Research article

Compactness of commutators of fractional integral operators on ball Banach function spaces

  • Received: 13 September 2023 Revised: 22 November 2023 Accepted: 27 November 2023 Published: 03 January 2024
  • MSC : 42B20, 42B25, 42B35, 47B47

  • Let $ 0 < \alpha < n $ and $ b $ be a locally integrable function. In this paper, we obtain the characterization of compactness of the iterated commutator $ (T_{\Omega, \alpha})_{b}^{m} $ generated by the function $ b $ and the fractional integral operator with the homogeneous kernel $ T_{\Omega, \alpha} $ on ball Banach function spaces. As applications, we derive the characterization of compactness via the commutator $ (T_{\Omega, \alpha})_b^m $ on weighted Lebesgue spaces, and further obtain a necessary and sufficient condition for the compactness of the iterated commutator $ (T_{\alpha})_{b}^{m} $ generated by the function $ b $ and the fractional integral operator $ T_\alpha $ on Morrey spaces. Moreover, we also show the necessary and sufficient condition for the compactness of the commutator $ [b, T_{\alpha}] $ generated by the function $ b $ and the fractional integral operator $ T_\alpha $ on variable Lebesgue spaces and mixed Morrey spaces.

    Citation: Heng Yang, Jiang Zhou. Compactness of commutators of fractional integral operators on ball Banach function spaces[J]. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152

    Related Papers:

  • Let $ 0 < \alpha < n $ and $ b $ be a locally integrable function. In this paper, we obtain the characterization of compactness of the iterated commutator $ (T_{\Omega, \alpha})_{b}^{m} $ generated by the function $ b $ and the fractional integral operator with the homogeneous kernel $ T_{\Omega, \alpha} $ on ball Banach function spaces. As applications, we derive the characterization of compactness via the commutator $ (T_{\Omega, \alpha})_b^m $ on weighted Lebesgue spaces, and further obtain a necessary and sufficient condition for the compactness of the iterated commutator $ (T_{\alpha})_{b}^{m} $ generated by the function $ b $ and the fractional integral operator $ T_\alpha $ on Morrey spaces. Moreover, we also show the necessary and sufficient condition for the compactness of the commutator $ [b, T_{\alpha}] $ generated by the function $ b $ and the fractional integral operator $ T_\alpha $ on variable Lebesgue spaces and mixed Morrey spaces.



    加载中


    [1] F. John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math., 14 (1961), 415–426. https://doi.org/10.1002/cpa.3160140317 doi: 10.1002/cpa.3160140317
    [2] R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611–635. https://doi.org/10.2307/1970954 doi: 10.2307/1970954
    [3] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J., 30 (1978), 163–171. https://doi.org/10.2748/tmj/1178230105 doi: 10.2748/tmj/1178230105
    [4] A. Karlovich, A. Lerner, Commutators of singular integrals on generalized $L^p$ spaces with variable exponent, Publ. Mat., 49 (2005), 111–125.
    [5] G. Di Fazio, M. A. Ragusa, Commutators and Morrey spaces, Boll. Unione Mat. Ital. A, 7 (1991), 323–332.
    [6] Y. Chen, Y. Ding, X. Wang, Compactness of commutators for singular integrals on Morrey spaces, Can. J. Math., 64 (2012), 257–281. https://doi.org/10.4153/CJM-2011-043-1 doi: 10.4153/CJM-2011-043-1
    [7] J. Tao, D. Yang, W. Yuan, Y. Zhang, Compactness characterizations of commutators on ball Banach function spaces, Potential Anal., 58 (2023), 645–679. https://doi.org/10.1007/s11118-021-09953-w doi: 10.1007/s11118-021-09953-w
    [8] Y. Sawano, K. P. Ho, D. Yang, S. Yang, Hardy spaces for ball quasi-Banach function spaces, Diss. Math., 525 (2017), 1–102. https://doi.org/10.4064/dm750-9-2016 doi: 10.4064/dm750-9-2016
    [9] C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988.
    [10] H. Yang, J. Zhou, Commutators of parameter Marcinkiwicz integral with functions in Campanato spaces on Orlicz-Morrey spaces, Filomat., 37 (2023), 7255–7273. https://doi.org/10.2298/FIL2321255Y doi: 10.2298/FIL2321255Y
    [11] K. Ho, Fractional integral operators with homogeneous kernels on Morrey spaces with variable exponents, J. Math. Soc. Japan., 69 (2017), 1059–1077. https://doi.org/10.2969/jmsj/06931059 doi: 10.2969/jmsj/06931059
    [12] M. A. Ragusa, Commutators of fractional integral operators on vanishing-Morrey spaces, J. Glob. Optim., 40 (2008), 361–368. https://doi.org/10.1007/s10898-007-9176-7 doi: 10.1007/s10898-007-9176-7
    [13] A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat., 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S doi: 10.2298/FIL2003931S
    [14] H. Yang, J. Zhou, Some characterizations of Lipschitz spaces via commutators of the Hardy-Littlewood maximal operator on slice spaces, Proc. Ro. Acad. Ser. A., 24 (2023), 223–230. https://doi.org/10.59277/PRA-SER.A.24.3.03 doi: 10.59277/PRA-SER.A.24.3.03
    [15] J. Tan, J. Zhao, Rough fractional integrals and its commutators on variable Morrey spaces, C. R. Math., 353 (2015), 1117–1122. https://doi.org/10.1016/j.crma.2015.09.024 doi: 10.1016/j.crma.2015.09.024
    [16] J. Tan, Z. Liu, J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math. Inequal., 11 (2017), 715–734. https://doi.org/10.7153/jmi-2017-11-57 doi: 10.7153/jmi-2017-11-57
    [17] M. A. Ragusa, Local Hölder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002), 385–397. https://doi.org/10.1215/S0012-7094-02-11327-1 doi: 10.1215/S0012-7094-02-11327-1
    [18] Y. Chen, Q. Deng, Y. Ding, Commutators with fractional differentiation for second-order elliptic operators on $\mathbb{R}^{n}$, Commun. Contemp. Math., 22 (2020), 1950010. https://doi.org/10.1142/S021919971950010X doi: 10.1142/S021919971950010X
    [19] Y. Chen, Y. Ding, G. Hong, Commutators with fractional differentiation and new characterizations of BMO-Sobolev spaces, Anal. PDE, 9 (2016), 1497–1522. https://doi.org/10.2140/apde.2016.9.1497 doi: 10.2140/apde.2016.9.1497
    [20] C. Pérez, G. Pradolini, R. H. Torres, R. Trujillo-González, End-points estimates for iterated commutators of multilinear singular integrals, Bull. London Math. Soc., 46 (2014), 26–42. https://doi.org/10.1112/blms/bdt065 doi: 10.1112/blms/bdt065
    [21] A. Bényi, R. H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc., 141 (2013), 3609–3621.
    [22] A. Bényi, W. Damián, K. Moen, R. H. Torres, Compact bilinear commutators: the weighted case, Michigan Math. J., 64 (2015), 39–51.
    [23] D. Wang, J. Zhou, Z. Teng, Characterization of CMO via compactness of the commutators of bilinear fractional integral operators, Anal. Math. Phys., 9 (2019), 1669–1688. https://doi.org/10.1007/s13324-018-0264-2 doi: 10.1007/s13324-018-0264-2
    [24] T. Hytönen, S. Lappas, Extrapolation of compactness on weighted spaces: Bilinear operators, Indagat. Math., 33 (2022), 397–420. https://doi.org/10.1016/j.indag.2021.09.007 doi: 10.1016/j.indag.2021.09.007
    [25] W. Guo, H. Wu, D. Yang, A revised on the compactness of commutators, Can. J. Math., 73 (2021), 1667–1697. https://doi.org/10.4153/S0008414X20000644 doi: 10.4153/S0008414X20000644
    [26] S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Scientific, 2007.
    [27] A. K. Lerner, S. Ombrosi, I. P. Rivera-Ríos, Commutators of singular integrals revisited, Bull. London Math. Soc., 51 (2019), 107–119. https://doi.org/10.1112/blms.12216 doi: 10.1112/blms.12216
    [28] M. Izuki, T. Noi, Y. Sawano, The John-Nirenberg inequality in ball Banach function spaces and application to characterization of BMO, J. Inequal. Appl., 2019 (2019), 268. https://doi.org/10.1186/s13660-019-2220-6 doi: 10.1186/s13660-019-2220-6
    [29] Y. Zhang, S. Wang, D. Yang, W. Yuan, Weak Hardy-type spaces associated with ball quasi-Banach function spaces Ⅰ: Decompositions with applications to boundedness of Calderón-Zygmund operators, Sci. China Math., 64 (2021), 2007–2064. https://doi.org/10.1007/s11425-019-1645-1 doi: 10.1007/s11425-019-1645-1
    [30] A. Clop, V. Cruz, Weighted estimates for Beltrami equations, Ann. Fenn. Math., 38 (2013), 91–113. https://doi.org/10.5186/aasfm.2013.3818 doi: 10.5186/aasfm.2013.3818
    [31] S. G. Krantz, S. Y. Li, Boundedness and compactness of integral operators on spaces of homogeneous type and applications, Ⅱ, J. Math. Anal. Appl., 258 (2001), 642–657. https://doi.org/10.1006/jmaa.2000.7403 doi: 10.1006/jmaa.2000.7403
    [32] L. Grafakos, Classical Fourier analysis, New York: Springer, 2014.
    [33] J. Garcia-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, North-Holland mathematics studies, 1985.
    [34] K. Andersen, R. John, Weighted inequalities for vecter-valued maximal functions and singular integrals, Stud. Math., 69 (1981), 19–31. https://doi.org/10.4064/sm-69-1-19-31 doi: 10.4064/sm-69-1-19-31
    [35] B. Muckenhoupt, R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261–274. https://doi.org/10.1090/S0002-9947-1974-0340523-6 doi: 10.1090/S0002-9947-1974-0340523-6
    [36] Y. Ding, S. Lu, Higher order commutators for a class of rough operators, Ark. Mat., 37 (1999), 33–44. https://doi.org/10.1007/BF02384827 doi: 10.1007/BF02384827
    [37] D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765–778. https://doi.org/10.1215/S0012-7094-75-04265-9 doi: 10.1215/S0012-7094-75-04265-9
    [38] C. Capone, D. Cruz-Uribe, A. SFO Fiorenza, The fractional maximal operator and fractional integrals on variable $L^p$ spaces, Rev. Mat. Iberoamericana, 23 (2007), 743–770. https://doi.org/10.4171/RMI/511 doi: 10.4171/RMI/511
    [39] C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938) 126–166. https://doi.org/10.2307/1989904 doi: 10.2307/1989904
    [40] T. Iida, Weighted estimates of higher order commutators generated by BMO-functions and the fractional integral operator on Morrey spaces, J. Inequal. Appl., 2016 (2016), 4. https://doi.org/10.1186/s13660-015-0953-4 doi: 10.1186/s13660-015-0953-4
    [41] H. Wang, Commutators of singular integral operator on herz-type hardy spaces with variable exponent, J. Korean Math. Soc., 54 (2017), 713–732. https://doi.org/10.4134/JKMS.j150771 doi: 10.4134/JKMS.j150771
    [42] M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. https://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
    [43] T. Nogayama, Mixed Morrey spaces, Positivity, 23 (2019), 961–1000. https://doi.org/10.1007/s11117-019-00646-8 doi: 10.1007/s11117-019-00646-8
    [44] T. Nogayama, Boundedness of commutators of fractional integral operators on mixed Morrey spaces, Integr. Transf. Spec. F., 30 (2019), 790–816. https://doi.org/10.1080/10652469.2019.1619718 doi: 10.1080/10652469.2019.1619718
    [45] H. Zhang, J. Zhou, The Köthe dual of mixed Morrey spaces and applications, 2022. https://doi.org/10.48550/arXiv.2204.00518
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(805) PDF downloads(88) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog