)γ

M(γ)Γ(γ)
< 1, (9.10)

and

4ρ1ρ3(
1 − γ
M(γ)

+
6ϕ(1)γ

M(γ)Γ(γ)
) < 1, (9.11)

By choosing ρ, ϕ, g, ci, ξ3 and K appropriately, we obtain 9.10 and (9.11).

Example 3. Let L = [0, 1], r = 4. Consider the following partition of L : 0 = τ0 < b1 = 1
8 < τ1 = 1

4 <

b2 = 3
8 < τ2 = 1

2 < b3 = 5
8 < τ3 = 6

8 < b4 = 7
8 < τ4 = 15

16 < b5 = 1.
Assumes that =0, g, ϕ, z and< are be as in Example (1). For any i ∈ N, let<i : [bi, τi]×Φ→ Φ,

be defined as:
<i(υ, x) := iυpg(bi)x; (υ, x) ∈ [bi, τi] × Φ, i = 1, 2, 3, 4. (9.12)

where, p is a positive real number. For any υ ∈ [bi, τi], i = 1, 2, 3, 4 and any =, ς ∈ PC∗g(L,Φ), we have

||<i(υ,=(b−i )) −<i(υ, ς(b−i ))|| ≤ 4p||g(bi)=(b−i ) − g(bi)ς(b−i )||
≤ 4p||= − ς||PCg(L,Φ),
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thus, (H<i) holds with ξ4 = 4p. By Applying Theorem (4), the following fractional differential equation
ABCDγ,ϕ,g

0,υ =(υ) = £1

∫ υ

0
g(s)=(s) sin s ds, υ ∈ (θi, θi+1), i ∈ N0,r,

=(υ) = <i(υ,=(b−i )), υ ∈ [bi, τi]; i ∈ N1,r,

=(0) = g−1(0)=0 − g−1(0)
∑i=4

i=1 cig(θi)=(θi),
(9.13)

has a solution under the condition that

ρ14p + £1(
2(1 − γ)

M(γ)
+

ϕ(1)γ

M(γ)g(υ)Γ(γ)
+

ρ1ϕ(1)γ

M(γ)Γ(γ)
) < 1. (9.14)

By choosing ϕ, g, p and £1 appropriately, we can have (9.14) hold.

Example 4. Let γ,Φ, L, r, τi, bi, Li , Mi(i = 1, 2, 3, 4), =0, g, ϕ and Ψ be as in Example (2.2). Let< be
a non-empty convex and compact subset of Φ and K : Φ → Φ be a linear bounded compact operator.
Define< : PC∗g(L,Φ)→ Φ by:

<(=) =

i=4∑
i=0

cig(τi)K(=(τi)), (9.15)

where ci > 0. Obviously,< is continuous, compact and ||<(x)|| ≤ c||x||PC∗g(L,Φ), where c =
∑i=4

i=0 ci, and
hence (H<)∗∗ holds with c =

∑i=4
i=0 ci and d = 0.

For i = 1, 2, 3, 4, define<i : [bi, τi] × Φ→ Φ as:

<i(υ, x) := iυ qpro j <x , (9.16)

where, q is a positive real number and pro j <x is the projection of the point x on < . Then, for
any i = 1, 2, 3, 4,<i(υ, .), υ ∈ [bi, τi] is continuous and compact, and ||<i(υ, x)|| ≤ 4q||x||, and hence
(H<i)∗ holds with ξ5 = 4q. By applying Theorem (5), the set of solutions of following problem:

ABCDγ,ϕ,g
τi,υ =(υ) ∈

∫ υ

τi

g(υ)ρ ||=(s)|| sin υ
σ (1+||=(s)||) Zds, υ ∈ ∪i=r

i=0Li,

=(υ) = iυ qpro j <=(b−i ), υ ∈ [bi, τi]; i ∈ N1,r,

=(0) = =0g−1(0) − g−1(0)
∑i=4

i=0 cig(τi)K(=(τi)),
(9.17)

is not empty and compact provided that

2ρ1ρ2[
1 − γ
M(γ)

+
2ϕ(1)γ

M(γ)Γ(γ)
] < 1. (9.18)

and

i=4∑
i=0

ci +
ρ1ρ2(1 − γ)

M(γ)
+ 4q +

ρ1ρ2ϕ(1)γ

M(γ)Γ(γ)
< 1, (9.19)

where ρ1 = S upυ∈Lg(υ), ρ2 = ||τ||L1(L,R+) and q is as in (9.16). By choosing ϕ, g, τ and q appropriately,
we can have (9.19) hold.
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10. Conclusions

There are many definitions of fractional differentiations of order γ ∈ (0, 1), and all these definitions
are reduced to the first derivative when γ → 1. The existence of such variety contributed to the
development of fractional calculus and increased its application in many fields. Researchers continue
to be interested in introducing new definitions of fractional differentiation, and this is one of our goals
in this work. The notion of the g-weighted ϕ-Atangana-Baleanu fractional derivative is introduced,
which generalizes both the Atangana-Baleanu derivative proposed by Atangana- Baleanu [7], the ϕ
Atangana-Baleanu derivative (generalized Atangana-Baleanu derivative) introduced by HoVu, Behzad
Ghanbari [27] and the g-weighted Atangana-Baleanu derivative defined by Al-Refai [31]. Some
properties of the introduced derivative are obtained. The existence and stability of solutions for non-
local fractional differential equations and inclusions, in infinite dimensional Banach spaces, containing
this new fractional derivative in the presence of instantaneous and non-instantaneous impulses are
studied. The case in which the lower limit of the fractional derivative is kept at the initial point and
where it is changed to the impulsive points are considered. To achieve the results, we establish the
relationship between any solution to each of the four studied problems and those of its corresponding
fractional integral equation. To our knowledge, there has been no previous study of the g-weighted
ϕ-Atangana-Baleanu fractional derivative, and so, theses results are new and interesting. The used
technique are based on the properties of this new fractional differential operator and appropriate
fixed point theorems for single-valued functions and set-valued functions. As is pointed out in the
introduction, the following results that appear in the literature are particular cases of these obtained
in this study: Theorem 4.3 and Theorem 5.1 in [23], Theorem 3.1 in [31], Theorem 2.3 in [27],
Theorem 3.1 in [32] , Theorem 3.2 in [33], and Theorem 2.2 in [34].

As to the directions for further research related to this paper, we suggest the following:

- Using the same technique in this paper and the arguments and methods in [28], to study the
existence of solutions for Problems (2.1)–(2.4), when γ ∈ (0, 1) is replaced with γ( υ), where
γ : L→ (0, 1).

- Using our technique and the arguments and methods in [40] to study the existence of solutions
for Problems (2.1)–(2.4) in the presence of delay.

- Study the controllability of Problems (2.2) and (2.4).
- Study the stability of solutions for the Problems (2.2)–(2.4) and the controllability of

Problems (2.1)–(2.4).
- Extending the obtained results in [41–43] when the fractional derivative operator in these results is

replaced with the weighted generalized Atangana-Baleanu fractional derivative and the dimension
of the setting space is infinite.

- Studying the numerical solutions of the considered problems.
- Study of how fractional arithmetic can be applied to the topic of uncertain semi-Markovian jump

stabilization. For uncertain semi-Markovian jump stabilization, see [44].
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Schrődinger, Fractal Fract., 7 (2023), 157. https://doi.org/10.3390/fractalfract7020157

5. M. Almulhim, M. Al Nuwairan, Bifurcation of traveling wave solution of
sakovich equation with beta fractional derivative, Fractal Fract., 7, (2023), 372.
https://doi.org/10.3390/fractalfract7050372

6. M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr.
Fract. Differ. Appl., 1 (2015), 73–85. Available from: https://www.researchgate.net/
publication/290484465

7. A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular
kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
https://doi.org/10.48550/arXiv.1602.03408

8. S. Asma, S. Shabbir, K. Shah, T. Abdeljawad, Stability analysis for a class of implicit fractional
differential equations involving Atangana–Baleanu fractional derivative, Adv. Differ. Equ., 2021
(2021), 395.https://doi.org/10.1186/s13662-021-03551-1

9. A. Devi, A. Kumar, Existence and uniqueness results for integro fractional differential
equations with atangana-baleanu fractional derivative, J. Math. Exten., 15 (2021), 1–24.
https://doi.org/10.30495/JME.SI.2021.2128

10. S. T. Sutar, K. D. Kucche, Existence and data dependence results for fractional differential
equations involving Atangana-Baleanu derivative, Rend. Circ. Mat. Palermo, II (2022), 647–663.
https://doi.org/10.1007/s12215-021-00622-w

AIMS Mathematics Volume 9, Issue 12, 36293–36335.

https://dx.doi.org/https://doi.org/10.1515/9783110571660
https://www.amazon.com/Applications-Engineering-Sciences-Gruyter-Reference/dp/3110570920
https://www.amazon.com/Applications-Engineering-Sciences-Gruyter-Reference/dp/3110570920
https://dx.doi.org/https://doi.org/ 10.5772/intechopen.68571
https://dx.doi.org/https://doi.org/10.3390/fractalfract7020157
https://dx.doi.org/https://doi.org/10.3390/fractalfract7050372
https://www.researchgate.net/publication/290484465
https://www.researchgate.net/publication/290484465
https://dx.doi.org/ https://doi.org/10.48550/arXiv.1602.03408
https://dx.doi.org/ https://doi.org/10.48550/arXiv.1602.03408
https://dx.doi.org/https://doi.org/10.1186/s13662-021-03551-1
https://dx.doi.org/https://doi.org/10.30495/JME.SI.2021.2128
https://dx.doi.org/https://doi.org/10.1007/s12215-021-00622-w


36333

11. K. A. Abro, A. Atangana, A comparative analysis of electromechanical model of piezoelectric
actuator through Caputo-Fabrizio and Atangana-Baleanu fractional derivatives, Math. Methods
Appl. Sci., 43 (2020), 9681–9691. https://doi.org/10.1002/mma.6638

12. B. Ghanbari, A. Atangana, A new application of fractional Atangana-Baleanu derivatives:
Designing ABC-fractional masks in image processing, Physica A Stat. Mech. Appl., 542 (2020),
123516. https://doi.org/10.1016/j.physa.2019.123516

13. M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-Cov) with fractional
derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033

14. K. Dishlieva, Impulsive differential equations and applications, J. Appl. Computat.
Math., 1 (2012). Available from: https://www.hilarispublisher.com/archive/

jacm-volume-1-issue-6-year-2012.html

15. K. Church, Applications of impulsive differential equations to the control of malaria outbreaks and
introduction to impulse extension equations: A general framework to study the validity of ordinary
differential equation models with discontinuities in state, Université d’Ottawa/Univ. Ottawa, 2014,
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