In this paper, we investigate a class of stochastic recurrent neural networks with discrete and distributed delays for both biological and mathematical interests. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth conditions so that the uniqueness of the Cauchy problem fails to be true. Moreover, the existence of pullback attractors with or without periodicity is presented for the multi-valued noncompact random dynamical system. In particular, a new method for checking the asymptotical compactness of solutions to the class of nonautonomous stochastic lattice systems with infinite delay is used.
Citation: Meiyu Sui, Yejuan Wang, Peter E. Kloeden. Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays[J]. Electronic Research Archive, 2021, 29(2): 2187-2221. doi: 10.3934/era.2020112
[1] | Meiyu Sui, Yejuan Wang, Peter E. Kloeden . Pullback attractors for stochastic recurrent neural networks with discrete and distributed delays. Electronic Research Archive, 2021, 29(2): 2187-2221. doi: 10.3934/era.2020112 |
[2] | Wenlong Sun . The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay. Electronic Research Archive, 2020, 28(3): 1343-1356. doi: 10.3934/era.2020071 |
[3] | Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding . The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28(4): 1395-1418. doi: 10.3934/era.2020074 |
[4] | Shu Wang, Mengmeng Si, Rong Yang . Dynamics of stochastic 3D Brinkman-Forchheimer equations on unbounded domains. Electronic Research Archive, 2023, 31(2): 904-927. doi: 10.3934/era.2023045 |
[5] | Guowei Liu, Hao Xu, Caidi Zhao . Upper semi-continuity of pullback attractors for bipolar fluids with delay. Electronic Research Archive, 2023, 31(10): 5996-6011. doi: 10.3934/era.2023305 |
[6] | Yangrong Li, Shuang Yang, Qiangheng Zhang . Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28(4): 1529-1544. doi: 10.3934/era.2020080 |
[7] | Pan Zhang, Lan Huang, Rui Lu, Xin-Guang Yang . Pullback dynamics of a 3D modified Navier-Stokes equations with double delays. Electronic Research Archive, 2021, 29(6): 4137-4157. doi: 10.3934/era.2021076 |
[8] | Lingrui Zhang, Xue-zhi Li, Keqin Su . Dynamical behavior of Benjamin-Bona-Mahony system with finite distributed delay in 3D. Electronic Research Archive, 2023, 31(11): 6881-6897. doi: 10.3934/era.2023348 |
[9] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[10] | Yadan Shi, Yongqin Xie, Ke Li, Zhipiao Tang . Attractors for the nonclassical diffusion equations with the driving delay term in time-dependent spaces. Electronic Research Archive, 2024, 32(12): 6847-6868. doi: 10.3934/era.2024320 |
In this paper, we investigate a class of stochastic recurrent neural networks with discrete and distributed delays for both biological and mathematical interests. We do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth conditions so that the uniqueness of the Cauchy problem fails to be true. Moreover, the existence of pullback attractors with or without periodicity is presented for the multi-valued noncompact random dynamical system. In particular, a new method for checking the asymptotical compactness of solutions to the class of nonautonomous stochastic lattice systems with infinite delay is used.
Recurrent Neural Networks arise in a wide range of applications such as classification, combinatorial optimization, parallel computing, signal processing and pattern recognition, (see, e.g. [7,9,14,16,22,23,28]). Due to the finite switching speed of neurons and amplifiers, time delays commonly occured in neural networks. Since time delays will affect the stability of the neural system and may lead to some complex dynamic behavior, it is critical to study delayed recurrent neural networks. In particular, signal propagation is not instantaneous and may not be suitably modeled with discrete delay, so it is more appropriate to incorporate continuously distributed delays in neural network models.
Random effects arise naturally in neural network models to take into account the uncertainty. Given
˙xi(t)=fi(xi(t))+i+N∑j=i−Naij(t)g1j(θtω,xj(t))+i+N∑j=i−Nbij(t)g2j(θtω,xj(t−ˆh(t)))+i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,xj(t+r))dr+Ji(t),i∈Z, | (1.1) |
with the initial condition
xi(t)=ϕi(t−τ),t∈(−∞,τ],i∈Z, | (1.2) |
where
Robust analysis for stochastic neural networks with time-varying delay can be found in [20,35]. Exponential stability of stochastic neural networks with constant or time-varying delays has been studied in [8,15,16,19,21,30]. Exponential stability of stochastic recurrent neural networks with time-varying delays was investigated in [25]. Asymptotic stability of stochastic neural networks with discrete and distributed delays has been developed, e.g., Markovian jumping parameters [26,27,29], Brownian motion [12], impulsive effects [23], and infinite delay [2,18]. There has, however, been little mention of pullback attractors for stochastic neural networks.
The long-time behavior of multi-valued non-autonomous and random dynamical systems has been extensively developed over the last one and a half decades; see, e.g. [3,4,10,11,13,17,24] etc. The theory of pullback attractors for single-valued noncompact random dynamical systems has been established in [B.X. Wang]. The existence of pullback attractors has been studied in [33] for reaction-diffusion equations on an unbounded domain with non-autonomous deterministic as well as stochastic forcing terms for which the uniqueness of solutions need not hold (see also [34] for unbounded delay case). Based on the previous work, our main goal in this paper is to develop new theory of multi-valued noncompact random dynamical systems in a biological context to analyze the dynamics of a class of stochastic recurrent neural networks with discrete and distributed delays. It is worthy mentioning that we do not assume any Lipschitz condition on the nonlinear term, just a continuity assumption together with growth conditions.
The paper is organized as follows. Section 2 gives some preliminary definitions and results regarding pullback attractors of multi-valued noncompact random dynamical systems, while in Section 3 the existence of solutions for the multi-valued noncompact random dynamical systems is considered. Sections 4-6 are devoted to the existence of pullback attractors and periodic attractors for stochastic recurrent neural networks with discrete and distributed delays.
We now recall some basic definitions for multi-valued noncompact random dynamical systems and some results ensuring the existence of a pullback attractor for these systems.
Let
dist(A,B)=sup{d(x,B):x∈A}, |
where
Assume that there are two groups
Definition 2.1. Let
(1)
(2)
For the above composition of multi-valued mappings, we use that for any nonempty set
Φ(t,q,ω,V)=⋃x0∈VΦ(t,q,ω,x0). |
Definition 2.2.
In what follows denote by
Definition 2.3. Let
{B(q,ω):B(q,ω) is a nonempty subset of Nε(D(q,ω)),∀q∈Q,∀ω∈Ω} | (2.1) |
also belongs to
Note that the neighborhood closedness of
{˜D(q,ω):˜D(q,ω) is a nonempty subset of D(q,ω),∀q∈Q,∀ω∈Ω}∈D. | (2.2) |
A collection
Definition 2.4.
Φ(t,σ−tq,θ−tω,B(σ−tq,θ−tω))⊆K(q,ω), for all t⩾T. |
In addition, if
Definition 2.5. Let
Definition 2.6. Let
(1)
(2)
Φ(t,q,ω,A(q,ω))=A(σtq,θtω),∀t⩾0. |
(3)
limt→+∞dist(Φ(t,σ−tq,θ−tω,B(σ−tq,θ−tω)),A(q,ω))=0. |
The following result shows a sufficient and necessary criterion for the existence and uniqueness of pullback attractors associated to multi-valued cocycles [33], see also [31] for the single-valued case.
Theorem 2.7. Let
A(q,ω)=Θ(K,q,ω)=⋃B∈DΘ(B,q,ω), | (2.3) |
where the family
Θ(B,q,ω)=⋂τ⩾0¯⋃t⩾τΦ(t,σ−tq,θ−tω,B(σ−tq,θ−tω)). |
By the similar arguments of Theorem 2.25 in [31], we have a sufficient and necessary criterion for the periodicity of pullback attractors of multi-valued cocycles.
Theorem 2.8. Let
Φ(t,σTq,ω,⋅)=Φ(t,q,ω,⋅). |
Suppose
Let
θ:(R×Ω,B(R)⊗F)→(Ω,F). |
In addition, we assume that
We also recall the following well-known ergodic theorem.
Theorem 3.1. Suppose
limt→±∞1t∫t0Y(θsω)ds=EY |
on a
Outside this set of measure one we will replace the values of
Let
l2={x=(xi)i∈Z,xi∈R:∑i∈Zx2i<+∞}, |
and equip it with the inner product and norm as
(x,y)=∑i∈Zxiyi,‖x‖2=(x,x),∀x=(xi)i∈Z,y=(yi)i∈Z∈l2. |
We denote by
Cγ,l2={φ∈C((−∞,0];l2):lims→−∞φ(s)eγs exists}, |
where the parameter
‖φ‖Cγ,l2=(∑i∈Zsups∈(−∞,0]e2γs|φi(s)|2)12,∀φ∈Cγ,l2, |
then
We consider the following conditions:
fi(x)x⩽−h1x2+h22i,∀i∈Z,x∈R. |
Besides, there exist a positive constant
|fi(x)|⩽l1|x|+l2i,∀i∈Z,x∈R. |
|gkj(ω,x)|2⩽p2kj(ω)|x|2+q2kj(ω),∀ω∈Ω,x∈R, |
where the mappings
Besides, there exist nonnegative functions
|g3j(ω,r,x)|⩽ˆp3j(ω,r)|x|+ˆq3j(ω,r),∀ω∈Ω,r∈R,x∈R, |
where the mappings
Also, for any
˜p3j(θtω):=∫0−∞e−γrˆp3j(θtω,r)dr,˜q3j(θtω):=∫0−∞ˆq3j(θtω,r)dr, |
where the mappings
pkj(ω)⩽Λ(ω),qkj(ω)⩽Λ(ω),˜p3j⩽Λ(ω),˜q3j⩽Λ(ω),j∈Z,k=1,2,ω∈Ω. |
aij(t)⩽˜aij,bij(t)⩽˜bij,cij(t)⩽˜cij,∀t∈R. |
Moreover,
∑i∈Zi+N∑j=i−N(˜a2ij+˜b2ij+˜c2ij)<∞. |
∫τ−∞∑i∈Zeh13r|Ji(r)|2dr<∞,∀τ∈R, |
which implies that
limk→+∞∫τ−∞∑|i|⩾keh13r|Ji(r)|2dr=0,∀τ∈R, |
where the constant
p21j(θtω)⩽eε|t|,p22j(θtω)⩽eε|t|,˜p23j(θtω)⩽eε|t|. |
Similarly, the mappings
q21j(θtω)⩽eε|t|,q22j(θtω)⩽eε|t|,˜q23j(θtω)⩽eε|t|. |
limt→±∞1t∫t0Λ2(θrω)dr=ˉΛ. |
By the ergodicity assumption and Theorem 3.1 we obtain that
limt→±∞1t∫t0Λ2(θrω)dr=EΛ2=:ˉΛ, |
on a
Remark 1. Let us define
αij(θtω):=˜a2ijp21j(θtω)+˜b2ijp22j(θtω)+˜c2ij˜p23j(θtω) |
and
βij(θtω):=˜a2ijq21j(θtω)+˜b2ijq22j(θtω)+˜c2ij˜q23j(θtω), |
where
Lemma 3.2. Let
The proof of Lemma 3.2 is given in the Appendix.
By slightly modifying the proof of Lemmas 4.1 and 4.2, we see that every solution can be globally defined. Hence we now define a multi-valued mapping
Φ(t,τ,ω,ϕ)={xt+τ(⋅,τ,θ−τω,ϕ)|x(⋅)isasolutionofEqs.(1.1)−(1.2)withϕ∈Cγ,l2}. |
Lemma 3.3. The mapping
Proof. We only need to check condition
ut+τ(r)=xt+τ+s(r)=ϕ(0)+∫t+τ+s+rτˆf(θr′ω,r′,xr′)dr′=ϕ(0)+∫τ+sτˆf(θr′ω,r′,xr′)dr′+∫t+τ+s+rτ+sˆf(θr′ω,r′,xr′)dr′=xτ+s(0)+∫t+τ+s+rτ+sˆf(θr′ω,r′,xr′)dr′=uτ(0)+∫t+τ+rτˆf(θr″+sω,r″+s,ur″)dr″, |
where
Note that
z∈Φ(t,τ+s,θsω,xτ+s)⊂Φ(t,τ+s,θsω,Φ(s,τ,ω,ϕ)). |
Since
On the other hand, let
wt′={xt′,ifτ⩽t′⩽s+τ,yt′−s,ifs+τ⩽t′, |
which is a solution to (1.1). Indeed, for
wt′(r)=yt′−s(r)=yτ(0)+∫t′−s+rτˆf(θr′+sω,r′+s,yr′)dr′=xs+τ(0)+∫t′+rτ+sˆf(θr″ω,r″,wr″)dr″=xτ(0)+∫t′+rτˆf(θr″ω,r″,wr″)dr″. |
Also, for
wt′(r)=yt′−s(r)=xs(t′+r−s)=xτ(0)+∫t′+rτˆf(θr′ω,r′,xr′)dr′=xτ(0)+∫t′+rτˆf(θr′ω,r′,wr′)dr′. |
Finally, for
wt′(r)=xs(t′+r−s)=ϕ(t′+r−τ). |
Therefore,
Φ(t,τ+s,θsω,Φ(s,τ,ω,ϕ))⊂Φ(t+s,τ,ω,ϕ).◻ |
In this section, we establish uniform estimates of solutions of problem (1.1)-(1.2) which are needed for proving the existence of pullback absorbing sets of the system.
Let
limr→−∞eh12r‖D(τ+r,θrω)‖2Cγ,l2=0, | (4.1) |
where the constant
D={D={D(τ,ω):τ∈R,ω∈Ω}:Dsatisfies (4.1)}. |
Obviously,
Lemma 4.1. Suppose
58h1<γ. | (4.2) |
Then for every
‖xτ(⋅,τ−t,θ−τω,ϕ)‖2Cγ,l2⩽Ce−h1t+8h1(2N+1)2e2γh∫0−t∑i∈Z∑i+Nj=i−Nαij(θsω)ds‖ϕ‖2Cγ,l2+C∫0−t(∑i∈Zi+N∑j=i−Nβij(θsω)+‖J(τ+s)‖2+‖h2‖2)×eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′ds, |
where
The proof of Lemma 4.1 is given in the Appendix.
Lemma 4.2. Let
8(2N+1)2e2γh∑i∈Zi+N∑j=i−N(˜a2ij+˜b2ij+˜c2ij)EΛ2<12h21. | (4.3) |
Then the closed ball
(R(τ,ω))2=C∫0−∞(∑i∈Zi+N∑j=i−Nβij(θsω)+‖J(τ+s)‖2+‖h2‖2)×eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′ds |
is contained in
Proof. It follows from Remark 1 that for any fixed
βij(θtω)⩽(˜a2ij+˜b2ij+˜c2ij)eε|t|, |
where
Thanks to Assumptions
Ceh1r2∫0−∞∑i∈Zi+N∑j=i−Nβij(θs+rω)eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′+rω)ds′ds⩽Ceh1r2∫0−∞eε|s+r|eh1s×e8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij((∫0s+r−∫0r)(Λ2(θs″ω)−ˉΛ)ds″−ˉΛs)ds⩽Ceh1r2∫0−∞e3ε|s+r|eh1s−8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijˉΛsds⩽Ce(12h1−3ε)r∫0−∞e(12h1−3ε)sds⩽Ce(12h1−3ε)r→0 | (4.4) |
as
Mij:=˜a2ij+˜b2ij+˜c2ij, |
and in the similar way, we have
Ceh1r2∫0−∞(‖J(τ+r+s)‖2+‖h2‖2)×eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′+rω)ds′ds⩽Ceh1r2∫0−∞(‖J(τ+r+s)‖2+‖h2‖2)×eh1s+8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij((∫0s+r−∫0r)(Λ2(θs″ω)−ˉΛ)ds″−ˉΛs)ds⩽Ceh1r2∫0−∞(‖J(τ+r+s)‖2+‖h2‖2)×eh1s+2ε|s+r|−8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijˉΛsds⩽Ce(12h1−2ε)r∫0−∞(‖J(τ+r+s)‖2+‖h2‖2)e(12h1−2ε)sds⩽Ce−(12h1−2ε)τ∫τ+r−∞e(12h1−2ε)s′(‖J(s′)‖2+‖h2‖2)ds′→0 | (4.5) |
as
eh1r2(R(τ+r,θrω))2=Ceh1r2∫0−∞(∑i∈Zi+N∑j=i−Nβij(θs+rω)+‖J(τ+r+s)‖2+‖h2‖2)×eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′+rω)ds′ds→0asr→−∞. |
This implies that
limr→−∞eh1r2‖K(τ+r,θrω)‖2Cγ,l2=0, | (4.6) |
and thus
e−h1t+8h1(2N+1)2e2γh∫0−t∑i∈Zi+N∑j=i−Nαij(θsω)ds‖B(τ−t,θ−tω)‖2Cγ,l2⩽e−12h1t‖B(τ−t,θ−tω)‖2Cγ,l2→0 | (4.7) |
as
In order to prove the asymptotically upper semicompactness for the multi-valued cocycle
Lemma 5.1. Suppose
∑|i|⩾ˉNsups∈(−∞,0]e2γs|xiτ(s,τ−t,θ−τω,ϕ)|2⩽ε,for allt⩾T. | (5.1) |
Proof. Choose a smooth function
ρ(r)=0for0⩽r⩽1,ρ(r)=1forr⩾2. |
Then there exists a constant
12ddtρM(|i|)|xi(t)|2=ρM(|i|)fi(xi(t))xi(t)+i+N∑j=i−NρM(|i|)aij(t)g1j(θtω,xj(t))xi(t)+i+N∑j=i−NρM(|i|)bij(t)g2j(θtω,xj(t−ˆh(t)))xi(t)+i+N∑j=i−NρM(|i|)cij(t)xi(t)∫0−∞g3j(θtω,r,xj(t+r))dr+ρM(|i|)Ji(t)xi(t). |
In a similar way as in Lemma 4.1, by Assumptions
ρM(|i|)fi(xi(t))xi(t)⩽−ρM(|i|)h1|xi(t)|2+ρM(|i|)h22i, | (5.2) |
i+N∑j=i−NρM(|i|)aij(t)g1j(θtω,xj(t))xi(t)⩽4h1(2N+1)i+N∑j=i−NρM(|i|)a2ij(t)g21j(θtω,xj(t))+116h1ρM(|i|)|xi(t)|2⩽4h1(2N+1)i+N∑j=i−NρM(|i|)˜a2ijp21j(θtω)sups∈(−∞,0]e2γs|xjt(s)|2+116h1ρM(|i|)|xi(t)|2+4h1(2N+1)i+N∑j=i−NρM(|i|)˜a2ijq21j(θtω), | (5.3) |
i+N∑j=i−NρM(|i|)bij(t)g2j(θtω,xj(t−ˆh(t)))xi(t)⩽4h1(2N+1)i+N∑j=i−NρM(|i|)b2ij(t)g22j(θtω,xj(t−ˆh(t)))+116h1ρM(|i|)|xi(t)|2⩽4h1(2N+1)i+N∑j=i−NρM(|i|)˜b2ijp22j(θtω)e2γhsups∈(−∞,0]e2γs|xjt(s)|2+116h1ρM(|i|)|xi(t)|2+4h1(2N+1)i+N∑j=i−NρM(|i|)˜b2ijq22j(θtω), | (5.4) |
|i+N∑j=i−NρM(|i|)cij(t)xi(t)∫0−∞g3j(θtω,r,xj(t+r))dr|⩽i+N∑j=i−NρM(|i|)cij(t)|xi(t)|∫0−∞(ˆp3j(θtω,r)|xj(t+r)|+ˆq3j(θtω,r))dr⩽i+N∑j=i−NρM(|i|)˜cij(˜p3j(θtω)sups∈(−∞,0]eγs|xjt(s)|+˜q3j(θtω))|xi(t)|⩽4h1(2N+1)i+N∑j=i−NρM(|i|)˜c2ij˜p23j(θtω)sups∈(−∞,0]e2γs|xjt(s)|2+18h1ρM(|i|)|xi(t)|2+4h1(2N+1)i+N∑j=i−NρM(|i|)˜c2ij˜q23j(θtω), | (5.5) |
and
ρM(|i|)Ji(t)xi(t)⩽116h1ρM(|i|)|xi(t)|2+4h1ρM(|i|)|Ji(t)|2. | (5.6) |
Note that
ddt(ρM(|i|)|xi(t)|2)⩽−118h1ρM(|i|)|xi(t)|2+8h1(2N+1)ρM(|i|)i+N∑j=i−Nαij(θtω)e2γhsups∈(−∞,0]e2γs|xjt(s)|2+8h1ρM(|i|)|Ji(t)|2+8h1(2N+1)ρM(|i|)i+N∑j=i−Nβij(θtω)+2ρM(|i|)h22i, | (5.7) |
where
ddt(e54h1tρM(|i|)|xi(t)|2)=54h1e54h1tρM(|i|)|xi(t)|2+e54h1tddt(ρM(|i|)|xi(t)|2)⩽−18h1e54h1tρM(|i|)|xi(t)|2+8h1(2N+1)ρM(|i|)e54h1ti+N∑j=i−Nβij(θtω)+8h1ρM(|i|)e54h1t|Ji(t)|2+2ρM(|i|)e54h1th22i+8h1(2N+1)e2γhρM(|i|)i+N∑j=i−Nαij(θtω)e54h1tsups∈(−∞,0]e2γs|xjt(s)|2. | (5.8) |
Integrating (5.8) over
e54h1t∗ρM(|i|)|xi(t∗,τ−t,ω,ϕ)|2⩽e54h1(τ−t)ρM(|i|)|xi(τ−t,τ−t,ω,ϕ)|2−18h1∫t∗τ−te54h1rρM(|i|)|xi(r,τ−t,ω,ϕ)|2dr+8h1(2N+1)e2γhρM(|i|)∫t∗τ−ti+N∑j=i−Nαij(θrω)e54h1r×sups∈(−∞,0]e2γs|xjr(s,τ−t,ω,ϕ)|2dr+8h1(2N+1)ρM(|i|)∫t∗τ−ti+N∑j=i−Nβij(θrω)e54h1rdr+ρM(|i|)∫t∗τ−te54h1r(8h1|Ji(r)|2+2h22i)dr. | (5.9) |
Neglecting the second term on the right-hand side of (5.9). Note that
ρM(|i|)e2γs|xit∗(s,τ−t,θ−τω,ϕ)|2⩽e−54h1(t∗+t−τ)ρM(|i|)|xi(τ−t,τ−t,θ−τω,ϕ)|2+8h1(2N+1)e2γhe−54h1t∗ρM(|i|)∫t∗τ−ti+N∑j=i−Nαij(θr−τω)e54h1r×sups∈(−∞,0]e2γs|xjr(s,τ−t,θ−τω,ϕ)|2dr+8h1(2N+1)e−54h1t∗ρM(|i|)∫t∗τ−ti+N∑j=i−Nβij(θr−τω)e54h1rdr+e−54h1t∗ρM(|i|)∫t∗τ−te54h1r(8h1|Ji(r)|2+2h22i)dr. | (5.10) |
Note that for all
∑i∈ZρM(|i|)e2γs|xit∗(s,τ−t,θ−τω,ϕ)|2=∑i∈ZρM(|i|)e−2γ(t∗+t−τ)e2γ(s+t∗−τ+t)|xi(t∗+s,τ−t,θ−τω,ϕ)|2⩽e−54h1(t∗+t−τ)∑i∈Ze2γ(s+t∗−τ+t)|xi(t∗+s,τ−t,θ−τω,ϕ)|2⩽e−54h1(t∗+t−τ)‖ϕ‖2Cγ,l2, |
and
∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)sups∈(−∞,0]e2γs|xjr(s,τ−t,θ−τω,ϕ)|2⩽(∑i∈Zi+N∑j=i−Nsups∈(−∞,0]e2γs|xjr(s,τ−t,θ−τω,ϕ)|2)×(∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω))⩽(2N+1)(∑i∈Zsups∈(−∞,0]e2γs|xir(s,τ−t,θ−τω,ϕ)|2)×(∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)). | (5.11) |
Let
∑i∈ZρM(|i|)sups∈(−∞,0]e2γs|xiτ(s,τ−t,θ−τω,ϕ)|2⩽Ce−54h1t‖ϕ‖2Cγ,l2+Ce−54h1τ∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)βij(θr−τω)e54h1rdr+Ce−54h1τ∫ττ−t∑i∈ZρM(|i|)e54h1r(|Ji(r)|2+h22i)dr+Ce−54h1τ∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)e54h1r‖xr‖2Cγ,l2dr. | (5.12) |
Now we estimate each term on the right-hand side of (5.12). For the first term, since
lim supt→+∞Ce−54h1t‖ϕ‖2Cγ,l2⩽lim supt→+∞Ce−54h1t‖B(τ−t,θ−tω)‖2Cγ,l2=0. | (5.13) |
For the third term, Assumption
Ce−54h1τ∫ττ−t∑i∈ZρM(|i|)e54h1r(|Ji(r)|2+h22i)dr⩽Ce−54h1τ∫τ−∞∑i∈ZρM(|i|)e54h1r(|Ji(r)|2+h22i)dr⩽Cε,ifM⩾N″. | (5.14) |
Let
∑i∈Zi+N∑j=i−NρM(|i|)Mij⩽ε. | (5.15) |
where
αij(θtω)⩽Mijeη|t|,βij(θtω)⩽Mijeη|t|, | (5.16) |
where
Ce−54h1τ∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)βij(θr−τω)e54h1rdr=C∫0−t∑i∈Zi+N∑j=i−NρM(|i|)βij(θr′ω)e54h1r′dr′⩽C∫0−∞∑i∈Zi+N∑j=i−NρM(|i|)Mije−ηr′e54h1r′dr′⩽C∑i∈Zi+N∑j=i−NρM(|i|)Mij⩽Cε. | (5.17) |
Now we estimate the last term in (5.12). Similar to (5.17), we find that for all
Ce−14h1τ∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)e14h1rdr=C∫0−t∑i∈Zi+N∑j=i−NρM(|i|)αij(θr′ω)e14h1r′dr′⩽C∫0−∞∑i∈Zi+N∑j=i−NρM(|i|)Mije−ηr′e14h1r′dr′⩽C∑i∈Zi+N∑j=i−NρM(|i|)Mij⩽Cε. | (5.18) |
Note that
e−h1t+∫0−t8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θsω)ds‖ϕ‖2Cγ,l2⩽e−h1t+∫0−t8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijΛ2(θsω)ds‖ϕ‖2Cγ,l2=e−h1t+8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij(∫0−t(Λ2(θsω)−ˉΛ)ds+ˉΛt)‖ϕ‖2Cγ,l2⩽e−12h1t‖B(τ−t,θ−tω)‖2Cγ,l2×e−12h1t+8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij(∫0−t(Λ2(θsω)−ˉΛ)ds+ˉΛt)→0 | (5.19) |
as
8h1(2N+1)∑i∈Zi+N∑j=i−Nβij(θsω)eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′⩽Ce−ηs+h1s+8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij(∫0s(Λ2(θs′ω)−ˉΛ)ds′−ˉΛs)⩽Ceh1s−2ηs−8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijˉΛs, | (5.20) |
where we have used
8h1(2N+1)2e2γh∑i∈Zi+N∑j=i−NMij∫0s(Λ2(θs′ω)−ˉΛ)ds′⩽−ηs |
for sufficiently large
∫0−t8h1(2N+1)∑i∈Zi+N∑j=i−Nβij(θsω)eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′ds⩽C, | (5.21) |
thanks to
eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′⩽eh1s−ηs−8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijˉΛs |
for sufficiently large
∫0−t(8h1‖J(τ+s)‖2+2‖h2‖2)eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′ds⩽C. | (5.22) |
Hence for the last term in (5.12), by (F.43), (5.18)-(5.19) and (5.21)-(5.22), we can choose
Ce−54h1τ∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)e54h1r‖xr‖2Cγ,l2dr⩽Ce−14h1τe−h1t+∫0−t8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θsω)ds‖ϕ‖2Cγ,l2×∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)e14h1rdr+Ce−14h1τ∫ττ−t∑i∈Zi+N∑j=i−NρM(|i|)αij(θr−τω)e14h1rdr×∫0−t(8h1(2N+1)∑i∈Zi+N∑j=i−Nβij(θsω)+8h1‖J(τ+s)‖2+2‖h2‖2)×eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′ds⩽Cε. | (5.23) |
Finally, if we take
∑|i|>2Msups∈(−∞,0]e2γs|xiτ(s,τ−t,θ−τω,ϕ)|2⩽∑i∈ZρM(|i|)sups∈(−∞,0]e2γs|xiτ(s,τ−t,θ−τω,ϕ)|2⩽Cε. | (5.24) |
Thus the proof of this lemma is complete.
First, let us prove some properties of the multi-valued cocycle
Lemma 6.1. Suppose
∑|i|⩾2N∗(ε,ω)|xni(r)|2⩽ε,∀r∈[τ,τ+T]. | (6.1) |
Moreover, there exist
xnk→xinC([τ,τ+T];l2)ask→∞. | (6.2) |
Proof. For any
∑i∈Zsups∈(−∞,0]e2γs|ϕni(s)−ϕi(s)|2<ε8,∀n⩾~K′(ε), |
and
∑i∈ZρM(|i|)sups∈(−∞,0]e2γs|ϕi(s)|2<ε8,∀M⩾~N′(ε). |
Hence,
∑i∈ZρM(|i|)sups∈(−∞,0]e2γs|ϕni(s)|2⩽2(∑i∈ZρM(|i|)sups∈(−∞,0]e2γs|ϕni(s)−ϕi(s)|2+∑i∈ZρM(|i|)sups∈(−∞,0]e2γs|ϕi(s)|2)⩽ε2, | (6.3) |
if
∑i∈Z|xni(r)|2⩽~R′(τ,ω),∀r∈[τ,τ+T],∀n∈N. | (6.4) |
Integrating (5.8) over
∑i∈ZρM(|i|)|xni(τ+t)|2⩽e−54h1t∑i∈ZρM(|i|)|ϕni(0)|2+8h1(2N+1)e2γhe−54h1(τ+t)∑i∈ZρM(|i|)×∫τ+tτi+N∑j=i−N(˜a2ij+˜b2ij+˜c2ij)Λ2(θrω)e54h1rsups∈(−∞,0]e2γs|xnjr(s)|2dr+8h1(2N+1)e−54h1(τ+t)∑i∈ZρM(|i|)∫τ+tτi+N∑j=i−N(˜a2ij+˜b2ij+˜c2ij)Λ2(θrω)e54h1rdr+e−54h1(τ+t)∑i∈ZρM(|i|)∫τ+tτe54h1r(8h1|Ji(r)|2+2h22i)dr⩽ε2+C∑i∈ZρM(|i|)i+N∑j=i−N(˜a2ij+˜b2ij+˜c2ij)+C∫τ+tτ∑i∈ZρM(|i|)e13h1r(|Ji(r)|2+h22i)dr⩽ε, | (6.5) |
thanks to Assumptions
Now it only remains to prove (6.2). Fix now
∑i∈Z|xni(r)−yi|2⩽∑|i|⩽N∗∗|xni(r)−yi|2+∑|i|>N∗∗|xni(r)−yi|2⩽∑|i|⩽N∗∗|xni(r)−yi|2+2∑|i|>N∗∗|xni(r)|2+2∑|i|>N∗∗|yi|2<η, | (6.6) |
if
On the other hand, in view of (6.4) and
‖ddrxni(r)‖2=∑i∈Z|˙xni(r)|2⩽5∑i∈Z|fi(xni(r))|2+5∑i∈Z|i+N∑j=i−Naij(r)g1j(θrω,xnj(r))|2+5∑i∈Z|i+N∑j=i−Nbij(r)g2j(θrω,xnj(r−ˆh(r)))|2+5∑i∈Z|N∑j=1cij(r)∫0−∞g3j(θrω,r′,xnj(r+r′))dr′|2+5∑i∈Z|Ji(r)|2⩽10l21∑i∈Z|xni(r)|2+5(2N+1)∑i∈Zi+N∑j=i−N˜a2ijΛ2(θrω)|xnjr(0)|2+5(2N+1)e2γh∑i∈Zi+N∑j=i−N˜b2ijΛ2(θrω)sups∈(−∞,0]e2γs|xnjr(s)|2+10(2N+1)∑i∈Zi+N∑j=i−N˜c2ijΛ2(θrω)sups∈(−∞,0]e2γs|xnjr(s)|2+5(2N+1)∑i∈Zi+N∑j=i−N˜a2ijΛ2(θrω)+5(2N+1)∑i∈Zi+N∑j=i−N˜b2ijΛ2(θrω)+10(2N+1)∑i∈Zi+N∑j=i−N˜c2ijΛ2(θrω)+5‖J(r)‖2+10‖l2‖2⩽R∗∗(τ,ω), | (6.7) |
thanks to (6.4),
From Lemma 6.1 we have the following two results.
Corollary 1. Suppose
Corollary 2. Suppose
We are now ready to show the existence of pullback attractors for
Theorem 6.2. Suppose
Proof. Note that by Lemma 4.2, Corollary 2 and Theorem 2.7, it only remains to prove the asymptotically upper semicompactness for
In order to prove the asymptotically upper semicompactness for
(1) for all
∑i∈Zsups∈(−∞,−T∗0]e2γs|xi(τ+s)|2<ε; |
(2) for each fixed
‖⋃t⩾T∗⋃xτ(⋅)∈Φ(t,τ−t,θ−tω,B(τ−t,θ−tω))(xi(τ+s))|i|⩽m‖R2m+1 is bounded; |
(3) for all
‖(xi(τ+s1)−xi(τ+s2))|i|⩽m‖2R2m+1<ε; |
(4) for all
∑|i|>m(sups∈[−T∗0,0]e2γs|xi(τ+s)|2)<ε. |
We divide the proof into two steps.
Step 1. For
e2γs|xi(τ+s,τ−t,θ−τω,ϕ)|2⩽e2γssupr∈(−∞,0]e2γr|xi(τ+s)(r,τ−t,θ−τω,ϕ)|2⩽e(2γ−h1)se−h1t|xi(τ−t,τ−t,θ−τω,ϕ)|2+Ce(2γ−h1)se−h1τ∫τ+sτ−ti+N∑j=i−Nαij(θr−τω)eh1r×sups′∈(−∞,0]e2γs′|xjr(s′,τ−t,θ−τω,ϕ)|2dr+Ce(2γ−h1)se−h1τ∫τ+sτ−ti+N∑j=i−Nβij(θr−τω)eh1rdr+Ce(2γ−h1)se−h1τ∫τ+sτ−teh1r(|Ji(r)|2+h22i)dr, |
and further by (F.43) with
e2γs|xi(τ+s,τ−t,θ−τω,ϕ)|2⩽e(2γ−h1)se−h1t|xi(τ−t,τ−t,θ−τω,ϕ)|2+Ce(2γ−h1)s∫s−ti+N∑j=i−Nαij(θrω)×(e−h1te∫r−t8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′‖ϕ‖2Cγ,l2+∫r−t(∑i∈Zi+N∑j=i−Nβij(θs′ω)+‖J(τ+s′)‖2+‖h2‖2)×eh1s′e∫rs′8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs″ω)ds″ds′)dr+Ce(2γ−h1)s∫s−ti+N∑j=i−Nβij(θrω)eh1rdr+Ce(2γ−h1)s∫s−teh1r(|Ji(r+τ)|2+h22i)dr. | (6.8) |
Note that for all
e2γs|xi(τ+s,τ−t,θ−τω,ϕ)|2=e−2γte2γ(s+t)|xi(τ+s,τ−t,θ−τω,ϕ)|2⩽e−h1te2γ(s+t)|xi(τ+s,τ−t,θ−τω,ϕ)|2, | (6.9) |
thanks to
∑i∈Zsups∈(−∞,−T∗0]e−h1te2γ(s+t)|xi(τ+s,τ−t,θ−τω,ϕ)|2⩽e−h1t‖ϕ‖2Cγ,l2<ε8, | (6.10) |
∑i∈Zsups∈(−∞,−T∗0]e(2γ−h1)se−h1t|xi(τ−t,τ−t,θ−τω,ϕ)|2⩽e−h1t‖ϕ‖2Cγ,l2<ε8, | (6.11) |
∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−Nαij(θrω)e−h1t×e∫r−t8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′‖ϕ‖2Cγ,l2dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−NMije−ηre−h1t×e8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij((∫0−t−∫0r)(Λ2(θs′ω)−ˉΛ)ds′+ˉΛ(r+t))‖ϕ‖2Cγ,l2dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s×∫s−ti+N∑j=i−NMije−2ηr−h1t+ηt+8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijˉΛ(r+t)‖ϕ‖2Cγ,l2dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)si+N∑j=i−NMije(−η−12h1)t∫s−te(12h1−4η)rdr‖ϕ‖2Cγ,l2⩽Ce−(12h1+η)t‖ϕ‖2Cγ,l2<ε8, | (6.12) |
where
∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−Nαij(θrω)×∫r−t∑i∈Zi+N∑j=i−Nβij(θs′ω)eh1s′+∫rs′8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs″ω)ds″ds′dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−NMije−ηr∫r−t∑i∈Zi+N∑j=i−NMije−ηs′+h1s′×e8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij((∫0s′−∫0r)(Λ2(θs″ω)−ˉΛ)ds″+ˉΛ(r−s′))ds′dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−NMije−ηr×∫r−te(h1−2η)s′−ηr+8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMijˉΛ(r−s′)ds′dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)si+N∑j=i−NMij∫s−te(12h1−2η)r∫r−te(12h1−2η)s′ds′dr⩽Ce−(2γ−4η)T∗0<ε8, | (6.13) |
∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−Nαij(θrω)∫r−t(‖J(τ+s′)‖2+‖h2‖2)×eh1s′+∫rs′8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs″ω)ds″ds′dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−NMije−ηr∫r−t(‖J(τ+s′)‖2+‖h2‖2)eh1s′×e8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−NMij((∫0s′−∫0r)(Λ2(θs″ω)−ˉΛ)ds″+ˉΛ(r−s′))ds′dr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−NMije(12h1−2η)r×∫r−t(‖J(τ+s′)‖2+‖h2‖2)e(12h1−η)s′ds′dr⩽C(∫0−∞eh1s′3‖J(τ+s′)‖2+‖h2‖2)e−(2γ−12h1−2η)T∗0<ε8, | (6.14) |
∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−Nβij(θrω)eh1rdr⩽∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−ti+N∑j=i−NMije(h1−η)rdr⩽Ce−(2γ−η)T∗0<ε8, | (6.15) |
∑i∈Zsups∈(−∞,−T∗0]Ce(2γ−h1)s∫s−teh1r(|Ji(r+τ)|2+h22i)dr⩽Ce−(2γ−h1)T∗0(∫0−∞eh1r3‖J(r+τ)‖2+‖h2‖2)<ε8. | (6.16) |
Inserting (6.11)-(6.16) into (6.8), in view of (6.10), we deduce that for all
∑i∈Zsups∈(−∞,−T∗0]e2γs|xi(τ+s,τ−t,θ−τω,ϕ)|2<ε, |
which implies that
Step 2. Thanks to Lemmas 4.1-4.2 and 5.1,
For
‖(˙xi(r,τ−t,θ−τω,ϕ))|i|⩽m‖2R2m+1=∑|i|⩽m|˙xi(r,τ−t,θ−τω,ϕ)|2⩽5∑|i|⩽m(fi(xi(r,τ−t,θ−τω,ϕ)))2+5∑|i|⩽m|i+N∑j=i−Naij(r)g1j(θr−τω,xj(r,τ−t,θ−τω,ϕ))|2+5∑|i|⩽m|i+N∑j=i−Nbij(r)g2j(θr−τω,xj(r−ˆh(r),τ−t,θ−τω,ϕ))|2+5∑|i|⩽m|i+N∑j=i−Ncij(r)∫0−∞g3j(θr−τω,r′,xj(r+r′))dr′|2+5∑|i|⩽m|Ji(r)|2⩽10l21∑|i|⩽m|xi(r,τ−t,θ−τω,ϕ)|2+10(2N+1)e2γh∑|i|⩽mi+N∑j=i−Nαij(θr−τω)sups∈(−∞,0]e2γs|xjr(s,τ−t,θ−τω,ϕ)|2+10(2N+1)∑|i|⩽mi+N∑j=i−Nβij(θr−τω)+5∑|i|⩽m|Ji(r)|2+10∑|i|⩽ml22i, | (6.17) |
where
‖(xi(τ+s1,τ−t,θ−τω,ϕ)−xi(τ+s2,τ−t,θ−τω,ϕ))|i|⩽m‖R2m+1⩽∫τ+s1τ+s2‖(˙xi(r,τ−t,θ−τω,ϕ))|i|⩽m‖R2m+1dr⩽C(s1−s2)+C∫τ+s1τ+s2∑|i|⩽m|˙xi(r,τ−t,θ−τω,ϕ)|2dr⩽C(s1−s2)+C∫τ+s1τ+s2∑|i|⩽m(|xi(r,τ−t,θ−τω,ϕ)|2+l22i)dr+C∫τ+s1τ+s2∑|i|⩽mi+N∑j=i−Nαij(θr−τω)sups∈(−∞,0]e2γs|xjr(s,τ−t,θ−τω,ϕ)|2dr+C∫τ+s1τ+s2∑|i|⩽mi+N∑j=i−Nβij(θr−τω)dr+C∫τ+s1τ+s2∑|i|⩽m|Ji(r)|2dr⩽C(s1−s2)+C∑|i|⩽mi+N∑j=i−Nsupr∈[τ+s2,τ+s1]βij(θr−τω)(s1−s2)+Csupr∈[τ+s2,τ+s1]‖J(r)‖2(s1−s2)+C(1+∑|i|⩽mi+N∑j=i−Nsupr∈[τ+s2,τ+s1]αij(θr−τω))∫τ+s1τ+s2‖xr‖2Cγ,l2dr⩽C(s1−s2)+C∑|i|⩽mi+N∑j=i−Nsupr∈[τ+s2,τ+s1]βij(θr−τω)(s1−s2)+Csupr∈[τ+s2,τ+s1]‖J(r)‖2(s1−s2)+C(1+∑|i|⩽mi+N∑j=i−Nsupr∈[τ+s2,τ+s1]αij(θr−τω))‖ϕ‖2Cγ,l2(e−h1s2−e−h1s1)×e−h1t+∫0−t8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θsω)ds+C(1+∑|i|⩽mi+N∑j=i−Nsupr∈[τ+s2,τ+s1]αij(θr−τω))(e−h1s2−e−h1s1)×∫0−t(∑i∈Zi+N∑j=i−Nβij(θsω)+‖J(τ+s)‖2+‖h2‖2)×eh1s+∫0s8h1(2N+1)2e2γh∑i∈Z∑i+Nj=i−Nαij(θs′ω)ds′ds⩽C(s1−s2)+C(e−h1s2−e−h1s1), | (6.18) |
thanks to the continuity of
By a similar argument as in [31], the following result can be obtained immediately by using Theorem 2.8.
Theorem 6.3. Suppose
aij(t+T)=aij(t),bij(t+T)=bij(t),cij(t+T)=cij(t), | (6.19) |
Ji(t+T)=Ji(t),ˆh(t+T)=ˆh(t), | (6.20) |
where
Proof. Let us fix some
˙x(t)=˜f(t,xt), |
where
˜fi(t,xit)=fi(xi(t))+i+N∑j=i−Naij(t)g1j(θtω,xj(t))+Ji(t)+i+N∑j=i−Nbij(t)g2j(θtω,xj(t−ˆh(t)))+i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,xj(t+r))dr. |
We divide the proof into two steps.
Step 1.
We note that
˜fi(t,vi)=fi(vi(0))+i+N∑j=i−Naij(t)g1j(θtω,vj(0))+i+N∑j=i−Nbij(t)g2j(θtω,vj(−ˆh(t)))+i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,vj(r))dr+Ji(t). |
In view of the Assumption
‖f(v(0))‖2⩽2l21‖v‖2Cγ,l2+2‖l2‖2. | (F.21) |
By
‖i+N∑j=i−Naij(t)g1j(θtω,vj(0))‖2⩽(2N+1)∑i∈Zi+N∑j=i−Na2ij(t)(p21j(θtω)|vj(0)|2+q21j(θtω))⩽(2N+1)2(∑i∈Zi+N∑j=i−Na2ij(t)p21j(θtω))‖v‖2Cγ,l2+(2N+1)∑i∈Zi+N∑j=i−Na2ij(t)q21j(θtω). | (F.22) |
In a similar way as above, by
‖i+N∑j=i−Nbij(t)g2j(θtω,vj(−ˆh(t)))‖2⩽(2N+1)∑i∈Zi+N∑j=i−Nb2ij(t)(p22j(θtω)|vj(−ˆh(t))|2+q22j(θtω))⩽(2N+1)2(∑i∈Zi+N∑j=i−Nb2ij(t)p22j(θtω))e2γh‖v‖2Cγ,l2+(2N+1)∑i∈Zi+N∑j=i−Nb2ij(t)q22j(θtω), | (F.23) |
and
‖i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,vj(r))dr‖2⩽∑i∈Z(i+N∑j=i−Ncij(t)∫0−∞(ˆp3j(θtω,r)|vj(r)|+ˆq3j(θtω,r))dr)2⩽∑i∈Z(i+N∑j=i−Ncij(t)(˜p3j(θtω)sups∈(−∞,0]eγs|vj(s)|+˜q3j(θtω)))2⩽2(2N+1)∑i∈Zi+N∑j=i−Nc2ij(t)˜p23j(θtω)sups∈(−∞,0]e2γs|vj(s)|2+2(2N+1)∑i∈Zi+N∑j=i−Nc2ij(t)˜q23j(θtω)⩽2(2N+1)2(∑i∈Zi+N∑j=i−Nc2ij(t)˜p23j(θtω))‖v‖2Cγ,l2+2(2N+1)∑i∈Zi+N∑j=i−Nc2ij(t)˜q23j(θtω). | (F.24) |
Then, using (F.21)-(F.24) and the assumption on
‖˜f(t,v)‖2⩽5(2l21‖v‖2Cγ,l2+2‖l2‖2)+5∑i∈Z(i+N∑j=i−Naij(t)g1j(θtω,vj(0)))2+5∑i∈Z(i+N∑j=i−Nbij(t)g2j(θtω,vj(−ˆh(t))))2+5∑i∈Z(i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,vj(r))dr)2+5∑i∈Z|Ji(t)|2⩽10l21‖v‖2Cγ,l2+5(2N+1)2(∑i∈Zi+N∑j=i−N˜a2ij)Λ2(θtω)‖v‖2Cγ,l2+5(2N+1)2(∑i∈Zi+N∑j=i−N˜b2ij)Λ2(θtω)e2γh‖v‖2Cγ,l2+10(2N+1)2(∑i∈Zi+N∑j=i−N˜c2ij)Λ2(θtω)‖v‖2Cγ,l2+5(2N+1)∑i∈Zi+N∑j=i−N˜a2ijΛ2(θtω)+5(2N+1)∑i∈Zi+N∑j=i−N˜b2ijΛ2(θtω)+10(2N+1)∑i∈Zi+N∑j=i−N˜c2ijΛ2(θtω)+5‖J(t)‖2+10‖l2‖2. | (F.25) |
Since
Step 2.
We consider
∑|i|>kl22i⩽ε,∑|i|>ksups∈(−∞,0]e2γs|v0i(s)|2⩽ε,∑|i|>ksups∈(−∞,0]e2γs|vni(s)|2⩽ε, | (F.26) |
∑|i|>ki+N∑j=i−N(˜a2ij+˜b2ij+˜c2ij)⩽ε. | (F.27) |
Due to the continuity of
∑i∈Z|fi(vni(0))−fi(v0i(0))|2⩽∑|i|⩽k|fi(vni(0))−fi(v0i(0))|2+2∑|i|>k|fi(vni(0))|2+2∑|i|>k|fi(v0i(0))|2⩽∑|i|⩽k|fi(vni(0))−fi(v0i(0))|2+4∑|i|>k(l1|vni(0)|2+l22i)+4∑|i|>k(l1|v0i(0)|2+l22i)⩽Cε. | (F.28) |
By
‖i+N∑j=i−Naij(tn)g1j(θtnω,vnj(0))−i+N∑j=i−Naij(t)g1j(θtω,v0j(0))‖2⩽2‖i+N∑j=i−Naij(tn)g1j(θtnω,vnj(0))−i+N∑j=i−Naij(t)g1j(θtnω,vnj(0))‖2+2‖i+N∑j=i−Naij(t)g1j(θtnω,vnj(0))−i+N∑j=i−Naij(t)g1j(θtω,v0j(0))‖2⩽2(2N+1)∑i∈Zi+N∑j=i−N(aij(tn)−aij(t))2g21j(θtnω,vnj(0))+2(2N+1)∑i∈Zi+N∑j=i−Na2ij(t)(g1j(θtnω,vnj(0))−g1j(θtω,v0j(0)))2⩽2(2N+1)∑|i|⩽ki+N∑j=i−N(aij(tn)−aij(t))2(Λ2(θtnω)|vnj(0)|2+Λ2(θtnω))+4(2N+1)∑|i|>ki+N∑j=i−N2˜a2ij(Λ2(θtnω)(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω))+2(2N+1)∑|i|⩽ki+N∑j=i−N˜a2ij(g1j(θtnω,vnj(0))−g1j(θtω,v0j(0)))2+4(2N+1)∑|i|>ki+N∑j=i−N˜a2ij(Λ2(θtnω)(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω)+Λ2(θtω)(2N+1)‖v0‖2Cγ,l2+Λ2(θtω))⩽Cε, | (F.29) |
Arguing in the similar way as above, we deduce from
‖i+N∑j=i−Nbij(tn)g2j(θtnω,vnj(−ˆh(tn)))−i+N∑j=i−Nbij(t)g2j(θtω,v0j(−ˆh(t)))‖2⩽2‖i+N∑j=i−Nbij(tn)g2j(θtnω,vnj(−ˆh(tn)))−i+N∑j=i−Nbij(t)g2j(θtnω,vnj(−ˆh(tn)))‖2+2‖i+N∑j=i−Nbij(t)g2j(θtnω,vnj(−ˆh(tn)))−i+N∑j=i−Nbij(t)g2j(θtω,v0j(−ˆh(t)))‖2⩽2(2N+1)∑i∈Zi+N∑j=i−N(bij(tn)−bij(t))2g21j(θtnω,vnj(−ˆh(tn)))+2(2N+1)∑i∈Zi+N∑j=i−Nb2ij(t)(g2j(θtnω,vnj(−ˆh(tn)))−g2j(θtω,v0j(−ˆh(t))))2⩽2(2N+1)∑|i|⩽ki+N∑j=i−N(bij(tn)−bij(t))2(Λ2(θtnω)|vnj(−ˆh(tn))|2+Λ2(θtnω))+4(2N+1)∑|i|>ki+N∑j=i−N2˜b2ij(Λ2(θtnω)e2γh(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω))+4(2N+1)∑|i|⩽ki+N∑j=i−N˜b2ij(g2j(θtnω,vnj(−ˆh(tn)))−g2j(θtω,v0j(−ˆh(tn))))2+4(2N+1)∑|i|⩽ki+N∑j=i−N˜b2ij(g2j(θtω,v0j(−ˆh(tn)))−g2j(θtω,v0j(−ˆh(t))))2+4(2N+1)∑|i|>ki+N∑j=i−N˜b2ij(Λ2(θtnω)e2γh(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω)+Λ2(θtω)e2γh(2N+1)‖v0‖2Cγ,l2+Λ2(θtω))⩽Cε, | (F.30) |
and
‖i+N∑j=i−Ncij(tn)∫0−∞g3j(θtnω,r,vnj(r))dr−i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,v0j(r))dr‖2⩽2‖i+N∑j=i−N(cij(tn)−cij(t))∫0−∞g3j(θtnω,r,vnj(r))dr‖2+2‖i+N∑j=i−Ncij(t)(∫0−∞g3j(θtnω,r,vnj(r))dr−∫0−∞g3j(θtω,r,v0j(r))dr)‖2⩽2(2N+1)∑i∈Zi+N∑j=i−N(cij(tn)−cij(t))2×(∫0−∞(ˆp3j(θtnω,r)|vnj(r)|+ˆq3j(θtnω,r))dr)2+2(2N+1)∑i∈Zi+N∑j=i−Nc2ij(t)(∫0−∞(g3j(θtnω,r,vnj(r))−g3j(θtω,r,v0j(r)))dr)2⩽4(2N+1)∑|i|⩽ki+N∑j=i−N(cij(tn)−cij(t))2×(Λ2(θtnω)(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω))+8(2N+1)∑|i|>ki+N∑j=i−N2˜c2ij(Λ2(θtnω)(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω))+2(2N+1)∑|i|⩽ki+N∑j=i−N˜c2ij(∫0−∞(g3j(θtnω,r,vnj(r))−g3j(θtω,r,v0j(r)))dr)2+8(2N+1)∑|i|>ki+N∑j=i−N˜c2ij(Λ2(θtnω)(2N+1)‖vn‖2Cγ,l2+Λ2(θtnω))+8(2N+1)∑|i|>ki+N∑j=i−N˜c2ij(Λ2(θtω)(2N+1)‖v0‖2Cγ,l2+Λ2(θtω))⩽Cε, | (F.31) |
thanks to Assumption
Note that
∑i∈Z|Ji(tn)−Ji(t)|2=‖J(tn)−J(t)‖2<ε. | (F.32) |
Then it follows from (F.28)-(F.32) that for all
‖˜f(tn,vn)−˜f(t,v0)‖2⩽5∑i∈Z|fi(vni(0))−fi(v0i(0))|2+5∑i∈Z|Ji(tn)−Ji(t)|2+5∑i∈Z|i+N∑j=i−Naij(tn)g1j(θtnω,vnj(0))−i+N∑j=i−Naij(t)g1j(θtω,v0j(0))|2+5∑i∈Z|i+N∑j=i−Nbij(tn)g2j(θtnω,vnj(−ˆh(tn)))−i+N∑j=i−Nbij(t)g2j(θtω,v0j(−ˆh(t)))|2+5∑i∈Z|i+N∑j=i−Ncij(tn)∫0−∞g3j(θtnω,r,vnj(r))dr−i+N∑j=i−Ncij(t)∫0−∞g3j(θtω,r,v0j(r))dr|2⩽Cε. | (F.33) |
This implies that
Proof. Multiplying (1.1) by
12ddt|xi(t)|2=fi(xi(t))xi(t)+i+N∑j=i−Naij(t)g1j(θtω,xj(t))xi(t)+i+N∑j=i−Nbij(t)g2j(θtω,xj(t−ˆh(t)))xi(t)+i+N∑j=i−Ncij(t)xi(t)∫0−∞g3j(θtω,r,xj(t+r))dr+Ji(t)xi(t). |
Let
fi(xi(t))xi(t)⩽−h1x2i(t)+h22i, | (F.34) |
(F.35) |
(F.36) |
(F.37) |
and
Note that
(F.38) |
This implies that
(F.39) |
Integrating (F.39) over
(F.40) |
Let
(F.41) |
where we have used the notations
Note that for all
Then, it holds
(F.42) |
We observe that
Then (F.42) can be rewritten as
Using Gronwall's lemma, we have
(F.43) |
Let
and thus the proof of this lemma is finished.
[1] | J.-P. Aubin and H. Franskowska, Set-Valued Analysis, Systems & Control: Foundations & Applications, 2. Birkhäuser Boston, Inc., Boston, MA, 1990. |
[2] |
Global asymptotic stability of stochastic recurrent neural networks with multiple discrete delays and unbounded distributed delays. Appl. Math. Comput. (2008) 204: 680-686. ![]() |
[3] |
Non-autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete Contin. Dyn. Syst. (2008) 21: 415-443. ![]() |
[4] |
T. Caraballo, F. Morillas and J. Valero, Pullback attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, Differential and Difference Equations with Applications, Springer Proc. Math. Stat., Springer, New York, 47 (2013), 341-349. doi: 10.1007/978-1-4614-7333-6_27
![]() |
[5] |
On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete Contin. Dyn. Syst. (2014) 34: 51-77. ![]() |
[6] |
D. N. Cheban, Global Attractors of Non-Autonomous Dissipative Dynamical Systems: Interdisciplinary Mathematical Sciences, 1, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2004. doi: 10.1142/9789812563088
![]() |
[7] | Global exponential stability of delayed Hopfield neural networks. Neural Netw. (2001) 14: 977-980. |
[8] |
Stability results for stochastic delayed recurrent neural networks with discrete and distributed delays. J. Differential Equations (2018) 264: 3864-3898. ![]() |
[9] | A. Cichocki and R. Unbehauen, Neural Networks for Optimization and Signal Processing, Wiley, Chichester, 1993. |
[10] |
Attractors for random dynamical systems. Probab. Theory Related Fields (1994) 100: 365-393. ![]() |
[11] |
Random attractors for the D stochastic Navier-Stokes equation with multiplicative white noise. Stochast. Stochast. Rep. (1996) 59: 21-45. ![]() |
[12] |
Mean square global asymptotic stability of stochastic recurrent neural networks with distributed delays. Appl. Math. Comput. (2009) 215: 791-795. ![]() |
[13] |
Non-autonomous lattice systems with switching effects and delayed recovery. J. Differential Equations (2016) 261: 2986-3009. ![]() |
[14] | S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice-Hall, Englewood Cliffs, 1994. |
[15] |
Exponential stability analysis of stochastic delayed cellular neural network. Chaos Solitons Fractals (2006) 27: 1006-1010. ![]() |
[16] |
Mean square exponential stability of stochastic recurrent neural networks with time-varying delays. Comput. Math. Appl. (2008) 56: 1773-1778. ![]() |
[17] |
Pullback attractors of nonautonomous semidynamical systems. Stoch. Dyn. (2003) 3: 101-112. ![]() |
[18] |
Stability analysis of stochastic functional differential equations with infinite delay and its application to recurrent neural networks. J. Comput. Appl. Math. (2010) 234: 407-417. ![]() |
[19] |
Exponential stability analysis for delayed semi-Markovian recurrent neural networks: A homogeneous polynomial approach. IEEE Trans. Neural Netw. Learn. Syst. (2018) 29: 6374-6384. ![]() |
[20] |
Robust dissipativity and passivity analysis for discrete-time stochastic neural networks with time-varying delay. Complexity (2015) 21: 47-58. ![]() |
[21] |
Exponential stability of hybrid stochastic recurrent neural networks with time-varying delays. Nonlinear Anal. Hybrid Syst. (2008) 2: 1198-1204. ![]() |
[22] | Cellular neural networks with nonlinear and delay-type template elements and non-uniform grids. Int. J. Circuit Theory Appl. (1992) 20: 469-481. |
[23] |
Asymptotic stability of stochastic delayed recurrent neural networks with impulsive effects. J. Optim. Theory Appl. (2010) 147: 583-596. ![]() |
[24] | B. Schmalfuss, Measure Attractors of the Stochastic Navier-Stokes Equation, Report 258, Universität Bremen, Fachbereiche Mathematik/Informatik, Elektrotechnik/Physik, Forschungsschwerpunkt Dynamische Systeme, Bremen, 1991. |
[25] |
th moment exponential stability of stochastic recurrent neural networks with time-varying delays. Nonlinear Anal. Real World Appl. (2007) 8: 1171-1185. ![]() |
[26] |
Stochastic stability of discrete-time uncertain recurrent neural networks with Markovian jumping and time-varying delays. Math. Comput. Modelling (2011) 54: 1979-1988. ![]() |
[27] |
Stochastic stability of uncertain recurrent neural networks with Markovian jumping parameters. Acta Math. Sci. Ser. B (2015) 35: 1122-1136. ![]() |
[28] | Image compression by delayed CNNs. IEEE Trans. Circuits Syst. I (1998) 45: 205-215. |
[29] |
Global asymptotic stability of stochastic reaction-diffusion recurrent neural networks with Markovian jumping parameters and mixed delays. J. Anal. (2019) 27: 277-292. ![]() |
[30] |
Almost sure exponential stability of stochastic recurrent neural networks with time-varying delays. Internat. J. Bifur. Chaos Appl. Sci. Engrg. (2010) 20: 539-544. ![]() |
[31] |
B. Wang, Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems, J. Differential Equations, 253 (2012), 1544-1583. doi: 10.1016/j.jde.2012.05.015
![]() |
[32] |
Finite lattice approximation of infinite lattice systems with delays and non-Lipschitz nonlinearities. Asymptot. Anal. (2018) 106: 169-203. ![]() |
[33] |
Pullback attractors for multi-valued non-compact random dynamical systems generated by reaction-diffusion equations on an unbounded domain. J. Differential Equations (2015) 259: 728-776. ![]() |
[34] |
J. Wang, Y. Wang and D. Zhao, Pullback attractors for multi-valued non-compact random dynamical systems generated by semi-linear degenerate parabolic equations with unbounded delays, Stoch. Dyn., 16 (2016), 1750001, 49 pp. doi: 10.1142/S0219493717500010
![]() |
[35] |
Robustness analysis for connection weight matrices of global exponential stability of stochastic delayed recurrent neural networks. Circuits Systems Signal Process (2014) 33: 2065-2083. ![]() |