Research article

Upper semi-continuity of pullback attractors for bipolar fluids with delay

  • Received: 27 February 2023 Revised: 17 July 2023 Accepted: 03 August 2023 Published: 05 September 2023
  • We investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightarrow \Sigma $ as $ n\rightarrow \infty $. The paper demonstrates that the pullback attractors in the sub-domains $ \Sigma_n $ converge to the pullback attractor in the entire domain $ \Sigma $ as $ n\rightarrow \infty. $

    Citation: Guowei Liu, Hao Xu, Caidi Zhao. Upper semi-continuity of pullback attractors for bipolar fluids with delay[J]. Electronic Research Archive, 2023, 31(10): 5996-6011. doi: 10.3934/era.2023305

    Related Papers:

  • We investigate bipolar fluids with delay in a $ 2D $ channel $ \Sigma = \mathbb{R}\times (-K, K) $ for some $ K > 0 $. The channel $ \Sigma $ is divided into a sequence of simply connected, bounded, and smooth sub-domains $ \Sigma_n (n = 1, 2, 3\cdot\cdot\cdot) $, such that $ \Sigma_n\rightarrow \Sigma $ as $ n\rightarrow \infty $. The paper demonstrates that the pullback attractors in the sub-domains $ \Sigma_n $ converge to the pullback attractor in the entire domain $ \Sigma $ as $ n\rightarrow \infty. $



    加载中


    [1] A. Z. Manitius, Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Autom. Control, 29 (1984), 1058–1068. https://doi.org/10.1109/TAC.1984.1103436 doi: 10.1109/TAC.1984.1103436
    [2] M. J. Garrido-Atienza, P. Marín-Rubio, Navier Stokes equations with delays on unbounded domains, Nonlinear Anal., 64 (2006), 1100–1118. https://doi.org/10.1016/j.na.2005.05.057 doi: 10.1016/j.na.2005.05.057
    [3] T. Caraballo, J. Real, Navier-Stokes equations with delays, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 2441–2453. https://doi.org/10.1098/rspa.2001.0807 doi: 10.1098/rspa.2001.0807
    [4] W. Sun, The boundedness and upper semicontinuity of the pullback attractors for a 2D micropolar fluid flows with delay, Electron. Res. Arch., 28 (2020), 1343–1356. https://doi.org/10.3934/era.2020071 doi: 10.3934/era.2020071
    [5] C. T. Anh, D. T. P. Thanh, Existence and long-time behavior of solutions to Navier-Stokes-Voigt equations with infinite delay, Bull. Korean Math. Soc., 55 (2018), 379–403. https://doi.org/10.4134/BKMS.B170044 doi: 10.4134/BKMS.B170044
    [6] A. P. Oskolkov, M. M. Akhmatov, A. A. Cotsiolis, The equations of motion of linear viscoelastic fluids and the equations of filtration of fluids with delay, J. Soviet Math., 49 (1990), 1203–1206. https://doi.org/10.1007/BF02208716 doi: 10.1007/BF02208716
    [7] H. Bellout, F. Bloom, J. Nečas, Phenomenological behavior of multipolar viscous fluids, Quart. Appl. Math., 5 (1992), 559–583. https://doi.org/10.1090/qam/1178435 doi: 10.1090/qam/1178435
    [8] J. Nečas, M. Silhavy, Multipolar viscous fluids, Quart. Appl. Math., XLIX (1991), 247–265. https://doi.org/10.1090/qam/1106391
    [9] F. Bloom, W. Hao, Regularization of a non-Newtonian system in an unbounded channel: Existence and uniqueness of solutions, Nonlinear Anal., 44 (2001), 281–309. https://doi.org/10.1016/S0362-546X(99)00264-3 doi: 10.1016/S0362-546X(99)00264-3
    [10] F. Bloom, W. Hao, Regularization of a non-Newtonian system in an unbounded channel: Existence of a maximal compact attractor, Nonlinear Anal., 43 (2001), 743–766. https://doi.org/10.1016/S0362-546X(99)00232-1 doi: 10.1016/S0362-546X(99)00232-1
    [11] H. Bellout, F. Bloom, J. Nečas, Young measure-valued solutions for non-Newtonian incompressible viscous fluids, Commun. Partial Differ. Equations, 19 (1994), 1763–1803. https://doi.org/10.1080/03605309408821073 doi: 10.1080/03605309408821073
    [12] H. Bellout, F. Bloom, Bounds for the dimensions of the attractors of nonlinear bipolar viscous fluids, Asymptotic Anal., 11 (1995), 131–167. https://doi.org/10.3233/ASY-1995-11202 doi: 10.3233/ASY-1995-11202
    [13] H. Bellout, F. Bloom, J. Nečas, Existence, uniqueness and stability of solutions to the initial boundary value problem for bipolar viscous fluids, Differ. Integr. Equations, 8 (1995), 453–464. https://doi.org/10.57262/die/1369083480 doi: 10.57262/die/1369083480
    [14] J. Málek, J. Nečas, M. Rokyta, M. R${\rm{\dot u}}$žička, Weak and Measure-Valued Solutions to Evolutionary PDE, Champman-Hall, New York, 1996. https://doi.org/10.1007/978-1-4899-6824-1
    [15] C. Zhao, S. Zhou, Pullback attractors for a non-autonomous incompressible non-Newtonian fluid, J. Differ. Equations, 238 (2007), 394–425. https://doi.org/10.1016/j.jde.2007.04.001 doi: 10.1016/j.jde.2007.04.001
    [16] C. Zhao, Y. Li, S. Zhou, Regularity of trajectory attractor and upper semicontinuity of global attractor for a 2D non-Newtonian fluid, J. Differ. Equations, 247 (2009), 2331–2363. https://doi.org/10.1016/j.jde.2009.07.031 doi: 10.1016/j.jde.2009.07.031
    [17] C. Zhao, G. Liu, W. Wang, Smooth pullback attractors for a non-autonomous 2D non-Newtonian fluid and their tempered behaviors, J. Math. Fluid Mech., 16 (2014), 243–262. https://doi.org/10.1007/s00021-013-0153-2 doi: 10.1007/s00021-013-0153-2
    [18] C. Zhao, Z, Lin, T. Medjo, Gevery class regularity for the global attractor of a two-dimensional non-Newtonian fluid, Acta Math. Sci. Ser. B, 42 (2022), 265–283. https://doi.org/10.1007/s10473-022-0115-y doi: 10.1007/s10473-022-0115-y
    [19] C. Zhao, Y. Zhang, T. Caraballo, G. {\L}ukaszewicz, Statistical solutions and degenerate regularity for the micropolar fluid with generalized Newton constitutive law, Math. Meth. Appl. Sci., 46 (2023), 10311–10331. https://doi.org/10.1002/mma.9123 doi: 10.1002/mma.9123
    [20] Y. Li, C. Zhao, Global attractor for a system of the non-Newtonian incompressible fluid in 2D unbounded domains, Acta Anal. Funct. Appl., 4 (2002), 1009–1327. https://doi.org/10.1007/s11769-002-0073-1 doi: 10.1007/s11769-002-0073-1
    [21] C. Zhao, Pullback asymptotic behavior of solutions for a non-autonomous non-Newtonian fluid on 2D unbounded domains, J. Math. Phys., 53 (2012), 122702. https://doi.org/10.1063/1.4769302 doi: 10.1063/1.4769302
    [22] C. Zhao, S. Zhou, Y. Li, Existence and regularity of pullback attractors for an incompressible non-Newtonian fluid with delays, Quart. Appl. Math., 67 (2009), 503–540. https://doi.org/10.1090/S0033-569X-09-01146-2 doi: 10.1090/S0033-569X-09-01146-2
    [23] L. Liu, T. Caraballo, X. Fu, Dynamics of a non-automous incompressible non-Newtonian fluid with delay, Dyn. Partial Differ. Equation, 14 (2017), 375–402. https://doi.org/10.4310/DPDE.2017.v14.n4.a4 doi: 10.4310/DPDE.2017.v14.n4.a4
    [24] L. Liu, T. Caraballo, X. Fu, Exponential stability of an incompressible non-Newtonian fluid with delay, Discrete Contin. Dyn. Syst., 23 (2018), 4285–4303. https://doi.org/10.3934/dcdsb.2018138 doi: 10.3934/dcdsb.2018138
    [25] J. Jeong, J. Park, Pullback attractors for a $2D$-non-autonomous incompressible non-Newtonian fluid with variable delays, Discrete Contin. Dyn. Syst., 21 (2016), 2687–2702. https://doi.org/10.3934/dcdsb.2016068 doi: 10.3934/dcdsb.2016068
    [26] C. Zhao, L. Yang, G. Liu, C. Hsu, Global well-posenness and pullback attractor for a delayed non-Newtonian fluid on two dimensional unbounded domains, Acta Math. Appl. Sinica, Chinese Ser., 40 (2017), 287–311.
    [27] J. K. Hale, L. Xin, G. Raugel, Upper semicontinuity of the attractors for approximations of semigroups and partial differential equations, Math. Comput., 5 (1988), 89–123. https://doi.org/10.1090/s0025-5718-1988-0917820-x doi: 10.1090/s0025-5718-1988-0917820-x
    [28] J. K. Hale, G. Raugel, Upper semicontinuity of the attractors for a singularity perturbed hyperbolic equation, J. Differ. Equations, 73 (1988), 197–214. https://doi.org/10.1016/0022-0396(88)90104-0 doi: 10.1016/0022-0396(88)90104-0
    [29] T. Caraballo, J. A. Langa, On the upper semicontinuity of cocycle attractors for non-autonomous and random dynamic systems, Dyn. Contin. Discrete Impulsive Syst., 10 (2003), 491–513. https://doi.org/10.1016/S0166-218X(03)00183-5 doi: 10.1016/S0166-218X(03)00183-5
    [30] K. Lu, B. Wang, Upper semicontinuity of attractors for the Klein-Gordon-Schrödinger equation, Int. J. Bifurcation Chaos, 15 (2005), 157–168. https://doi.org/10.1142/S0218127405012077 doi: 10.1142/S0218127405012077
    [31] J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31–52. https://doi.org/10.3934/dcds.2004.10.31 doi: 10.3934/dcds.2004.10.31
    [32] I. Moise, R. Rosa, X. Wang, Attractors for non-compact nonautonomous systems via energy equations, Discrete Contin. Dyn. Syst., 10 (2004), 473–496. https://doi.org/10.3934/dcds.2004.10.473 doi: 10.3934/dcds.2004.10.473
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(854) PDF downloads(63) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog