The purpose of this paper is to present a new concept of a Banach algebra in a fuzzy metric space (FM-space). We define an open ball, an open set and prove that every open ball in an FM-space over a Banach algebra $ \mathcal{A} $ is an open set. We present some more topological properties and a Hausdorff metric on FM-spaces over $ \mathcal{A} $. Moreover, we state and prove a fuzzy Banach contraction theorem on FM-spaces over a Banach algebra $ \mathcal{A} $. Furthermore, we present an application of an integral equation and will prove a result dealing with the integral operators in FM-spaces over a Banach algebra.
Citation: Saif Ur Rehman, Arjamand Bano, Hassen Aydi, Choonkil Park. An approach of Banach algebra in fuzzy metric spaces with an application[J]. AIMS Mathematics, 2022, 7(5): 9493-9507. doi: 10.3934/math.2022527
The purpose of this paper is to present a new concept of a Banach algebra in a fuzzy metric space (FM-space). We define an open ball, an open set and prove that every open ball in an FM-space over a Banach algebra $ \mathcal{A} $ is an open set. We present some more topological properties and a Hausdorff metric on FM-spaces over $ \mathcal{A} $. Moreover, we state and prove a fuzzy Banach contraction theorem on FM-spaces over a Banach algebra $ \mathcal{A} $. Furthermore, we present an application of an integral equation and will prove a result dealing with the integral operators in FM-spaces over a Banach algebra.
[1] | L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X |
[2] | O. Kramosil, J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344. |
[3] | M. Grabiec, Fixed point in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. https://doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4 |
[4] | A. George, P. Veeramani, On some results in fuzzy metric spaces, Fuzzy Set. Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7 |
[5] | V. Gregori, A. Sapena, On fixed point theorems in fuzzy metric spaces, Fuzzy Set. Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9 |
[6] | J. Rodriguez-Lopez, S. Romaguera, The Haudorff fuzzy metric on compact sets, Fuzzy Set. Syst., 147 (2004), 273–283. https://doi.org/10.1016/j.fss.2003.09.007 doi: 10.1016/j.fss.2003.09.007 |
[7] | F. Kiani, A. Amini-Haradi, Fixed point and endpoint theorems for set-valued fuzzy contraction mapps in fuzzy metric spaces, Fixed Point Theory Appl., 2011 (2011), 94. https://doi.org/10.1186/1687-1812-2011-94 doi: 10.1186/1687-1812-2011-94 |
[8] | I. Shamas, S. U. Rehman, H. Aydi, T. Mahmood, E. Ameer, Unique fixed-point results in fuzzy metric spaces with an application Fredholm integral equations, J. Funct. Space., 2021 (2021), 4429173. https://doi.org/10.1155/2021/4429173 doi: 10.1155/2021/4429173 |
[9] | I. Shamas, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, A new approach to fuzzy differential equations using weakly-compatible self-mappings in fuzzy metric spaces, J. Funct. Space., 2021 (2021), 6123154. https://doi.org/10.1155/2021/6123154 doi: 10.1155/2021/6123154 |
[10] | S. U. Rehman, R. Chinram, C. Boonpok, Rational type fuzzy-contraction results in fuzzy metric spaces with an application, J. Math., 2021 (2021), 6644491. https://doi.org/10.1155/2021/6644491 doi: 10.1155/2021/6644491 |
[11] | M. A. Erceg, Metric spaces in fuzzy set theorey, J. Math. Anal. Appl., 69 (1979), 205–230. https://doi.org/10.1016/0022-247X(79)90189-6 doi: 10.1016/0022-247X(79)90189-6 |
[12] | P. Debnath, N. Konwar, S. Radenović, Metric fixed point theory: Applications in science, engineering and behavioural sciences, Springer Nature, Singapore, 2021. https: //doi.org/10.1007/978-981-16-4896-0 |
[13] | A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Set. Syst., 90 (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2 |
[14] | O. Hadzic, E. Pap, Fixed point theorem for multivalued mappings in probabilistic metric spaces and an applications in fuzzy metric spaces, Fuzzy Set. Syst., 127 (2002), 333–344. https://doi.org/10.1016/S0165-0114(01)00144-0 doi: 10.1016/S0165-0114(01)00144-0 |
[15] | D. Rakić, A. Mukheimer, T. Došenović, Z. D. Mitrović, S. Radenović, On some new fixed point results in fuzzy $b$-metric spaces, J. Inequal. Appl., 2020 (2020), 99. https://doi.org/10.1186/s13660-020-02371-3. doi: 10.1186/s13660-020-02371-3 |
[16] | Z. Sadeghi, S. M. Vaezpour, C. Park, R. Saadati, C. Vetro, Set-valued mappings in partially ordered fuzzy metric spaces, J. Inequal. Appl., 157 (2014). https://doi.org/10.1186/1029-242X-2014-157 |
[17] | S. Sedghi, N. Shobkolaei, T. Došenović, S. Radenović, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca, 68 (2018), 1–12. https://doi.org/10.1515/ms-2017-0115 doi: 10.1515/ms-2017-0115 |
[18] | P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl., 63 (2012), 708–715. https://doi.org/10.1016/j.camwa.2011.11.034 doi: 10.1016/j.camwa.2011.11.034 |
[19] | N. Konwar, P. Debnath, Some new contractive conditions and related fixed point theorems in intuitionistic fuzzy $n$-Banach spaces, J. Intell. Fuzzy Syst., 34 (2018), 361–372. https://doi.org/10.3233/JIFS-171372 doi: 10.3233/JIFS-171372 |
[20] | N. Konwar, B. Davvaz, P. Debnath, Approximation of new bounded operators in intuitionistic fuzzy $n$-Banach spaces, J. Intell. Fuzzy Syst., 35 (2018), 6301–6312. https://doi.org/10.3233/JIFS-181094 doi: 10.3233/JIFS-181094 |
[21] | N. Konwar, P. Debnath, Continuity and Banach contraction principle in intuitionistic fuzzy $n$-normed linear spaces, J. Intell. Fuzzy Syst., 33 (2017), 2363–2373. https://doi.org/10.3233/JIFS-17500 doi: 10.3233/JIFS-17500 |
[22] | N. Konwar, B. Davvaz, P. Debnath, Results on generalized intuitionistic fuzzy hypergroupoids, J. Intell. Fuzzy Syst., 36 (2019), 2571–2580. https://doi.org/10.3233/JIFS-181522 doi: 10.3233/JIFS-181522 |
[23] | L. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[24] | W. S. Du, A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., 72 (2010), 2259–2261. https://doi.org/10.1016/j.na.2009.10.026 doi: 10.1016/j.na.2009.10.026 |
[25] | H. Cakalli, A. Sonmez, C. Genc, On an equivalence of topological vector space valued cone metric spaces and metric spaces, Appl. Math. Lett., 25 (2012), 429–433. https://doi.org/10.1016/j.aml.2011.09.029 doi: 10.1016/j.aml.2011.09.029 |
[26] | H. Liu, S. Xu, Cone metric spaces with Banach algebras and fixed point theorems of generalized Lipschitz map, Fixed Point Theory Appl., 2013 (2013), 320. https://doi.org/10.1186/1687-1812-2013-320 doi: 10.1186/1687-1812-2013-320 |
[27] | Q. Yan, J. Yin, T. Wang, Fixed point and common fixed point theorems on ordered cone metric spaces over Banach algebras, J. Nonlinear Sci. Appl., 9 (2016), 1581–1589. https://doi.org/10.22436/jnsa.009.04.15 doi: 10.22436/jnsa.009.04.15 |
[28] | T. Oner, M. B. Kandemir, B. Tanay, Fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 8 (2015), 610–616. https://doi.org/10.22436/jnsa.008.05.13 |
[29] | T. Oner, Some topological properties of fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 9 (2016), 799–805. https://doi.org/10.22436/jnsa.009.03.08 doi: 10.22436/jnsa.009.03.08 |
[30] | S. U. Rehman, H. X. Li, Fixed point theorems in fuzzy cone metric spaces, J. Nonlinear Sci. Appl., 10 (2017), 5763–5769. https://doi.org/10.22436/jnsa.010.11.14 doi: 10.22436/jnsa.010.11.14 |
[31] | S. Jabeen, S. U. Rman, Z. Zheng, W. Wei, Weakly compatible and Quasi-contraction results in fuzzy cone metric spaces with application to the Urysohn type integral equations, Adv. Differ. Equ., 2020 (2020), 280. https://doi.org/10.1186/s13662-020-02743-5 doi: 10.1186/s13662-020-02743-5 |
[32] | G. X. Chen, S. Jabeen, S. U. Rehman, A. M. Khalil, F. Abbas, A. Kanwal, Coupled fixed point analysis in fuzzy cone metric spaces with application to nonlinear integral equations, Adv. Differ. Equ., 2020 (2020), 671. https://doi.org/10.1186/s13662-020-03132-8 doi: 10.1186/s13662-020-03132-8 |
[33] | N. Priyobarta, Y. Rohen, B. B. Upadhyay, Some fixed point results in fuzzy cone metric spaces, Int. J. Pure Appl. Math., 109 (2016), 573–582. https://doi.org/10.12732/ijpam.v109i3.7 doi: 10.12732/ijpam.v109i3.7 |
[34] | M. T. Waheed, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, Some new coupled fixed-point findings depending on another function in fuzzy cone metric spaces with application, Math. Probl. Eng., 2021 (2021), 4144966. https://doi.org/10.1155/2021/4144966 doi: 10.1155/2021/4144966 |
[35] | M. T. Waheed, S. U. Rehman, N. Jan, A. Gumaei, M. Al-Rakhami, An approach of Lebesgue integral in fuzzy cone metric spaces via unique coupled fixed point theorems, J. Funct. Space., 2021 (2021), 8766367. https://doi.org/10.1155/2021/8766367 doi: 10.1155/2021/8766367 |
[36] | W. Rudin, Functional analysis, 2 Eds., McGraw-Hill, New York, 1991. |
[37] | S. Xu, S. Radenović, Fixed point theorems of generalized Lipschitz maps on cone metric spaces over Banach algebras without the assumtion of normality, Fixed Point Theory Appl., 2014 (2014), 102. https://doi.org/10.1186/1687-1812-2014-102 doi: 10.1186/1687-1812-2014-102 |
[38] | B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 314–334. https://doi.org/10.2140/pjm.1960.10.313 |