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Abstract: We investigate bipolar fluids with delay in a 2D channel Σ = R × (−K,K) for some K > 0.
The channel Σ is divided into a sequence of simply connected, bounded, and smooth sub-domains
Σn(n = 1, 2, 3 · ··), such that Σn → Σ as n → ∞. The paper demonstrates that the pullback attractors in
the sub-domains Σn converge to the pullback attractor in the entire domain Σ as n→ ∞.
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1. Introduction

Fluid models with delay terms are crucial for understanding and predicting the behavior of fluids
where devices or control mechanisms are inserted into fluid domains to manipulate certain properties,
such as temperature or velocity. For example, in a wind tunnel experiment, various control mechanisms
are used to manipulate the flow of air around a model. These control mechanisms can include flaps,
fans, or other devices that alter the velocity or pressure distribution in specific regions of the wind
tunnel, see [1, 2]. Over the years, extensive research has been conducted on specific fluid models that
incorporate delay terms, such as the Navier-Stokes with delay [3], the micropolar fluid with delay [4],
the Kelvin-Voigt fluid with delay [5] and the viscoelastic fluid with delay [6], and so on.

The bipolar fluid model is a well-known incompressible non-Newtonian fluid model that was in-
troduced in [7, 8]. It is commonly used to describe the motion of various materials, including molten
plastics, synthetic fibers, paints, greases, polymer solutions, suspensions, adhesives, dyes, varnishes,
and more. Accounting for the effect of the history-dependent behavior of the fluid, the bipolar fluid
model can be described as follows

∂u
∂t
+ (u · ∇)u − ∇ ·

(
µ(u)e(u) − 2µ1∆e(u)

)
+ ∇p = f (t, x) + g(t, ut), (1.1)

∇ · u = 0, (1.2)
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where the velocity is denoted by u = u(t, x), the pressure by p = p(t, x), the non-delay external force
by f (t, x), and the delayed external force by g(t, ut) with

ut(s) = u(t + s, x), s ∈ (−h, 0), t > τ.

The rate of the deformation tensor, denoted as e(u), is a 2 × 2 matrix defined by its components ei j(u).
These components can be written as

ei j(u) =
1
2

(
∂ui

∂x j
+
∂u j

∂xi

)
, i, j = 1, 2.

The variable viscosity µ(u) is taken as

µ(u) = 2µ0(η + |e|2)−α/2, |e|2 =
2∑

i, j=1

|ei j|
2, i, j = 1, 2.

The constitutive parameters h, η, µ0, µ1 are constants that satisfy h, η, µ0, µ1 > 0 and 0 < α < 1.
From a physical point of view, Equations (1.1) and (1.2) are often subject to (see [9, 10])

u(τ, x) = uin, τ ∈ R, x ∈ Σ, (1.3)
u(t, x) = ϕin(t − τ, x), (t, x) ∈ (τ − h, τ) × Σ, (1.4)
u = 0, τi jkn jnk = 0, x ∈ ∂Σ, i, j, k = 1, 2, (1.5)

where Σ = R × (−K,K) for some K > 0, τi jk = 2µ1
∂ei j

∂xk
, (n1, n2) denotes the exterior unit normal to the

boundary ∂Σ, u = 0 represents the non-slip condition and τi jkn jnk = 0 means the first moment of the
traction vanishes on ∂Σ.

Concerning Eqs (1.1)–(1.5) without the delay term g(t, ut) in 2D domains, there have been numerous
studies on the well-posedness, regularity, and long time behavior of solutions. For example, we can
refer to [11–19] in 2D bounded domains and [9,10,20,21] in 2D unbounded ones. However, as for Eqs
(1.1)–(1.5) with the delay term g(t, ut) in 2D domains, most of the existing results related to Eqs (1.1)–
(1.5) concentrate on 2D bounded domains. Zhao, Zhou and Li in [22] first established the existence,
uniqueness of solutions and the existence of pullback attractors. Later on, different frameworks were
used to study the existence and stability of stationary solutions and the existence of pullback attractors,
as seen in [23–25]. Recently, the authors in [26] initially paid attention to the 2D unbounded domain.
They showed the existence, uniqueness of solutions and the existence of pullback attractors. Therefore,
it is natural to inquire about the relation between the pullback attractors in 2D bounded domains and
the 2D unbounded domain as the bounded domains approximate the unbounded domain.

It is well known that the upper semi-continuity of attractors, as introduced in [27], is a powerful
concept for describing the relationship between attractors in nonlinear evolution equations. Several
researchers have also established the upper semi-continuity of attractors for various physical models,
as seen in [27–30], among others. In particular, Zhao et al. [16, 21] have studied the upper semi-
continuity of global attractors and cocycle attractors for the bipolar fluid without delay (i.e., g(t, ut) = 0)
with respect to the domains from Σn to Σ. The key idea is to unify the attractors by means of a natural
extension. Specifically, for any n ∈ Z+, let un ∈ X(Σn) (where X is the phase space), define

un =

{
un, x ∈ Σn,

0, x ∈ Σ\Σn.
(1.6)
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Then one can regard the function un defined on Σ as the natural extension of the function un. Moreover,
one has

∥un∥X(Σ) = ∥un∥X(Σ) = ∥un∥X(Σn) = ∥un∥X(Σn). (1.7)

Borrowing the previous idea, in the present paper, we aim to establish the upper semi-continuity
of pullback attractors for Eqs (1.1)–(1.5). Differently from [16, 21], the presence of delay introduces
new challenges in the new phase space, requiring us to perform more precise estimations. Actually, the
result presented in this paper generalizes the results of [16, 21].

The paper is structured as follows. In Section 2, we introduce the necessary preliminaries, and in
Section 3, proceed to establish the upper semi-continuity of pullback attractors. We conclude the main
result in Section 4.

Notation. In this paper, we use the following notations: R for the set of real numbers, Z+ for the set
of non-negative integers and c as a generic constant, which may vary depending on the context. If
the dependence needs to be explicitly emphasized, some notations like c1 and c(·) will be used. O
represents either Σ or Σn. We denote the 2D vector Lebesgue space and 2D vector Sobolev space as
Lp(O) and Hm(O), respectively. The norms for these spaces are ∥ · ∥Lp(O) and ∥ · ∥Hm(O). Additionally,
we define the following spaces: V(O) as the set of ϕ ∈ C∞0 (O) × C∞0 (O) satisfying ϕ = (ϕ1, ϕ2) and
∇ · ϕ = 0, H(O) as the closure ofV(O) in L2(O) with the norm ∥ · ∥H(O) and dual space H′(O) = H(O),
and V(O) as the closure of V(O) in H2(O) with the norm ∥ · ∥V(O) and dual space V ′(O). The inner
product in H(O) or L2(O) is denoted by (·, ·). The dual pairing between V(O) and V ′(O) is denoted by
⟨·, ·⟩. The Hausdorff semi-distance between Λ1 ⊂ Λ and Λ2 ⊂ Λ is denoted by DistΛ(Λ1,Λ2), which is
defined as DistΛ(Λ1,Λ2) = supx∈Λ1

infy∈Λ2 ∥x − y∥Λ.

2. Preliminaries

In this section, we begin by reformulating Eqs (1.1)–(1.5) in an abstract form. We then recall the
global existence, uniqueness of solutions and the existence of pullback attractors in the channel Σ and
in sub-domains Σn.

For the purpose of abstract representation, we introduce the following operators for Eqs (1.1)–(1.5):

⟨Au, v⟩ =
2∑

i, j,k=1

∫
O

∂ei j(u)
∂xk

∂ei j(v)
∂xk

dx, u, v ∈ V(O),

⟨N(u), v⟩ =
2∑

i, j=1

∫
O

µ(u)ei j(u)ei j(v) dx, u, v ∈ V(O),

b(u, v,w) =
2∑

i, j=1

∫
O

ui
∂v j

∂xi
w j dx, ⟨B(u),w⟩ = b(u, u,w), u, v,w ∈ V(O).

With the help of above notation, the weak form of Eqs (1.1)–(1.5) can be expressed when O = Σ as
follows (see [22, 23, 26])

∂u
∂t
+ 2µ1Au + B(u) + N(u) = f (t) + g(t, ut), (2.1)
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u(τ, x) = uin, x ∈ Σ, (2.2)
u(t, x) = ϕin(t − τ) = ϕin, t ∈ (τ − h, τ), x ∈ Σ, (2.3)

and in the case of O = Σn as follows

∂u(n)

∂t
+ 2µ1Au(n) + B(u(n)) + N(u(n)) = f (t) + g(t, u(n)

t ), (2.4)

u(n)(τ, x) = u(n),in, x ∈ Σn, (2.5)
u(n)(t, x) = ϕ(n),in(t − τ, x) = ϕ(n),in, t ∈ (τ − h, τ), x ∈ Σn. (2.6)

According to the definition of the operator A, the following estimate has been established in [9,10].

Lemma 2.1. There exists a constant c1, which is dependent only on O, such that

c1∥u∥2V(O) ⩽ ⟨Au, u⟩ ⩽ ∥u∥2V(O).

From now on, we should consider X = H,V,V ′ and spaces

CH(O) = C([−h, 0]; H(O)), L2
X(O) = L2(−h, 0; X(O)), E2

X(O) = X(O) × L2
X(O).

In order to ensure the global existence, uniqueness of solutions and existence of pullback attractors
for Eqs (2.1)–(2.3) and (2.4)–(2.6), certain assumptions about the external forces need to be imposed.
First, the time-delay function g : R × CH(O) 7→ L

2(O) is required to satisfy:

(H1) for any ξ ∈ CH(O), the function t ∈ R 7→ g(t, ξ) ∈ L2(O) is measurable.

(H2) g(t, 0) = 0 for all t ∈ R.

(H3) there exists a constant Lg > 0 such that for any t ∈ R, ξ, η ∈ CH(O),

∥g(t, ξ) − g(t, η)∥L2(O) ⩽ Lg∥ξ − η∥CH(O) .

(H4) there exists a constant Cg ∈ (0, 2c1µ1) such that∫ t

τ

∥g(s, us) − g(s, vs)∥2L2(O)ds ⩽ C2
g

∫ t

τ−h
∥u(s) − v(s)∥2H(O)ds,

and there exists a value γ ∈ (0,min{4c1µ1 − 2Cg, 4c2
1µ1}) such that∫ t

τ

eγs∥g(s, us)∥2L2(O)ds ⩽ C2
g

∫ t

τ−h
eγs∥u(s)∥2H(O)ds,

for all t ⩾ τ, u, v ∈ L2(τ − h, t; H(O)).

Second, the non-delay function f satisfies:

(H5) Assume that f ∈ L2
b(R; H(O)) which means f ∈ L2

loc(R; H(O)) with

∥ f ∥2L2
b
= sup

t∈R

∫ t+1

t
∥ f (s)∥2H(O)ds < +∞.
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Remark 1. According to the definitions of the spaces CH(O) and H(O), the inequality in (H3) is not
directly related to the first inequality in (H4). These two inequalities are independent of each other and
describe different aspects of the functions and their differences.

Based on above assumptions, we can conclude that

Theorem 2.2. ( [26]) Let the conditions (H1)–(H5) hold for the case of O = Σ.

1) Given (uin, ϕin) ∈ E2
H(Σ), there is a unique weak solution u = u(·; τ, uin, ϕin) of Eqs (2.1)–(2.3) satisfy-

ing u ∈ C([τ,T ]; H(Σ)) ∩ L2(τ − h,T ; H(Σ)) ∩ L2(τ,T ; V(Σ)) and d
dt u ∈ L2(τ,T ; V ′(Σ)).

2) The solution operators {U(t, τ)}t⩾τ : E2
H(Σ) 7→ E2

H(Σ) defined by U(t, τ) : (uin, ϕin) 7→
(
u, ut

)
generate

a continuous process in space E2
H(Σ).

3) The family B̂H(Σ) = {BH(Σ)(t)| t ∈ R} given by

BH(Σ)(t) =
{
(u, ϕ) ∈ H(Σ) × L2

V(Σ)

∣∣∣ ∥(u, ϕ)∥H(Σ)×L2
V(Σ)
⩽ R1(t), ∥

d
dt
ϕ∥LV′(Σ) ⩽ R2(t)

}
is pullback absorbing for the process {U(t, τ)}t⩾τ, where

R2
1(t) = 1 + c(1 + eγh)ϱγ(t),

R2
2(t) = 1 + ce2γhϱγ(t)

(
1 + ϱγ(t)

)
+ c

∫ t

t−h
∥ f (s)∥2H(Σ)ds,

ϱγ(t) = e−γt
∫ t

−∞

eγs∥ f (s)∥2H(Σ)ds.

4) The process {U(t, τ)}t⩾τ is pullback B̂H(Σ)-asymptotically compact and possesses a unique pullback
attractorA = {A(t)| t ∈ R} in E2

H(Σ) defined by

A(t) =
⋂
s⩽t

⋃
τ⩽s

U(t, τ)BH(Σ)(τ)
E2

H(Σ)

.

In order to unify the pullback attractors in the channel Σ and in the sub-domains Σn, we consider the
natural extensions Eqs (1.6) and (1.7) mentioned in Section 1. Then similar to Theorem 2.2, we can
make slight modifications in [22] to get

Theorem 2.3. Let the conditions (H1)–(H5) hold for the case of O = Σ.

1) Given (u(n),in, ϕ(n),in) ∈ E2
H(Σn), there is a unique weak solution u(n) = u(n)(·; τ, u(n),in, ϕ(n),in) of Eqs

(2.4)–(2.6) satisfying un ∈ C([τ,T ]; H(Σn)) ∩ L2(τ − h,T ; H(Σn)) ∩ L2(τ,T ; V(Σn)) and d
dt u

(n) ∈

L2(τ,T ; V ′(Σn)).

2) The solution operators {Un(t, τ)}t⩾τ : E2
H(Σn) 7→ E2

H(Σn) defined by Un(t, τ) : (u(n),in, ϕ(n),in) 7→(
u(n), u(n)

t
)

generate a continuous process in space E2
H(Σn).
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6001

3) The family B̂H(Σn)
n = {B

H(Σn)
n (t)| t ∈ R} given by

BH(Σn)
n (t) =

{
(u, ϕ) ∈ H(Σn) × L2

V(Σn)

∣∣∣ ∥(u, ϕ)∥H(Σn)×L2
V(Σn)
⩽ R1(t), ∥

d
dt
ϕ∥LV′(Σn) ⩽ R2(t)

}
is pullback absorbing for the process {Un(t, τ)}t⩾τ. Note that R1(t) and R2(t) are the same in
Theorem 2.2.

4) The process {Un(t, τ)}t⩾τ is pullback B̂H(Σn)-asymptotically compact and possesses a unique pull-
back attractorAn = {An(t)| t ∈ R} in E2

H(Σn) defined by

An(t) =
⋂
s⩽t

⋃
τ⩽s

Un(t, τ)BH(Σn)(τ)
E2

H(Σn)

.

Due to the definitions of R1(t),R2(t) and the fact

ϱγ(t) = e−γt
∫ t

−∞

eγs∥ f (s)∥2
H(Σ)

ds

= e−γt
∫ t

t−1
eγs∥ f (s)∥2H(Σ)ds + e−γt

∫ t−1

t−2
eγs∥ f (s)∥2H(Σ)ds + · · ·

⩽

∫ t

t−1
∥ f (s)∥2H(Σ)ds + e−γ

∫ t−1

t−2
∥ f (s)∥2H(Σ)ds + · · ·

=

∥ f ∥2
L2

b

1 − e−γ
, (2.7)

we have that BH(Σ)(t) and BH(Σn)
n (t) in E2

H(Σ) are bounded uniformly with respect to the time t. Moreover,
there exists a τ(t, B̂H(Σ)) (independent of n) such that for τ ⩽ τ(t, B̂H(Σ)),

U(t, τ)BH(Σ)(τ) ⊂ BH(Σ)(t), (2.8)
Un(t, τ)BH(Σn)

n (τ) ⊂ BH(Σn)
n (t) ⊂ BH(Σ)(t). (2.9)

3. Upper semi-continuity of pullback attractors

In this section, our objective is to establish the upper semi-continuity of pullback attractors. Specif-
ically, we aim to prove the following theorem:

Theorem 3.1. Suppose the conditions (H1)–(H5) hold for the case of O = Σ. Consider the families
An = {An(t)| t ∈ R} and A = {A(t)| t ∈ R} as the pullback attractors for Eqs (1.1)–(1.5) in the
domains Σn and Σ, respectively. Then for any t ∈ R, we have

lim
n→∞

DistH(Σ)×L2(−h,0;H(Σ))
(
An(t),A(t)

)
= 0.

3.1. The key convergence of solutions

To prove Theorem 3.1, it is crucial to establish the strong convergence in the space E2
H(Σ) of any

sequence {(u(n), ϕ(n))}n⩾1, where (u(n), ϕ(n)) belongs toAn(t), to some (u, ϕ) belonging toA(t).
Firstly, we obtain two auxiliary lemmas.

Electronic Research Archive Volume 31, Issue 10, 5996–6011.
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Lemma 3.2. Suppose the conditions (H1)–(H5) hold for the case of O = Σ. Let {(u(n),in, ϕ(n),in)}n⩾1 be a
sequence in H(Σn) × L2

V(Σn) and (uin, ϕin) ∈ H(Σ) × L2
V(Σ) satisfying the weak convergences as n→ ∞,

(u(n),in, ϕ(n),in)⇀ (uin, ϕin) in H(Σ) × L2
V(Σ), (3.1)

d
dt
ϕ(n),in ⇀

d
dt
ϕin in L2

V′(Σ). (3.2)

Then for any t ⩾ τ, we obtain the following weak convergences as n→ ∞,

u(n)(t; τ, u(n),in, ϕ(n),in)⇀ u(t; τ, uin, ϕin) in H(Σ), (3.3)
u(n)(·; τ, u(n),in, ϕ(n),in)⇀ u(·; τ, uin, ϕin) in L2(τ − h, t; V(Σ)). (3.4)

Proof. The fundamental energy estimates for Eqs (2.4)–(2.6) can be derived using the same method as
shown in [26, Equations (3.1), (3.9), (3.27)]. The following inequality holds for any τ ⩽ t,

∥u(n)(t)∥2H(Σn) + ηe
−γt

∫ t

τ

eγs∥u(n)(s)∥2V(Σn)ds

⩽ ceγ(τ−t)∥(u(n),in, ϕ(n),in)∥2E2
H(Σn)
+ β−1e−γt

∫ t

τ

eγs∥ f (s)∥2H(Σn)ds, (3.5)

where Cg and γ are the constants from (H4), β ∈ (0, 4c1µ1 − 2Cg − γ) and η = 4c1µ1 − 2Cg − γ− β > 0.
We also have for any T > 0 and τ ⩽ t − T ,∫ t

t−T
∥u(n)(s)∥2V(Σn)ds ⩽ ceγ(T+τ−t)∥(u(n),in, ϕ(n),in)∥2E2

H(Σn)
+ ceγ(T−t)

∫ t

τ

eγs∥ f (s)∥2H(Σn)ds. (3.6)

Furthermore, we obtain for any τ ⩽ t,∫ t

t−h

∥∥∥ d
ds

u(n)
∥∥∥2

V′(Σn)
ds ⩽ c

∫ t

t−h
∥ f (s)∥2H(Σn)ds

+ c
(
eγ(τ−t)∥(u(n),in, ϕ(n),in)∥E2

H(Σn)
+ ϱγ(t)

)
+ c

(
eγ(τ−t)∥(u(n),in, ϕ(n),in)∥E2

H(Σn)
+ ϱγ(t)

)2
, (3.7)

with ϱγ(t) given in Theorem 2.2.
It follows from Eqs (3.5)–(3.7) that

u(n) is bounded in L∞(τ, t; H(Σ)) ∩ L2(τ, t; V(Σ)), (3.8)
d
ds

u(n) is bounded in L2(τ − h, t; V ′(Σ)). (3.9)

By Eq (3.8), we have the following weak star and weak convergences (for a subsequence)

u(n) ⇀ u in L∞(τ, t; H(Σ)), (3.10)
u(n) ⇀ u in L2(τ, t; V(Σ)). (3.11)
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By the standard method, we can demonstrate that the solution to Eqs (2.1)–(2.3) with initial data
(uin, ϕin) is u. In fact, in view of Eqs (3.8) and (3.9), a subsequence can be extracted from the sequence
u(n) and denoted as u(n) as well such that the following strong convergence holds

u(n) → u in L2(τ, t; H(Σr)), (3.12)

where Σr is any bounded sub-domain of Σ. By virtue of Eq (3.12), we can apply the limit operation
to Eqs (2.4)–(2.6) for u(n). This implies that u is the solution to Eqs (2.1)–(2.3) with the given initial
conditions (uin, ϕin). By uniqueness we conclude that Eqs (3.10)–(3.12) hold for the whole sequence.

Proof of Eq (3.4): It follows from Eqs (3.1) and (3.11) that Eq (3.4) holds.
Proof of Eq (3.3): From Eq (3.10), we have for any v ∈ V(Σ) and a.e. t ⩾ τ that

(u(n), v)→ (u, v).

Due to Eq (3.9), we obtain for all t ⩾ τ and v ∈ V(Σ),

(u(n)(t) − u(n)(t − h), v) =
∫ t

t−h
⟨

d
ds

u(n)(s), v⟩ds ⩽ ∥v∥V(Σ)

∥∥∥ d
ds

u(n)
∥∥∥

L2(τ−h,t;V′(Σ))
h1/2. (3.13)

In view of Eqs (3.9) and (3.13), we see (u(n), v) is uniformly bounded and equicontinuous on [τ, t].
Hence, we have for any v ∈ V(Σ) and all t ⩾ τ,

(u(n), v)→ (u, v).

By taking advantage of the density ofV(Σ) in H(Σ), we arrive at Eq (3.3).

Similar to [26, Lemma 3.4] (also see [16, 21]), we have the following tail estimate:

Lemma 3.3. Let the conditions (H1)–(H5) hold for the case of O = Σ and (u(n),in, ϕ(n),in) ∈ BH(Σn)
n (τ).

Then given ϵ > 0, there are τn(ϵ) < t and rn(ϵ) > 0 satisfying for any r ∈ [rn, n] and τ ⩽ τn,

∥u(n)(t; τ, u(n),in, ϕ(n),in)∥2
L2(Σn\Σr) ⩽ ϵ.

With the help of Lemmas 3.2 and 3.3, we will establish the key convergence of solutions via the
energy method introduced by Ball [31] and developed by Moise, Rosa and Wang [32].

Lemma 3.4. Let the conditions (H1)–(H5) hold for the case of O = Σ. Then for each t ∈ R and any
sequence

{(u(n), ϕ(n))}n⩾1 with (u(n), ϕ(n)) ∈ An(t),

there is a subsequence of (using the same index) {(u(n), ϕ(n))}n⩾1 and some (u, ϕ) ∈ A(t) such that the
following strong convergence holds as n→ ∞,

(u(n), ϕ(n)) −→ (u, ϕ) in E2
H(Σ). (3.14)

Proof. In virtue of the invariance of the pullback attractor An, there is a sequence {(u(n),in, ϕ(n),in)}n⩾1

with (u(n),in, ϕ(n),in) ∈ An(τ) ∈ An such that

Un(t, τ)(u(n),in, ϕ(n),in) = (u(n), ϕ(n)). (3.15)
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Due to the compactness of An(τ), there is some subsequence (using the same index) of
{(u(n),in, ϕ(n),in)}n⩾1 and some (uin, ϕin) ∈ E2

H(Σ) such that the following weak convergence holds as
n→ ∞,

(u(n),in, ϕ(n),in)⇀ (uin, ϕin) in E2
H(Σ). (3.16)

For the sequence {(u(n), ϕ(n))}n⩾1 with initial data {(u(n),in, ϕ(n),in)}n⩾1 in Eq (3.16), the compactness of
An(t) deduces that there is some (u, ϕ) ∈ E2

H(Σ) satisfying the following weak convergence as n→ ∞,

(u(n), ϕ(n))⇀ (u, ϕ) in E2
H(Σ). (3.17)

As an analogy of the proof of Lemma 3.2, u is the solution to Eqs (2.1)–(2.3) with initial data (uin, ϕin).
On the other hand, it follows from Eqs (2.8) and (2.9) that for any τ ⩽ τ(t, B̂H(Σ)),

An(t) = Un(t, τ)An(τ) ⊂ BH(Σ)(t).

Thanks to Eq (3.17), we have for any τ ⩽ τ(t, B̂H(Σ)) that (u, ϕ) ∈ BH(Σ)(t) and thus (u, ϕ) ∈ A(t).
The proof of Lemma 3.4 will be concluded by demonstrating that the convergence of Eq (3.17) is

strong. We finish the proof in two steps.
Step one: we show that as n→ ∞,

ϕ(n) −→ ϕ strongly in L2
H(Σ). (3.18)

It follows from Eqs (2.8) and (2.9) that there is a τ(t − k, B̂H(Σ)) satisfying for any k ∈ Z+ and τ ⩽
τ(t − k, B̂H(Σ)),

An(t − k) = Un(t − k, τ)An(τ) ⊂ BH(Σ)(t − k).

Taking advantage of the definition of the pullback absorbing set B̂H(Σ) and the diagonal argument, for
each k ∈ Z+ and τ < t − k, there is a (u(k), ϕ(k)) ∈ A(t − k) satisfying the following weak convergences
(up to a subsequence) as n→ ∞,

Un(t − k, τ)(u(n),in, ϕ(n),in)⇀ (u(k), ϕ(k)) in H(Σ) × L2
V(Σ), (3.19)

d
dt

u(n)
t−k(·; τ, u

(n),in, ϕ(n),in)⇀
d
dt
ϕ(k) in L2

V′(Σ). (3.20)

Thus, Equations (3.15), (3.17) and (3.19) together with the fact that the limit is unique, yield

(u, ϕ) = (u(0), ϕ(0)).

Note that for any bounded set Σr ⊂ Σ, all the embeddings V(Σr) ↪→ H(Σr) ↪→ V ′(Σr) are compact. By
Eqs (3.19) and (3.20) and Lemma 3.2, we obtain as n→ ∞,

u(n)
t−k(·; τ, u

(n),in, ϕ(n),in) −→ ϕ(k) strongly in L2
H(Σr).

Consequently, for any positive ϵ, there is some n(ϵ, r, k) > 0 satisfying

∥u(n)
t−k(·; τ, u

(n),in, ϕ(n),in) − ϕ(k)∥L2
H(Σr )
<
ϵ

3
, ∀ n ⩾ n(ϵ, r, k). (3.21)

Electronic Research Archive Volume 31, Issue 10, 5996–6011.



6005

Also, since for each k ∈ Z+, ϕ(k) ∈ L2
V(Σ) ↪→ L2

H(Σ) is a fixed element, there must exist some r1(k) > 0
such that

∥ϕ(k)∥L2
H(Σ\Σr )

<
ϵ

3
, ∀ r ⩾ r1(k). (3.22)

By Lemma 3.3, there exist r(ϵ, t − k, B̂H(Σ)) > 0 and τ(ϵ, t − k, B̂H(Σ)) < t − k satisfying for any r >
r(ϵ, t − k, B̂H(Σ)) and τ ⩽ τ(ϵ, t − k, B̂H(Σ)),

∥u(n)
t−k(·; τ, u

(n),in, ϕ(n),in)∥L2
H(Σ\Σr )

⩽ h
ϵ

3h
=
ϵ

3
. (3.23)

Therefore, by Eqs (3.21)–(3.23), we choose r and n large enough and τ small enough so that

∥u(n)
t−k(·; τ, u

(n),in, ϕ(n),in) − ϕ(k)∥L2
H(Σ)

⩽ ∥u(n)
t−k(·; τ, u

(n),in, ϕ(n),in) − ϕ(k)∥L2
H(Σ\Σr )

+ ∥u(n)
t−k(·; τ, u

(n),in, ϕ(n),in) − ϕ(k)∥L2
H(Σr )

⩽ ∥u(n)
t−k(·; τ, u

(n),in, ϕ(n),in)∥L2
H(Σ\Σr )

+ ∥ϕ(k)∥L2
H(Σ\Σr )

+ ∥u(n)
t−k(·; τ, u

(n),in, ϕ(m),in) − ϕ(k)∥L2
H(Σr )
⩽
ϵ

3
+
ϵ

3
+
ϵ

3
= ϵ,

which implies that for each k ∈ Z+, it holds as n→ ∞,

u(n)
t−k(·; τ, u

(n),in, ϕ(n),in) −→ ϕ(k) strongly in L2
H(Σ). (3.24)

Particularly, taking k = 0, we prove the claim of Eq (3.18).
Step two: we aim to prove that as n→ ∞, the following strong convergence holds:

u(n)(t; τ, u(n),in, ϕ(n),in) −→ u in H(Σ). (3.25)

By Eqs (3.19) and (3.20) and Lemma 3.2, we have the weak convergence as n→ ∞,

Un(t, τ)(u(n),in, ϕ(n),in) = Un(t, t − k)Un(t − k, τ)(u(n),in, ϕ(n),in) (3.26)
⇀ U(t, t − k)(u(k), ϕ(k)) in E2

H(Σ)×L2
V(Σ)
. (3.27)

As a result of Eqs (3.15), (3.17), (3.27) and the fact the limit is unique, we obtain

(u, ϕ) = U(t, t − k)(u(k), ϕ(k)), ∀ k ∈ Z+. (3.28)

Furthermore, considering Eqs (3.27), (3.28) and the lower semi-continuity of the norm, one can con-
clude

∥u∥2H(Σ) ⩽ lim inf
m→∞

∥u(n)(t; τ, u(n),in, ϕ(n),in)∥2H(Σ). (3.29)

Due to H(Σ) being a Hilbert space, Equation (3.25) can be inferred from Eqs (3.27), (3.29) and the
following remainder

∥u∥2H(Σ) ⩾ lim sup
n→∞

∥u(n)(t; τ, u(n),in, ϕ(n),in)∥2H(Σ). (3.30)
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Next we concentrate our attention on proving Eq (3.30). Defining a bilinear operator

[[·, ·]]V(Σ) : V(Σ) × V(Σ) 7→ R

by

[[u, v]]V(Σ) = 2µ1⟨Au, v⟩ −
γ

2
(u, v), ∀ u, v ∈ V(Σ). (3.31)

Setting
[[u]]2

V(Σ) = [[u, u]]V(Σ).

Thanks to Lemma 2.1, we obtain

(2c1µ1 −
γ

2
)∥u∥2V(Σ) ⩽ [[u]]2

V(Σ) ⩽ 2µ1⟨Au, u⟩ ⩽ 2µ1∥u∥2V(Σ). (3.32)

From Eq (3.32) and the condition γ < 4c1µ1 in (H4), it is evident that [[·]]V(Σ) defines a norm in the
space V(Σ), establishing equivalence with the conventional norm ∥ · ∥V(Σ). From now on, we set

∥ · ∥ = ∥ · ∥H(Σ).

Multiplying Eq (2.4) by u(n)(t) yields

d
dt
∥u(n)(t)∥2 + γ∥u(n)(t)∥2 = 2Γ

(
f (t), g(t, u(n)

t ), u(n)(t)
)
, (3.33)

where

Γ
(
f (t), g(t, u(n)

t ), u(n)(t)
)
=

(
f (t), u(n)(t)

)
+

(
g(t, u(n)

t ), u(n)(t)
)

− ⟨N(u(n)(t)), u(n)(t)⟩ − [[u(n)(t)]]2
V(Σ).

By employing the formula of constant variation, we can derive the energy equation as shown below:

∥u(n)(t)∥2 = e−γ(t−τ)∥u(n),in∥2 + 2
∫ t

τ

e−γ(t−τ)Γ
(
f (s), g(s, u(n)

s ), u(n)(s)
)
ds. (3.34)

Thus, for each k ∈ Z+, Equations (3.26) and (3.34) mean

∥u(n)(t; τ, u(n),in, ϕ(n),in)∥2 = ∥u(n)(t; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in)∥2

= e−γk∥u(n)(t − k; τ, u(n),in, ϕ(n),in)∥2

+ 2
[
G1(t, n) +G2(t, n) −G3(t, n) −G4(t, n)

]
, (3.35)

where

G1(t, n) =
∫ t

t−k
e−γ(t−s)( f (s), u(n)(s; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in)

))
ds,

G2(t, n) =
∫ t

t−k
e−γ(t−s)(g(s, u(n)

s (·; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in))
)
,

u(n)(s; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in)
))

ds,
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G3(t, n) =
∫ t

t−k
e−γ(t−s)〈N

(
u(n)(s; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in))

)
,

u(n)(s; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in)
)〉

ds,

G4(t, n) =
∫ t

t−k
e−γ(t−s)[[u(n)(s; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in))]]2

V(Σ)ds.

Limiting estimate of the first term in Eq (3.35): By Eq (2.9), it holds for any τ ⩽ τ(t − k, B̂H(Σ)),

Un(t − k, τ)(u(n),in, ϕ(n),in) ⊂ BH(Σ)(t − k),

which suggests that the following inequality holds:

e−γk∥u(n)(t − k; τ, u(n),in, ϕ(n),in)∥2 ⩽ e−γkR2
1(t − k). (3.36)

Limiting estimate of the term G1: We conclude from Eq (3.27) and Lemma 3.2 that the following
weak convergence in L2(t − k, t; V(Σ)) holds as n→ ∞,

u(n)(·; t − k,Un(t − k, τ)(u(n),in, ϕ(n),in))⇀ u(·; t − k, u(k), ϕ(k)). (3.37)

Since e−γ(t−s) f (s) ∈ L2(t − k, t; H(Σ)), Equation (3.37) indicates that

lim
n→∞

G1(t, n) =
∫ t

t−k
e−γ(t−s)( f (s), u(s; t − k, u(k), ϕ(k))

)
ds. (3.38)

Limiting estimate of the term G4: It is evident that
{ ∫ t

t−k
e−γ(t−s)[[u(s)]]2

V(Σ)ds
}1/2 operates as a norm

in the space L2(t − k, t; V(Σ)), establishing its equivalence to the usual norm ∥ · ∥L2(t−k,t;V(Σ)). Then Eq
(3.37) indicates that ∫ t

t−k
e−γ(t−s)[[u(s, t − k, u(k), ϕ(k))]]2

V(Σ)ds ⩽ lim inf
m→∞

G4(t, n). (3.39)

Limiting estimate of the term G2: To establish the limit of G2, we employ the approach of inserting
the term g

(
s, us(·; t−k, u(k), ϕ(k)). As an analogy of Eq (3.18), we obtain for each s ∈ [t−k, t] as n→ ∞,

u(n)
s (·; t − k,U(t − k, τ)(u(n),in, ϕ(n),in)) −→ us(·; t − k, u(k), ϕ(k)) (3.40)

strongly in L2
H(Σ). It follows from the assumption (H2) and Eq (3.40) that as n→ ∞,

∥g
(
s, u(n)

s (·; t − k,U(t − k, τ)(u(n),in, ϕ(n),in))
)
− g

(
s, us(·; t − k, u(k), ϕ(k))

)
∥

⩽ Lg∥u(n)
s (·; t − k,U(t − k, τ)(u(n),in, ϕ(n),in)) − us(·; t − k, u(k), ϕ(k))∥L2

H(Σ)

−→ 0, ∀ s ∈ [t − k, t],

which yields that for any s ∈ [t − k, t], the following strong convergence in H(Σ) holds as n→ ∞,

g(s, u(n)
s (·; t − k,U(t − k, τ)(u(n),in, ϕ(n),in))) −→ g(s, us(·; t − k, u(k), ϕ(k))).
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By considering the boundedness of∫ t

t−k
∥g(s, u(n)

s (·; t − k,U(t − k, τ)(u(n),in, ϕ(n),in)))∥2ds

and applying the Lebesgue dominated convergence theorem, the following strong convergence in L2(t−
k, t; H(Σ)) can be shown that as n→ ∞,

g(s, u(n)
s (·; t − k,U(t − k, τ)(u(n),in, ϕ(n),in))) −→ g(s, us(·; t − k, u(k), ϕ(k))). (3.41)

Then it can be inferred from Eqs (3.37) and (3.41) that

lim
n→∞

G2(t, n) =
∫ t

t−k
e−γ(t−s)[g(s, us(·; t − k, u(k), ϕ(k))), u(s; t − k, u(k), ϕ(k))

)]
ds. (3.42)

Limiting estimate of the term G3: The limit of G3 can be shown by using the technique of inserting
the term N(u(s; t − k, u(k), ϕ(k)). The estimates are essentially the same as the estimates [16, Equation
(3.50)] and we omit it, thus we obtain

lim
m→∞

G3(t, n) =
∫ t

t−k
e−γ(t−s)〈N(u(s; t − k, u(k), ϕ(k))), u(s; t − k, u(k), ϕ(k))

〉
ds. (3.43)

According to Eqs (3.33)–(3.36), (3.38) and (3.39) and (3.42)–(3.43), we conclude that

lim sup
n→∞

∥u(n)(t; τ, u(n),in, ϕ(n),in)∥2 ⩽ e−γkR2
1(t − k) + 2

∫ t

t−k
e−γ(t−s)Γ

(
f (s), g(s, u(k)

s ), u(k)(s)
)
ds. (3.44)

Moreover, applying the energy equation to Eq (2.1), we obtain

∥u(t)∥2 = e−γk∥u(k)∥2 + 2
∫ t

t−k
e−γ(t−s)Γ

(
f (s), g(s, u(k)

s ), u(k)(s)
)
ds. (3.45)

Then Eqs (3.44) and (3.45) imply that

lim sup
n→∞

∥u(n)(t; τ, u(n),in, ϕ(n),in)∥2 ⩽ e−γkR2
1(t − k) + ∥u∥2. (3.46)

From Eq (2.9) and the definition of R2
1(t) in Theorem 2.2, we know

lim
k→∞

e−γkR2
1(t − k) = 0.

Hence, the statement of Eq (3.30) follows. We prove the assertion of this lemma.

3.2. Proof of Theorem 3.1

This subsection is dedicated to establishing the proof of Theorem 3.1.
The proof of Theorem 3.1: The approach taken to prove Theorem 1.1 involves a contradiction

argument. Assume that the assertion is false, then for some t0 ∈ R, ϵ0 > 0, we can find a sequence
(u(n), ϕ(n)) ∈ An(t0), which satisfies

distE2
H(Σ)

(
(u(n), ϕ(n)),A(t0)

)
⩾ ϵ0. (3.47)

However, according to Lemma 3.4, there is a subsequence (using the same index) of {(u(n), ϕ(n))}n⩾1 that
can be found such that

lim
n→∞

distE2
H(Σ)

(
(u(n), ϕ(n)),A(t0)

)
= 0,

which obviously contradicts with Eq (3.47). The proof is complete.
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4. Conclusions

In this work, we consider the families An = {An(t)| t ∈ R} and A = {A(t)| t ∈ R} as the pullback
attractors of the bipolar fluid with delay in the domains Σn and Σ, respectively. We demonstrate that
the following equality holds for any t ∈ R,

lim
n→∞

DistE2
H(Σ)

(
An(t),A(t)

)
= 0. (4.1)

According to the definition of the Hausdorff semi-distance, Equation (4.1) shows that the pullback
attractorsAn = {An(t)| t ∈ R} in the sub-domains Σn converge to the pullback attractorA = {A(t)| t ∈
R} in the entire domain Σ as the sub-domains Σn approach the entire domain Σ, demonstrating the
semi-continuity of the pullback attractors in the phase space E2

H(Σ).
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