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Abstract: Let 0 < α < n and b be a locally integrable function. In this paper, we obtain the
characterization of compactness of the iterated commutator (TΩ,α)m

b generated by the function b and
the fractional integral operator with the homogeneous kernel TΩ,α on ball Banach function spaces. As
applications, we derive the characterization of compactness via the commutator (TΩ,α)m

b on weighted
Lebesgue spaces, and further obtain a necessary and sufficient condition for the compactness of the
iterated commutator (Tα)m

b generated by the function b and the fractional integral operator Tα on
Morrey spaces. Moreover, we also show the necessary and sufficient condition for the compactness of
the commutator [b,Tα] generated by the function b and the fractional integral operator Tα on variable
Lebesgue spaces and mixed Morrey spaces.
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1. Introduction

In 1961, John and Nirenberg [1] introduced the space of functions of bounded mean oscillation
BMO(Rn), which is defined as the set of all locally integrable functions f on Rn such that

∥ f ∥BMO(Rn) := sup
B

1
|B|

∫
B
| f (x) − fB| dx < ∞,

where the supremum is taken over all balls in Rn and fB := 1
|B|

∫
B

f (x)dx. In 1976, Coifman et al. [2]
stated that b ∈ BMO(Rn) if and only if the commutator

[b,T ] f (x) = bT f (x) − T (b f )(x)

is bounded on Lp(Rn) for 1 < p < ∞, where T is the classical singular integral operator. In 1978,
Uchiyama [3] proved that b ∈ BMO(Rn) if and only if the commutator generated by the locally
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integrable function b and the singular integral operator with the homogeneous kernel is bounded
on Lp(Rn) for 1 < p < ∞. Later, the characterization of BMO(Rn) was also established for various
function spaces including by Karlovich and Lerner [4] on variable exponent Lebesgue spaces and Di
Fazio and Ragusa [5] on Morrey spaces.

In 1978, Uchiyama [3] refined the boundedness results on the commutator [b,T ] to compactness.
This is achieved by requiring the symbol b ∈ CMO(Rn), which is the closure of C∞c (Rn) in the
BMO(Rn). In 2012, Chen et al. [6] showed that b ∈ CMO(Rn) if and only if the commutator generated
by the locally integrable function b and the singular integral operator with the homogeneous kernel is
compact on the Morrey spaces. Recently, Tao et al. [7] obtained that b ∈ CMO(Rn) if and only if the
commutator generated by the locally integrable function b and the singular integral operator with the
homogeneous kernel is compact on ball Banach function spaces. The purpose of this paper is to prove
the characterization of compactness of the iterated commutator generated by the locally integrable
function and the fractional integral operator with the homogeneous kernel on ball Banach function
spaces.

In this paper, we establish the characterization of compactness of the iterated commutator (TΩ,α)m
b

generated by the locally integrable function b and the fractional integral operator with the homogeneous
kernel TΩ,α on ball Banach function spaces. As applications, we show that b ∈ CMO(Rn) if and only
if the iterated commutator (TΩ,α)m

b is compact from Lp
ωp(Rn) to Lq

ωq(Rn), where 1 < p, q < ∞, 1
q =

1
p −

α
n

and ω is a weight, and we obtain that b ∈ CMO(Rn) if and only if the iterated commutator (Tα)m
b

generated by the locally integrable function b and the fractional integral operator is compact from
Mp

q (Rn) to Ms
t (Rn), where 0 < p ≤ q < ∞, 1 < t ≤ s < ∞, 1

s =
1
p −

α
n and t

s =
q
p . Moreover, we obtain

that b ∈ CMO(Rn) if and only if the commutator [b,Tα] generated by the locally integrable function
b and the fractional integral operator is compact from Lp(·)(Rn) to Lq(·)(Rn), where 1

q(x) =
1

p(x) −
α
n .

We also obtain that b ∈ CMO(Rn) if and only if the commutator [b,Tα] generated by the locally
integrable function b and the fractional integral operator is compact fromMp0

p⃗ (Rn) toMq0

q⃗ (Rn), where

p⃗ = (p1, · · · , pn), q⃗ = (q1, · · · , qn), n
p0
≤

∑n
j=1

1
p j

, n
q0
≤

∑n
j=1

1
q j

, 1
q0
= 1

p0
− αn and p⃗

p0
=

q⃗
q0

.
To state our main results, we begin with the definition of the ball Banach function spaces introduced

in [8].
The symbol U(Rn) is denoted as the set of all measurable functions on Rn. For any x ∈ Rn and

0 < r < ∞, let B(x, r) := {y ∈ Rn : |x − y| < r} and

B := {B(x, r) : x ∈ Rn and 0 < r < ∞}. (1.1)

Definition 1.1. A quasi-Banach space X ⊂ U(Rn) is called a ball quasi-Banach function space if it
satisfies the following conditions:

(i) ∥ f ∥X = 0 implies that f = 0 almost everywhere;
(ii) |g| ≤ | f | almost everywhere implies that ∥g∥X ≤ ∥ f ∥X ;

(iii) 0 ≤ fm ↑ f almost everywhere implies that ∥ fm∥X ↑ ∥ f ∥X ;
(iv) B ∈ B implies that χB ∈ X, where B is as in (1.1) .

The ball quasi-Banach function space X is called the ball Banach function space if the norm of X
satisfies the triangle inequality: for all f , g ∈ X ,

∥ f + g∥X ≤ ∥ f ∥X + ∥g∥X (1.2)
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and, for any B ∈ B, there exists a positive constant C(B) that is dependent on B, such that, for all f ∈ X,∫
B
| f (x)|dx ≤ C(B)∥ f ∥X.

The following notion of the associate space of the ball Banach function space can be found in [9,
Chapter 1, Definitions 2.1 and 2.3].

Definition 1.2. For any a ball Banach function space X, the associate space X′ is defined by

X′ := { f ∈ U(Rn) : ∥ f ∥X′ < ∞},

where, for any f ∈ U(Rn),
∥ f ∥X′ := sup

{g∈X:∥g∥X=1}
∥ f g∥L1(Rn),

and ∥ · ∥X′ is called the associate norm of ∥ · ∥X .

The theory of commutators plays an important role in harmonic analysis (see, for example, [10–16])
and partial differential equations (see, for example, [17–19]).

Let 0 < α < n. Recall that the fractional integral operator with the homogeneous kernel is defined
by

TΩ,α f (x) :=
∫
Rn

Ω(x − y)
|x − y|n−α

f (y)dy, (1.3)

where the function Ω satisfies the following conditions:

Ω(λx′) := Ω(x′) for any 0 < λ < ∞ and x′ ∈ Sn−1, (1.4)∫
Sn−1
Ω(x′)dσ(x′) = 0, (1.5)

|Ω(x′) −Ω(y′)| ≤ |x′ − y′| for any x′, y′ ∈ Sn−1, (1.6)

where Sn−1 := {x ∈ Rn : |x| = 1} denotes the unit sphere in Rn and dσ is the area measure on Sn−1.
We suppose that m ∈ N; the iterated commutator of the operator TΩ,α is defined by

(TΩ,α)m
b ( f )(x) := [b, (TΩ,α)m−1

b ]( f )(x), (TΩ,α)0
b f (x) := TΩ,α( f )(x).

Put Tα := T1,α, where Tα is a classical fractional integral operator, which is defined by

Tα f (x) :=
∫
Rn

f (y)
|x − y|n−α

dy.

In 2014, Pérez et al. [20] introduced the iterated commutator generated by the locally integrable
function b and the multilinear singular integral operator, and they studied the boundedness of these
operators on product Lebesgue spaces. Bényi and Torres [21] studied the compactness of the iterated
commutator generated by two locally integrable functions b1, b2 and the bilinear singular integral
operator on the Lebesgue spaces. Later, Bényi et al. [22] extended the work of Bényi and Torres [21]
to weighted Lebesgue spaces. Wang et al. [23] studied the characterization of compactness of the
iterated commutator generated by two locally integrable functions b1, b2 as well as the bilinear
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fractional integral operator on the Lebesgue spaces. Hytönen and Lappas [24] studied the
compactness of the iterated commutator generated by two locally integrable functions b1, b2 and the
bilinear singular integral operator, the bilinear fractional integral operator and the bilinear Fourier
multiplier on the weighted Lebesgue spaces. Recently, Guo et al. [25] studied the compactness of the
iterated commutator generated by the locally integrable function b and the singular integral operator
with the homogeneous kernel on the weighted Lebesgue spaces. In this paper, we consider the
characterization of compactness of the iterated commutator (TΩ,α)m

b generated by the locally
integrable function b and the fractional integral operator with the homogeneous kernel on ball Banach
function spaces.

To show our main results, we need some assumptions.
Let 0 < α < n. For a locally integrable function f on Rn, the fractional maximal operatorMα is

defined by

Mα( f )(x) := sup
B∋x

1
|B|1−α/n

∫
B
| f (y)|dy, (1.7)

where the supremum is taken over all balls B ∈ B containing x. For a locally integrable function f
on Rn, the Hardy-Littlewood maximal operatorM is defined by

M( f )(x) := sup
B∋x

1
|B|

∫
B
| f (y)|dy,

where the supremum is taken over all balls B ∈ B containing x.

Assumption 1.1. Let X be a ball Banach function space. Suppose that the Hardy-Littlewood maximal
operatorM is bounded on X and X′.

Assumption 1.2. Let X and Y be ball Banach function spaces. Then the following statements are true:

(i) The operator Tα is bounded from X to Y.
(ii) Let χB be a characteristic function on the ball B. For any ball B, then

∥χB∥X∥χB∥Y′

|B|1+α/n
≲ 1.

(iii) The iterated commutator of the operator TΩ,α is bounded from X to Y, that is,

∥(TΩ,α)m
b ∥Y ≲ ∥bi∥

m
BMO|| f ||X.

We also need the condition of the L∞-Dini condition (see, for example, [26] ).

Definition 1.3. A function Ω ∈ L∞(Sn−1) is said to satisfy the L∞-Dini condition if∫ 1

0

ω∞(τ)
τ

dτ < ∞, (1.8)

where, for any 0 < τ < 1,
ω∞(τ) := sup

{x,y∈Sn−1:|x−y|<τ}

|Ω(x) −Ω(y)|.
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Theorem 1.1. Let 0 < α < n. Let X and Y be ball Banach function spaces satisfying
Assumptions 1.1, 1.2 (i) and (iii) and TΩ,α be the fractional integral operator with the homogeneous
kernel Ω, where Ω ∈ L∞(Sn−1) satisfies (1.3), (1.4) and (1.8). If b ∈ CMO(Rn), then (TΩ,α)m

b is compact
from X to Y.

Theorem 1.2. Let 0 < α < n and b ∈ L1
loc (Rn). Let X and Y be ball Banach function spaces satisfying

Assumptions 1.1 and 1.2(i) and (ii). Let TΩ,α be the fractional integral operator with the homogeneous
kernelΩ, whereΩ ∈ L∞(Sn−1) satisfies that there exists an open set Γ ⊂ Sn−1 such thatΩ never vanishes
and never changes sign on Γ. If (TΩ,α)m

b is compact from X to Y, then b ∈ CMO(Rn).

Corollary 1.1. Let 0 < α < n and b ∈ L1
loc (Rn). Let X and Y be ball Banach function spaces

satisfying Assumptions 1.1 and 1.2 and TΩ,α be the fractional integral operator with the homogeneous
kernel Ω, where Ω satisfies (1.3), (1.4) and (1.5). Then (TΩ,α)m

b is compact from X to Y if and only
if b ∈ CMO(Rn).

We end this section by stating some conventions on notation. Let N := {1, 2, . . .}. We always denote
by C a positive constant which is independent of the main parameters, but it may vary from line to line.
We also use C(α,β,...) to denote a positive constant that is dependent on the indicated parameters α, β, . . ..
The symbol f ≲ g means that f ≤ Cg . If f ≲ g and g ≲ f , we then write f ∼ g. If E is a subset of
Rn, we denote by χE its characteristic function and by Ec the set Rn\E. Furthermore, for any t ∈ (0,∞)
and any ball B := B(x, r) in Rn, with x ∈ Rn and r ∈ (0,∞), we let tB := B(x, tr). For any q ∈ [1,∞],
we denote by q′ its conjugate exponent, namely, 1

q +
1
q′ = 1.

2. Preliminaries

We present some necessary lemmas and notions in this section, which is very important to prove
our main results.

For any f ∈ U(Rn), the non-increasing rearrangement is defined by

f ∗(t) := inf{ζ > 0 : |{x ∈ Rn : | f (x)| > ζ}| < t}, 0 < t < ∞,

for any f ∈ L1
loc (Rn), 0 < λ < 1 and B ⊂ Rn, the local mean oscillation of f on B is defined by

aλ( f ; B) := inf
c∈R

(( f − c)χB)∗(λ|B|).

Lemma 2.1. [27, Lemma 2.1] Let 0 < λ ≤ 1
2 . For any real-valued function b, we write

∥b∥BMOλ := sup
B⊂Rn

aλ(b; B).

Then there exists a positive constant C such that

C−1∥b∥BMO ≤ ∥b∥BMOλ ≤ C∥b∥BMO.

Lemma 2.2. [25, Theorem 3.3] Let 0 < λ < 1
2 and b ∈ BMO(Rn). Then b ∈ CMO(Rn) if and only if

the function b satisfies the following conditions:

(i) lim
r→0

sup
|B|=r

aλ(b; B) = 0;
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(ii) lim
r→∞

sup
|B|=r

aλ(b; B) = 0;

(iii) lim
d→∞

sup
B∩B(0,d)=∅

aλ(b; B) = 0.

Lemma 2.3. [28, Theorem 1.2] Let X be the ball Banach function space such that M is bounded
on X′. For any b ∈ L1

loc (Rn), we denote

∥b∥BMOX := sup
B⊂Rn

1
∥χB∥X

∥(b − bB)χB∥X.

Then there exists a positive constant C such that, for all b ∈ BMO(Rn),

C−1∥b∥BMO ≤ C∥b∥BMOX ≤ C∥b∥BMO.

Lemma 2.4. [7, Lemma 2.6] Let X be a ball quasi-Banach function space satisfying the triangle
inequality as in (1.2). If f ∈ X and g ∈ X′, then f and g are integrable and∫

Rn
| f (x)g(x)|dx ≤ ∥ f ∥X∥g∥X′ .

Lemma 2.5. [8, Definition 2.6] Let 0 < p < ∞ and X be a ball Banach function space. The p-
convexification Xp of X is defined by

Xp := { f ∈ U(Rn) : | f |p ∈ X}

equipped with the quasi-norm ∥ f ∥Xp = ∥| f |p∥
1
p

X .

For any 0 < θ < ∞, f ∈ L1
loc (Rn) and x ∈ Rn, the powered Hardy-Littlewood maximal operator

M(θ) is defined by

M(θ)( f )(x) :=
{
M

(
| f |θ

)
(x)

} 1
θ
. (2.1)

Lemma 2.6. [29, Remark 2.19] Let 0 < θ < ∞ and X be a ball quasi-Banach function space. Assume
that there exists a positive constant C such that, for any f ∈ U(Rn) ,

∥M(θ)( f )∥X ≤ C∥ f ∥X.

Then there exists a positive constant C0 such that, for any ball B ∈ B and 1 ≤ β < ∞,

∥χβB∥X ≤ C0β
n
θ ∥χB∥X, (2.2)

where the positive constant C0 is independent of B ∈ B and β .

Next, let us recall the following lemma introduced by Tao et al.in [7, Theorem 3.6], which is a
sufficient condition for subsets of ball Banach function spaces to be totally bounded and a
generalization in ball Banach function spaces of the well-known Fréchet-Kolmogorov theorem in
Lp(Rn) with 1 ≤ p < ∞.

Lemma 2.7. Let X be a ball Banach function space. Then a subset A of X is totally bounded if the
setA satisfies the following conditions:
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(i) A is bounded, namely,
sup
f∈A
∥ f ∥X < ∞;

(ii) For any given ϵ ∈ (0,∞), there exists a positive constant N such that, for any f ∈ A,

∥ fχ{x∈Rn:|x|>N}∥X < ϵ;

(iii) A is uniformly vanishes equicontinuous, namely, for any given ϵ ∈ (0,∞), there exists a positive
constant ρ such that, for any f ∈ A and z ∈ Rn with |z| ∈ [0, ρ),

∥ f (· + z) − f (·)∥X < ϵ.

Conversely, assume that X satisfies the following additional asumptions that Cc(Rn) is dense in X and
that, for any f ∈ X and y ∈ Rn,

∥ f ∥X = ∥ f (· + y)∥X.

If a subsetA of X is totally bounded, thenA satisfies (i)–(iii) of Lemma 2.7.

Lemma 2.8. [7, Proposition 3.8] If X is a ball Banach function space with an absolutely continuous
norm, then Cc(Rn) is dense in X.

The following lemma can be seen in [27, Proposition 4.1].

Lemma 2.9. Let λ ∈ (0, 1) and b ∈ L1
loc (Rn). Let Ω ∈ L∞(Sn−1) satisfy that there exists an open

set Γ ⊂ Sn−1 such thatΩ never vanishes and never changes sign on Γ. There exist ϵ0 > 0 and k0 > 10
√

n
depending only on Ω and n such that, for any ball B(x0, r0) ⊂ Rn with x0 ∈ R

n and r0 ∈ (0,∞),
there exist another ball B(x1, r0) and measurable sets E ⊂ B(x0, r0) with |E| = λ

2 |B(x0, r0)| as well as
F ⊂ B(x1, r0) with |x0 − x1| = 2k0r0 and |F| = λ2 |B(x1, r0)| and G ⊂ E × F with |G| ≥ λ8 |B(x0, r0)|2 such
that they satisfy the following properties:

(i) for any x ∈ E and y ∈ F, aλ(b; B) ≤ |b(x) − b(y)|;
(ii) Ω

(
x−y
|x−y|

)
and b(x) − b(y) do not change sign on E × F;

(iii) for any (x, y) ∈ G,
∣∣∣∣Ω( x−y

|x−y| )
∣∣∣∣ ≥ ϵ0.

3. Proof of Theorem 1.1

In this section, we first recall the following smooth truncated technique in [30] (see also [7, 31]).
Let φ ∈ C∞([0,∞)) satisfy

0 ≤ φ ≤ 1 and φ(x) =
{

1, x ∈ [0, 1
2 ],

0, x ∈ [1,∞].

Let 0 < α < n and Ω ∈ L∞(Sn−1) satisfy (1.4), (1.5) and the L∞-Dini condition. For any ϵ ∈ (0,∞)
and any x, y ∈ Rn, define Kϵ(x, y) := Ω(x−y)

|x−y|n−α

[
1 − φ

(
|x−y|
ϵ

)]
. Let X be the ball Banach function space

satisfying Assumption 1.1. Using [7, Lemma 2.12] and [32, Lemma 7.4.5], we know that, for any
f ∈ X, ϵ ∈ (0,∞) and x ∈ Rn,

T (ϵ)
Ω,α

f (x) :=
∫
Rn

Kϵ(x, y) f (y)dy < ∞.
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Proposition 3.1. Let 0 < α < n and Ω ∈ L∞(Sn−1) satisfy (1.4), (1.5) and (1.8). Then, for any
given ϵ ∈ (0,∞), Kϵ satisfies the following smoothness condition: there exists a positive constant C
which is independent of ϵ, x, y and z for any x, y, z ∈ Rn with |z| ≤ |x−y|

2 such that

|Kϵ(x, y) − Kϵ(x + z, y)| ≤ C
[

1
|x − y|n−α

ω∞

(
4|z|
|x − y|

)
+

|z|
|x − y|n−α+1

]
.

Proof. For any x, y, z ∈ Rn with |z| ≤ |x−y|
2 , applying (1.4), we know that

|Ω(x − y) −Ω(x + z − y)| =

∣∣∣∣∣∣Ω
(

x − y
|x − y|

)
−Ω

(
x + ξ − y
|x + z − y|

)∣∣∣∣∣∣ ≤ ω∞
(

4|z|
|x − y|

)
.

Using the mean value theorem, for any x, y, z ∈ Rn with |z| ≤ |x−y|
2 , we have

| Kϵ(x, y) − Kϵ(x + z, y) | ≤
∣∣∣∣∣Ω(x − y)
|x − y|n−α

−
Ω(x + z − y)
|x + z − y|n−α

∣∣∣∣∣
∣∣∣∣∣∣1 − φ

(
|x − y|
ϵ

)∣∣∣∣∣∣
+

∣∣∣∣∣Ω(x + z − y)
|x + z − y|n−α

∣∣∣∣∣
∣∣∣∣∣∣φ

(
|x + z − y|
ϵ

)
− φ

(
|x − y|
ϵ

)∣∣∣∣∣∣
≲

∣∣∣∣∣Ω(x − y) −Ω(x + z − y)
|x − y|n−α

∣∣∣∣∣ + ∣∣∣∣∣ 1
|x + z − y|n−α

−
1

|x − y|n−α

∣∣∣∣∣
+
∥φ′∥L∞(R+)

|x + z − y|n−α

∣∣∣∣∣ |x + z − y|
ϵ

−
|x − y|
ϵ

∣∣∣∣∣ χ{(x,y)∈Rn×Rn: 1
3 ϵ≤|x−y|≤2ϵ}(x, y)

≲
1

|x − y|n−α
ω∞

(
4|z|
|x − y|

)
+

|z|
|x − y|n−α+1

+
1
ϵ

|z|
|x + z − y|n−α

χ{(x,y)∈Rn×Rn: 1
3 ϵ≤|x−y|≤2ϵ}(x, y)

≲
1

|x − y|n−α
ω∞

(
4|z|
|x − y|

)
+

|z|
|x − y|n−α+1 ,

Thus, the proof of Proposition 3.1 is complete.

Proposition 3.2. Let 0 < α < n and b ∈ C∞c (Rn). Let X and Y be ball Banach function spaces and TΩ,α
be the fractional integral operator with homogeneous kernel Ω, where Ω ∈ L∞(Sn−1) satisfies (1.3),
(1.4) and (1.8). Then there exists a positive constant C such that, for any ϵ > 0, f ∈ X and x ∈ Rn,∣∣∣(T (ϵ)

Ω,α
)m
b ( f )(x) − (TΩ,α)m

b ( f )(x)
∣∣∣ ≤ Cϵ∥∇b∥mL∞(Rn)Mα( f )(x).

Moreover, ifMα is bounded from X to Y, then

lim
ϵ→0+
∥(T (ϵ)
Ω,α

)m
b − (TΩ,α)m

b ∥X→Y = 0.

Proof. For f ∈ X and x ∈ Rn, using the mean value theorem, we have

∣∣∣(T (ϵ)
Ω,α

)m
b ( f )(x) − (TΩ,α)m

b ( f )(x)
∣∣∣ ≤ ∣∣∣∣∣∣

∫
{y∈Rn:|x−y|<ϵ}

|b(x) − b(y)|m
Ω(x − y)
|x − y|n−α

φ

(
|x − y|
ϵ

)
f (y)dy

∣∣∣∣∣∣
AIMS Mathematics Volume 9, Issue 2, 3126–3149.
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≤

∫
{y∈Rn:|x−y|<ϵ}

|b(x) − b(y)|m
|Ω(x − y)|
|x − y|n−α

| f (y)|dy

≤ ∥Ω∥L∞(Sn−1)∥∇b∥mL∞(Rn)

∞∑
j=0

∫
{y∈Rn: ϵ

2 j+1 <|x−y|≤ ϵ
2 j }

|x − y|m
| f (y)|
|x − y|n−α

dy

≤ ∥Ω∥L∞(Sn−1)∥∇b∥mL∞(Rn)

∞∑
j=0

ϵ

2m j ·
1

|2− jϵ |n−α

∫
{y∈Rn:|x−y|≤ ϵ

2 j }

| f (y)|dy

≲ ϵ∥Ω∥L∞(Sn−1)∥∇b∥mL∞(Rn)

∞∑
j=0

1
2m jMα( f )(x)

≲ ϵ∥∇b∥mL∞(Rn)Mα( f )(x).

Applying Assumption 1.2(i), we have

∥(T (ϵ)
Ω,α

)m
b ( f ) − (TΩ,α)m

b ( f )∥Y ≲ ϵ∥Mα( f )∥Y ≲ ϵ∥ f ∥X,

which implies that limϵ→0+ ∥(T
(ϵ)
Ω,α

)m
b − (TΩ,α)m

b ∥X→Y = 0. The proof of Proposition 3.2 is complete.

Proof of Theorem 1.1. Let b ∈ CMO(Rn). We know that, for any given κ ∈ (0,∞), there exists a b(κ) ∈

C∞c (Rn) such that ∥b− b(κ)∥BMO(Rn) < κ. Then, by the boundedness of (TΩ,α)m
b−b(κ) from X to Y , we obtain

the following, for any given κ ∈ (0,∞) and for any f ∈ X;∥∥∥(TΩ,α)m
b ( f ) − (TΩ,α)m

b(κ)( f )
∥∥∥

Y
=

∥∥∥(TΩ,α)m
b−b(κ)( f )

∥∥∥
Y
≲

∥∥∥b − b(κ)
∥∥∥m

BMO(Rn) ∥ f ∥X ≲ κ
m∥ f ∥X.

By Proposition 3.2, it suffices to show that, for any b ∈ C∞c (Rn) and any ϵ ∈ (0,∞) small enough, the
operator (T (ϵ)

Ω,α
)m
b is compact from X to Y . Thus, we only need to prove that

Aϵ :=
{
(T (ϵ)
Ω,α

)m
b ( f ) : ∥ f ∥X ≤ 1

}
satisfies (i)–(iii) of Lemma 2.7 respectively.

For ϵ < 1, applying Proposition 3.2 and Assumption 1.2(iii), we have

∥(T (ϵ)
Ω,α

)m
b ( f )∥Y ≤ ∥(TΩ,α)m

b ( f )∥Y + ∥(TΩ,α)m
b ( f ) − (T (ϵ)

Ω,α
)m
b ( f )∥Y ≲ (1 + ϵ)∥ f ∥X ≤ 2∥ f ∥X.

This proves that Aϵ satisfies (i) of Lemma 2.7.
For (ii) of Lemma 2.7, we suppose that there exists a positive constant R0 such that supp(b) ⊂

B(0,R0). For any y ∈ B(0,R0) and x ∈ Rn with |x| ∈ (2R0,∞), we have that |x − y| ∼ |x|. Thus, for
any f ∈ A, x ∈ Rn with |x| ∈ (2R0,∞) and Ω ∈ L∞(Sn−1), using Lemma 2.6, we have

|(T (ϵ)
Ω,α

)m
b ( f )(x)| ≤

∫
Rn
|b(x) − b(y)|m

|Ω(x − y)|
|x − y|n−α

| f (y)|dy

≲

∫
B(0,R0)

| f (y)|
|x − y|n−α

dy

≲
1
|x|n−α

∥ f ∥X∥χB(0,R0)∥X′
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≲
1
|x|n−α

.

Applying Lemma 2.6 and [8, Lemma 2.15], we deduce that there exists η ∈ (1,∞) such that

∥(T (ϵ)
Ω,α

)m
b ( f )χ{x∈Rn:|x|>N}∥Y ≲

∞∑
j=0

∥
1
| · |n−α

χ{x∈Rn:2 jN≤|x|<2 j+1N}∥Y

≲
∞∑
j=0

∥χ{x∈Rn:2 jN≤|x|<2 j+1N}∥Y

(2 jN)n−α

≲
∞∑
j=0

1
(2 jN)n−α−n/η

≲
1

Nn−α−n/η .

Thus, Aϵ satisfies the condition (ii) of Lemma 2.7.
Next, we prove that Aϵ satisfies (iii) of Lemma 2.7. For any f ∈ A and z ∈ Rn\{0} with |z| ≤ ϵ8 , we

see that

(T (ϵ)
Ω,α

)m
b ( f )(x + z) − (T (ϵ)

Ω,α
)m
b ( f )(x)

≤

∫
Rn

(b(x) − b(y))mKϵ(x, y) f (y)dy −
∫
Rn

(b(x + z) − b(y))mKϵ(x + z, y) f (y)dy

≤

∫
{y∈Rn:|x−y|>ϵ/4}

(b(x + z) − b(y))m (Kϵ(x + z, y) − Kϵ(x, y)) f (y)dy

+

∫
{y∈Rn:|x−y|>ϵ/4}

((b(x + z) − b(y))m − (b(x) − b(y))m) Kϵ(x, y) f (y)dy

=: I1(x, z) + I2(x, z).

For I1(x, z), applying Proposition 3.1, if |z| ≤ |x−y|
2 , we have

I1(x, z) ≤
∫
|x−y|>ϵ/4

|b(x + z) − b(y)|m |Kϵ(x + z, y) − Kϵ(x, y)| | f (y)|dy

≲

∫
{y∈Rn:|x−y|>ϵ/4}

|b(x + z) − b(y)|mω∞

(
4|z|
|x − y|

)
1

|x − y|n−α
| f (y)|dy

+

∫
{y∈Rn:|x−y|>ϵ/4}

|b(x + z) − b(y)|m
1
|x − y|

1
|x − y|n−α

| f (y)|dy

=: I11(x, z) + I12(x, z).

For I11(x, z), by the L∞-Dini condition, we obtain that

I11(x, z) =
∫
{y∈Rn:|x−y|>ϵ/4}

|b(x + z) − b(y)|mω∞

(
4|z|
|x − y|

)
1

|x − y|n−α
| f (y)|dy

≲ |z|m∥∇b∥mL∞(Rn)

∞∑
j=0

ω∞

(
|z|

2 j−2ϵ

) ∫
{y∈Rn:2 j−2ϵ<|x−y|<2 j−1ϵ}

1
|x − y|n−α

| f (y)|dy
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≲ |z|m∥∇b∥mL∞(Rn)

∞∑
j=0

ω∞

(
|z|

2 j−2ϵ

)
1

|2 j−1ϵ |n−α

∫
{y∈Rn:|x−y|<2 j−1ϵ}

| f (y)|dy

≤ |z|m∥∇b∥mL∞(Rn)

∞∑
j=0

ω∞

(
|z|

2 j−2ϵ

)
Mα( f )(x)

≲ |z|m∥∇b∥mL∞(Rn)Mα( f )(x)
∞∑
j=0

ω∞

(
|z|

2 j−2ϵ

) ∫ 2− j

2−( j+1)

dt
t

≤ |z|m∥∇b∥mL∞(Rn)Mα( f )(x)
∫ 1

0
ω

(
8|z|
ϵ

t
)

dt
t

≤ |z|m∥∇b∥mL∞(Rn)Mα( f )(x)
∫ 8|z|

ϵ

0
ω (t)

dt
t
.

For I12(x, z), by the mean value theorem,

I12(x, z) ≲ |z|m∥∇b∥mL∞(Rn)

∞∑
j=1

1
|2 j−2ϵ |

1
|2 j−1ϵ |n−α

∫
{y∈Rn:|x−y|<2 j−1ϵ}

| f (y)|dy ≲ |z|mMα( f )(x).

Applying Assumption 1.2(i) and the L∞-Dini condition, we obtain that

∥I1(·, z)∥Y ≲ |z|
m · ∥Mα f ∥Y ≲ |z|

m · ∥ f ∥X ≲ |z|m.

Next, we write

|(b(x + z) − b(y))m − (b(x) − b(y))m| = |(b(x + z) − b(x) + b(x) − b(y))m − (b(x) − b(y))m|

=

m∑
j=1

Ci
m(b(x + z) − b(x)) j(b(x) − b(y))m− j

=

m∑
j=1

Ci
m(b(x + z) − b(x)) j

m− j∑
i=0

Ci
m− jb(x)ib(y)m− j−i.

Thus, for I2(x, z), we have

I2(x, z) ≤
m∑

j=1

Ci
m|b(x + z) − b(x)| j

m− j∑
i=0

Ci
m− j|b(x)|i

∣∣∣∣∣∣
∫
|x−y|>ϵ/2

b(y)m− j−i

[
Kϵ(x, y) −

Ω(x − y)
|x − y|n−α

]
f (y)dy

∣∣∣∣∣∣
+

m∑
j=1

Ci
m|b(x + z) − b(x)| j

m− j∑
i=0

Ci
m− j|b(x)|i

∣∣∣∣∣∣
∫
|x−y|>ϵ/2

b(y)m− j−i Ω(x − y)
|x − y|n−α

f (y)dy

∣∣∣∣∣∣
≲ |z|

m− j∑
i=0

Ci
m− j

∣∣∣∣∣∣
∫
{y∈Rn:ϵ≥|x−y|≥ϵ/2}

b(y)m− j−i Ω(x − y)
|x − y|n−α

f (y)dy +
∫
|x−y|>ϵ/2

b(y)m− j−i Ω(x − y)
|x − y|n−α

f (y)dy

∣∣∣∣∣∣
≲ |z|

m− j∑
i=0

Ci
m− j

[
Mα(bm− j−i f )(x) + Tα(bm− j−i f )(x)

]
.
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Assumption 1.2(i) yields

∥I2(·, z)∥Y ≲ |z| ·
m− j∑
i=0

Ci
m− j

∥∥∥Mα(bm− j−i f )(x) + Tα(bm− j−i f )(x)
∥∥∥

Y
≲ |z| · ∥ f ∥X ≲ |z|.

Combining the estimates of I1 and I2, we have

lim
|z|→0+

∥(T (ϵ)
Ω,α

)m
b ( f )(· + z) − (T (ϵ)

Ω,α
)m
b ( f )(·)∥Y = 0,

which implies the condition (iii) of Lemma 2.7. Thus, the iterated commutator (T (ϵ)
Ω,α

)m
b is compact

from X to Y for any given b ∈ C∞c (Rn) and ϵ ∈ (0,∞). The proof of Theorem 1.1 is complete.

4. Proof of Theorem 1.2

In this section, we first show the lower and upper estimates of the iterated commutator of the
fractional integral operator (TΩ,α)m

b . Furthermore, we give the proof of Theorem 1.2.
Now, we begin to show the lower estimate of the iterated commutator of the fractional integral

operator (TΩ,α)m
b .

Proposition 4.1. Let 0 < α < n and b ∈ L1
loc(R

n). Let X and Y be ball Banach function spaces
satisfying Assumption 1.2(ii) and TΩ,α be the fractional integral operator with the homogeneous kernel
Ω, where Ω ∈ L∞(Sn−1) satisfies that there exists an open set Γ ⊂ Sn−1 such that Ω never vanishes and
never changes sign on Γ. Let B := B(x0, r0) and k0, ϵ0, G, E and F be as in Lemma 2.9. Then there
exists a positive constant C that is independent of B and just depends on α, λ, k0, ϵ0 and n such that,
for any measurable set U ⊂ Rn with |U | ≤ λ8 |B(x0, r0)|,

∥(TΩ,α)m
b (χF)χE\U∥Y ≥ Caλ(b; B)m∥χF∥X.

Proof. Applying Lemma 2.9, we have

aλ(b; B)m|2(k0 + 1))B|−1+ αn |(E\U × F) ∩G| ≤
1
ϵ0

∫
E\U

∣∣∣∣∣∫
F

(b(x) − b(y))m

|x − y|n−α
Ω(

x − y
|x − y|

)dy
∣∣∣∣∣ dx

≤
1
ϵ0

∫
E\U
|(TΩ,α)m

b (χF)(x)|dx

≤
1
ϵ0
∥(TΩ,α)m

b (χF)χE\U∥Y · ∥χE\U∥Y′ .

And using the facts that |U | ≤ λ8 |B(x0, r0)| and |F| = λ2 |B(x1, r0)|, |G| ≥ λ8 |B(x0, r0)|2, we see

|(E\U × F) ∩G| ≥ |G| − |U ||F|

≥
λ

8
|B(x0, r0)|2 −

λ

8
|B(x0, r0)| ·

λ

2
|B(x1, r0)|

=
λ

16
|B(x0, r0)|2.
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We apply Assumption 1.2(ii) and obtain that

aλ(b; B)m∥χF∥X ≲
∥χF∥X∥χE\U∥Y′

|2(k0 + 1)B|−1+α/n · |B|2
· ∥(TΩ,α)m

b (χF)χE\U∥Y

≲
∥χF∥X∥χE\U∥Y′

|2(k0 + 1)B|1+α/n
· ∥(TΩ,α)m

b (χF)χE\U∥Y

≲
∥χ2(k0+1)B∥X∥χ2(k0+1)B∥Y′

|2(k0 + 1)B|1+α/n
· ∥(TΩ,α)m

b (χF)χE\U∥Y

≲ ∥(TΩ,α)m
b (χF)χE\U∥Y .

The proof of Proposition 4.1 is complete.

Obviously, we have the following corollary.

Corollary 4.1. Let 0 < α < n and b ∈ L1
loc(R

n). Let X and Y be ball Banach function spaces satisfying
Assumption 1.2(ii) and TΩ,α be the fractional integral operator with the homogeneous kernel Ω, where
Ω ∈ L∞(Sn−1) satisfies that there exists an open set Γ ⊂ Sn−1 such that Ω never vanishes and never
changes sign on Γ. If (TΩ,α)m

b is bounded from X to Y, then b ∈ BMO(Rn).

Next, we give the upper estimate of the commutator (TΩ,α)m
b .

Proposition 4.2. Let 0 < α < n and b ∈ BMO(Rn). Let X and Y be ball Banach function spaces
satisfying Assumption 1.1 and Assumption 1.2(i) and TΩ,α be the fractional integral operator with the
homogeneous kernel Ω, where Ω ∈ L∞(Sn−1) satisfies that there exists an open set Γ ⊂ Sn−1 such that
Ω never vanishes and never changes sign on Γ. Let B = B(x0, r0) and F and k0 be as in Lemma 2.9.
Then, there exist positive constants d0 satisfying d0 < d < ∞, δ and C that is independent on d, B, d0

and k0 such that,
∥(TΩ,α)m

b (χF)χ2d+1B\2d B∥Y ≤ C2−δdnd∥b∥mBMO(Rn)∥χF∥.

Proof . Let B = B(x0, r0), B(x1, r0), ϵ0, k0, G, E, and F be as in Lemma 2.9. Taking d0 > 0 such
that 2d0 ∈ (4k0,∞), we get the following for any x ∈ 2d+1B\2dB and y ∈ F ⊂ B(x1, r0):

|x − y| ∼ 2dr0.

By Lemma 2.4, for any x ∈ 2d+1B\2dB, we have

|(TΩ,α)m
b (χF)(x)| =

∣∣∣∣∣∣∣
∫

F
(b(x) − b(y))m

Ω( x−y
|x−y| )

|x − y|n−α
dy

∣∣∣∣∣∣∣
≤

∫
F
|b(x) − bB(x1,r0) + bB(x1,r0) − b(y)|m

Ω( x−y
|x−y| )

|x − y|n−α
dy

≤

m∑
i=0

Ci
m|b(x) − bB(x1,r0)|

m−i
∫

F
|bB(x1,r0) − b(y)|i

Ω( x−y
|x−y| )

|x − y|n−α
dy

≤

m∑
i=0

Ci
m|b(x) − bB(x1,r0)|

m−i ∥Ω∥L∞(Sn−1)

|2dB(x1, r0)|1−α/n

∫
F
|bB(x1,r0) − b(y)|idy

AIMS Mathematics Volume 9, Issue 2, 3126–3149.
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≲
m∑

i=0

Ci
m|b(x) − bB(x1,r0)|

m−i 1
|2dB(x1, r0)|1−α/n

∥|bB(x1,r0) − b|iχF∥X′∥χF∥X.

Applying Lemma 2.3 and the fact that F ⊂ B(x1, r0), we have

∥|bB(x1,r0) − b|iχF∥X′ ≲ ∥|bB(x1,r0) − b|iχB(x1,r0)∥X′

= ∥|bB(x1,r0) − b|χB(x1,r0)∥
i
(X′)i

≤ ∥b∥iBMO∥χB(x1,r0)∥X′ .

Hence

|(TΩ,α)m
b (χF)(x)| ≲

m∑
i=0

Ci
m|b(x) − bB(x1,r0)|

m−i ∥χB(x1,r0)∥X′∥χF∥X

|2dB(x1, r0)|1−α/n
∥b∥iBMO. (4.1)

Let κ ∈ {2, 4, 6, · · · }, depending only on k0 such that x0 ∈ 2κB(x1, r0). Thus, for any y ∈ B(x0, 2d+1r0),
we have

|y − x1| ≤ |y − x0| + |x0 − x1| ≤ 2d+1r0 + 2κr0 ≤ 2d+κr0,

which implies that
B(x0, 2d+1r0) ⊂ B(x1, 2d+κr0).

Thus, we have
|bB(x1,r0) − b2d+κB(x1,r0)| ≤ (d + κ)2n∥b∥BMO.

Using Lemma 2.6 and [8, Lemma2.15], we can see that

∥χβB∥Y ≲ β
n∥χB∥Y .

Applying Lemma 2.8, we have

∥|b(x) − bB(x1,r0)|
m−iχ2d+1B\2d B∥Y ≤ ∥|b(x) − bB(x1,r0)|

m−iχ2d+κB(x1,r0)∥Y

≤ 2nd/ηd∥b∥m−i
BMO∥χB(x1,r0)∥Y . (4.2)

By Assumption 1.2(i), we obtain that
∥χB∥Y∥χB∥X′

|B|1−
α
n

≲ 1. (4.3)

In fact, it is easy to see that

∥χ{x∈Rn:Mα f (x)≥γ}∥Y ≤
1
γ
∥Mα f ∥Y ≤

C
γ
∥ f ∥X.

Let f ∈ L1
loc (Rn). For almost every x ∈ Rn and | f |BχB(x) = 1

|B|

∫
B
| f (y)|dy · χB(x) ≤ |B|−

α
nMα( fχB)(x),

we obtain thatMα( fχB) > γ for almost every x ∈ B and γ := 1
2 | f |B|B|

α
n . Thus, we have

| f |B∥χB∥Y ≤ | f |B∥χ{x∈Rn:Mα f (x)≥γ}∥Y ≤ | f |B ·Cγ−1∥ fχB∥X = 2C|B|−
α
n ∥ fχB∥X.

Further, we obtain that

1
|B|1−α/n

∥χB∥Y∥χB∥X′ =
1

|B|1−α/n
∥χB∥Y sup

{∫
B
|g(x)|dx : ∥g∥X ≤ 1

}
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= sup
{
|B|α/n|g|B∥χB∥Y : ∥g∥X ≤ 1

}
≤ sup {2C∥gχB∥X : ∥g∥X ≤ 1}
≲ 1.

Using (4.1)–(4.3), we have

∥(TΩ,α)m
b (χF)∥Y ≲

m∑
i=0

Ci
m∥|b(x) − bB(x1,r0)|

m−iχ2d+1B\2d B∥Y
∥χB(x1,r0)∥X′∥χF∥X

|2dB(x1, r0)|1−α/n
∥b∥iBMO

≤

m∑
i=0

Ci
m2ndd∥b∥m−i

BMO∥χB(x1,r0)∥Y
∥χB(x1,r0)∥X′∥χF∥X

|2dB(x1, r0)|1−α/n
∥b∥iBMO

≲ 2ndd∥b∥mBMO
∥χB(x1,r0)∥X′∥χB(x1,r0)∥Y

|2dB(x1, r0)|1−α/n
∥χF∥X

≲ 2nd( αn−1)d∥b∥mBMO∥χF∥X.

Let δ := 1 − αn > 0. Then we complete the proof of Proposition 4.2.

Proof of Theorem 1.2. By Corollary 4.1, we conclude that b ∈ BMO(Rn); then, without loss of
generality, we can assume that ∥b∥BMO(Rn) = 1. To show that b ∈ CMO(Rn), we use a contradiction
argument via Lemma 2.2. Observe that, if b < CMO(Rn), then b does not satisfy at least one condition
among (i), (ii) and (iii) of Lemma 2.2. To finish the proof of this theorem, we only need to show that,
if b does not satisfy at least one condition among (i), (ii) and (iii) of Lemma 2.2, then (TΩ,α)m

b is not
compact from X to Y . We prove this by three cases on b as follows.
Case 1: Suppose that b does not satisfy (i) of Lemma 2.2. Then, there exist a constant ϵ0 ∈ (0, 1) and
a sequence of balls {B j} j∈N with |B j| → 0 as j→ ∞ such that, for any j ∈ N,

aλ(b; B j) ≥ ϵ0, (4.4)

where λ ∈ (0, 1/2). For any given ball B := B(x0, r0), let E and F be the set mentioned in Lemma 2.9,

f := ∥χF∥
−1
X χF

and 2C0 := C(λ,k0,ε0,n) be as in Proposition 4.1. Then, by Proposition 4.1, we conclude that, for any
measurable set U ⊂ Rn with |U | ≤ λ8 |B|,

∥(TΩ,α)m
b ( f )χE\U∥Y ≥ 2C0aλ(b; B)m. (4.5)

For such chosen C0 and ϵ0, by Proposition 4.2, there exists a positive constant d0 such that

∥(TΩ,α)m
b ( f )χRn\2d0 B∥Y ≤

∞∑
k=0

∥(TΩ,α)m
b ( f )χ2d0+k+1B\2d0+k B∥Y ≤ C0ϵ

m
0 . (4.6)

Take a subsequence of balls {B j} j∈N, still denoted by {B j} j∈N, such that, for any j ∈ N,

|B j|

|B j+1|
≤ min

{
λ2

64
, 2−2d0n

}
.
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Let B∗j := (|B j|/|B j−1|)1/2nB j for any j ∈ N and j ≥ 2. It is easy to see that, for any j ∈ N and j ≥ 2,

(
|B j|

|B j−1|

) 1
2n

≥ 2d0 and |B∗j | ≤
λ

8
|B j−1|.

From this and the monotonicity of {B j} j∈N, we deduce that, for any integers k and j with k > j ≥ 2,

2d0 Bk ⊂ B∗k and |B∗k| ≤
λ

8
|Bk−1| ≤

λ

8
|B j|. (4.7)

Now, for any j ∈ N, let E j and F j be the sets associated with B j as in Lemma 2.9 with B replaced by
B j, and

f j := ∥χF j∥
−1
X χF j .

Then, for any integers k and j with k > j ≥ 2, by (4.4), (4.5), (4.6) and (4.7), we conclude that

∥(TΩ,α)m
b ( f j)χE j\B∗k

∥Y ≥ 2C0aλ(b; B j)m ≥ 2C0ϵ
m
0

and
∥(TΩ,α)m

b ( fk)χE j\B∗k
∥Y ≤ ∥(TΩ,α)m

b ( fk)χRn\2d0 Bk
∥Y ≤ C0ϵ

m
0 ,

which further implies that

∥(TΩ,α)m
b ( f j) − (TΩ,α)m

b ( fk)∥Y ≥ ∥{(TΩ,α)m
b ( f j) − (TΩ,α)m

b ( fk)}χE j\B∗k
∥Y

≥ ∥(TΩ,α)m
b ( f j)χE j\B∗k

∥Y − ∥(TΩ,α)m
b ( fk)χE j\B∗k

∥Y

≥ C0ϵ
m
0 .

Therefore, {(TΩ,α)m
b ( f j)} j∈N is not relatively compact from X to Y , which leads to a contradiction with

the compactness of (TΩ,α)m
b from X to Y . This shows that b satisfies (i) of Lemma 2.2, which is the

desired conclusion.
Case 2: Suppose that b does not satisfy (ii) of Lemma 2.2. In this case, similarly to the above Case 1,
there exist a constant ϵ0 ∈ (0, 1) and a sequence of balls {B j} j∈N with |B j| → ∞ as j→ ∞ such that, for
any j ∈ N,

aλ(b; B j) ≥ ϵ0 and
|B j|

|B j+1|
≤ min

{
λ2

64
, 2−2d0n

}
,

where C0 and d0 are as in Case 1 such that (4.5) and (4.6) hold true. For any j ∈ N, let E j, F j and f j be
as in Case 1 and B∗j := (|B j|/|B j−1|)1/2nB j for any j ≥ 2. It is easy to see that, for any integers k and j
with k > j ≥ 2,

2d0 Bk ⊂ B∗k and |B∗k| ≤
λ

8
|B j|.

Using a method similar to that used in Case 1, we conclude that

∥(TΩ,α)m
b ( f j) − (TΩ,α)m

b ( fk)∥Y ≥ C0ϵ
m
0 ;

hence {(TΩ,α)m
b ( f j)} j∈N is not relatively compact from X to Y , which is a contradiction. This shows that

b satisfies (ii) of Lemma 2.2, which is also the desired conclusion.
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Case 3: Suppose that b does not satisfy (iii) of Lemma 2.2. In this case, there exist a constant ϵ0 ∈ (0, 1)
and a sequence of balls {B j} j∈N such that, for any j ∈ N,

aλ(b; B j) ≥ ϵ0. (4.8)

From this and Cases 1 and 2, we deduce that there exist a constant d1 ∈ [d0,∞) with d0 as in Lemma 2.9
and a subsequence of balls {B j} j∈N, still denoted by {B j} j∈N, such that

|B j| ∼ 1, ∀ j ∈ N,

and
2d1 Bi ∩ 2d1 B j = ∅, ∀i , j.

For any j ∈ N, let E j, F j, f j and C0 be as in Case 1. Notice that, for any positive integers k and j,(
2d0 Bk ∩ E j

)
⊂

(
2d1 Bk ∩ 2d1 B j

)
= ∅.

By this, Proposition 4.1 with U := ∅ and (4.8), we conclude that, for any positive integers k and j,

∥(TΩ,α)m
b ( f j)χE j\2d0 Bk

∥Y = ∥(TΩ,α)m
b ( f j)χE j∥Y ≥ 2C0aλ(b; B)m ≥ 2C0ϵ

m
0 . (4.9)

Moreover, by Proposition 4.2, we deduce that, for any positive integers k and j,

∥(TΩ,α)m
b ( fk)χE j\2d0 Bk

∥Y ≤ ∥(TΩ,α)m
b ( fk)χRn\2d0 Bk

∥Y ≤ C0ϵ
m
0 . (4.10)

Combining (4.9) and (4.10), we obtain

∥(TΩ,α)m
b ( f j) − (TΩ,α)m

b ( fk)∥Y ≥ ∥{(TΩ,α)m
b ( f j) − (TΩ,α)m

b ( fk)}χE j\2d0 Bk
∥Y

≥ ∥(TΩ,α)m
b ( f j)χE j\2d0 Bk

∥Y − ∥(TΩ,α)m
b ( fk)χE j\2d0 Bk

∥Y

≥ C0ϵ
m
0 ;

hence {(TΩ,α)m
b ( f j)} j∈N is not relatively compact from X to Y , which is a contradiction. This shows that

b satisfies (iii) of Lemma 2.2, which completes the proof of Theorem 1.2.

5. Applications

5.1. Weighted Lebesgue spaces

We begin this section with the definition of Muckenhoupt weights Ap(Rn). A weight will always
mean a positive function which is locally integrable. Also, for a weight ω and a measurable set E, we
define ω(E) :=

∫
E
ω(y)dy.

Definition 5.1. For 1 < p < ∞, a weight ω is said to be of class Ap(Rn) if

sup
B⊂Rn

(
1
|B|

∫
B
ω(x)dx

) 1
p
(

1
|B|

∫
B
ω(x)1−p′dx

) 1
p′

< ∞.
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Definition 5.2. For 1 < p, q < ∞, a weight ω is said to be of class Ap,q(Rn) if

sup
B⊂Rn

(
1
|B|

∫
B
ω(x)qdx

) 1
q
(

1
|B|

∫
B
ω(x)−p′dx

) 1
p′

< ∞.

Next, let us recall the weighted Lebesgue spaces which are defined as follows.

Definition 5.3. Let 1 < p < ∞ and ω be a weight. The weighted Lebesgue space Lp
ω(Rn) denotes the

set of all locally integrable functions f on Rn such that

∥ f ∥Lp
ω(Rn) :=

(∫
Rn
| f (x)|pω(x)dx

)1/p

< ∞.

Theorem 5.1. Let 0 < α < n, 1 < p, q < ∞ and 1
q =

1
p −

α
n . Let ω ∈ Ap,q(Rn) and TΩ,α be a fractional

integral operator with the homogeneous kernel Ω, where Ω ∈ L∞(Sn−1) satisfies (1.3), (1.4) and (1.8).
If b ∈ CMO(Rn), then (TΩ,α)m

b is compact from Lp
ωp(Rn) to Lq

ωq(Rn).

Theorem 5.2. Let 0 < α < n, 1 < p, q < ∞ and 1
q =

1
p −

α
n . Let ω ∈ Ap,q(Rn), b ∈ L1

loc (Rn) and TΩ,α
be a fractional integral operator with the homogeneous kernel Ω, where Ω ∈ L∞(Sn−1) satisfies that
there exists an open set Γ ⊂ Sn−1 such that Ω never vanishes and never changes sign on Γ. If (TΩ,α)m

b is
compact from Lp

ωp(Rn) to Lq
ωq(Rn), then b ∈ CMO(Rn).

Corollary 5.1. Let 0 < α < n, 1 < p, q < ∞ and 1
q =

1
p −

α
n . Let ω ∈ Ap,q(Rn), b ∈ L1

loc (Rn) and
TΩ,α be a fractional integral operator with the homogeneous kernel Ω, where Ω satisfies (1.3)–(1.5).
Then (TΩ,α)m

b is compact from Lp
ωp(Rn) to Lq

ωq(Rn) if and only if b ∈ CMO(Rn).

Proof. Let X := Lp
ωp(Rn) and ω ∈ Ap,q(Rn). From [33], we then get that ωq ∈ Aq(Rn) and ω−q′ ∈

Aq′(Rn). By the fact thatM is bounded on Lq
ωq(Rn) and X′, where X′ = Lq′

ω−q′ (R
n) in [34, Theorem 3.1],

TΩ,α : Lp
ωp(Rn) → Lq

ωq(Rn) in [35, Theorem 1] and the iterated commutator (TΩ,α)m
b is bounded from

Lp
ωp(Rn) to Lq

ωq(Rn) in [36, Theorem 1] for 1 < p, q < ∞, 0 < α < n, 1
q =

1
p −

α
n and ω ∈ Ap,q(Rn), we

then use Hölder’s inequality to obtain that

∥χB∥Y′∥χB∥X

|B|1+α/n
=

∥χB∥Lq′

ω−q′
∥χB∥Lp

ωp

|B|1+α/n

=

(
1
|B|

∫
B
ω(x)−q′dx

)1/q′ ( 1
|B|

∫
B
ω(x)pdx

)1/p

≤

(
1
|B|

∫
B
ω(x)−p′dx

)1/p′ ( 1
|B|

∫
B
ω(x)qdx

)1/q

≲ 1.

Thus, Theorems 1.1 and 1.2 and Corollary 1.1 are true with X replaced by Lp
ωp(Rn) and Y replaced

by Lq
ωq(Rn).

5.2. Morrey spaces

Recall that the definition of the Morrey space Mq
p(Rn) holds for 0 < p ≤ q < ∞ and was introduced

by Morrey in [39].
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Definition 5.4. Let 0 < p ≤ q < ∞. The Morrey space Mq
p (Rn) is defined to be the set of all measurable

functions f on Rn such that

∥ f ∥Mq
p(Rn) := sup

B∈B
|B|1/p−1/r∥ f ∥Lr(B) < ∞,

where B is as in (1.1).

Theorem 5.3. Let 0 < α < n, 1 < p ≤ q < ∞, 1 < t ≤ s < ∞, 1
s =

1
p −

α
n and t

s =
q
p . Let b ∈ L1

loc (Rn)
and Tα be a fractional integral operator. Then (Tα)m

b is compact from Mp
q (Rn) to Ms

t (Rn) if and only
if b ∈ CMO(Rn).

Proof. We know that the Morrey space is the ball Banach function space in [8, P. 86]. Moreover, [b,Tα]
is bounded from Mp

q (Rn) to Ms
t (Rn) in [37, Theorem 3.1] for 1 < p ≤ q < ∞, 1 < t ≤ s < ∞, 1

s =
1
p −

α
n

and t
s =

q
p , and (Tα)m

b is bounded from Mp
q (Rn) to Ms

t (Rn) in [40, Corollary 3] for 1 < p ≤ q < ∞,
1 < t ≤ s < ∞, 1

s =
1
p −

α
n and t

s =
q
p . It is easy to calculate that

∥χB∥X∥χB∥Y′

|B|1+α/n
=
∥χB∥Mp

q
∥χB∥(Ms

t )′

|B|1+α/n
≲
|B|1/p+1/s′

|B|1+α/n
≲ 1.

Thus, using Corollary 1.1, we complete the proof of Theorem 5.3.

5.3. Variable Lebesgue spaces

In this section, we apply our results on variable Lebesgue spaces with X = Lp(·)(Rn), Y = Lq(·)(Rn)
and 1

p(x) −
1

q(x) =
α
n . We write p− := ess inf

x∈Rn
p(x) and p+ := ess sup

x∈Rn
p(x). Recall the definition of the

variable Lebesgue spaces.

Definition 5.5. Let p(·) : Rn 7→ [0,∞) be a measurable function. Then the variable Lebesgue space
Lp(·)(Rn) is defined to be the set of all measurable functions f on Rn such that

∥ f ∥Lp(·) := inf

λ ∈ (0,∞) :
∫
Rn

(
| f (x)|
λ

)p(x)

dx ≤ 1

 < ∞.
Lemma 5.1. [38, Theorem 1.1] Let p(·) : Rn 7→ [0,∞) be a measurable function satisfying that

|p(x) − p(y)| ≤ C
1

− log(|x − y|)
if |x − y| ≤

1
2
, (5.1)

and
|p(x) − p(y)| ≤ C

1
log(e + |x|)

if |x| ≤ |y|; (5.2)

thenM is bounded in Lp(·)(Rn) and Lp(·)′(Rn).

Lemma 5.2. [41, Lemma 2.5] Let p(x) satisfy (5.1) and (5.2), and let it satisfy that 1 < p− ≤ p+ < ∞.
Then,

∥χB∥Lq(·)(Rn) ∼

 |B|
1

p(x) if |B| ≤ 2n and x ∈ B;
|B|

1
p(∞) if |B| ≥ 1,

where p(∞) = lim
x→∞

p(x).
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Theorem 5.4. Let 0 < α < min{n, n/p+}, 1 < p− ≤ p+ < ∞ and 1
q(x) =

1
p(x) −

α
n . Let b ∈ L1

loc (Rn)
and Tα be a fractional integral operator. Then [b,Tα] is compact from Lp(·)(Rn) to Lq(·)(Rn) if and only
if b ∈ CMO(Rn).

Proof. If 1 < p− ≤ p+ < ∞, we know that the space Lp(·)(Rn) is a ball Banach function space in [8].
If p(x) satisfies (5.1) and (5.2), 1 < p− ≤ p+ < ∞ and 1

p(x) −
1

q(x) =
α
n , then q(x) also satisfies (5.1)

and (5.2), 1 < q− ≤ q+ < ∞. Let 0 < α < n/p+. We know that if p(x) satisfies (5.1) and (5.2) and
1 < p− ≤ p+ < ∞, Tα is bounded from Lp(·)(Rn) to Lq(·) in [42, theorem 2] for 1

p(x) −
1

q(x) =
α
n and

[b,Tα] is bounded from Lp(·)(Rn) to Lq(·) in [37, Theorem 3.1] for 1
p(x) −

1
q(x) =

α
n . If 1

p(x) −
1

q(x) =
α
n , then

1
p(x) +

1
q(x)′ = 1 + αn and 1

p(∞) +
1

q(∞)′ = 1 + αn . Thus, using Lemma 5.2, we have

∥χB∥X∥χB∥Y′

|B|1+α/n
=
∥χB∥Lp(·)∥χB∥Lq(·)′

|B|1+α/n
≲ 1.

Applying Corollary 1.1, we have the desired result.

5.4. Mixed Morrey spaces

Let us begin with the definition of the mixed-norm Lebesgue spaces.

Definition 5.6. Let p⃗ := (p1, . . . , pn) ∈ (0,∞]n. The mixed-norm Lebesgue space L p⃗ (Rn) is defined to
be the set of all measurable functions f on Rn such that

∥ f ∥L p⃗(Rn) :=


∫
R

· · ·

[∫
R

| f (x1, . . . , xn)|p1 dx1

] p2
p1

· · · dxn


1

pn

< ∞

with the usual modifications made when pi = ∞ for some i ∈ {1, . . . , n}.

Next, we recall the definition of the mixed Morrey spaces. In 2019, Nogayama [43, 44] first
introduced the mixed Morrey spaceMp0

p⃗ (Rn), which is defined as follows.

Definition 5.7. Let p⃗ = (p1, p2, · · · , pn) ∈ (1,∞)n and p0 ∈ (1,∞) satisfy

n
p0
≤

n∑
j=1

1
p j
.

The mixed Morrey spaceMp0

p⃗ (Rn) is defined to be the set of all measurable functions f such that

∥ f ∥Mp0
p⃗

:= sup
Q
|Q|

1
p0
− 1

n (
∑n

j=1
1
p j

)
∥ fχQ∥Lp⃗ < ∞.

Let p⃗ = (p1, p2, · · · , pn) ∈ (1,∞)n and p0 ∈ (1,∞) satisfy

n
p0
≤

n∑
j=1

1
p j
.

The mixed Morrey space is a ball Banach function space in [45, Remark 2.9]. Moreover, the space
B

p′0
p⃗ ′(R

n) is the associate space of the mixed Morrey spaceMp0

p⃗ (Rn) andM is bounded in Bq′0
q⃗ ′(R

n).
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Definition 5.8. Let p⃗ = (p1, p2, · · · , pn) ∈ (1,∞)n, p0 ∈ (1,∞) and n
p0
≤

∑n
i=1

1
pi

. A measurable function
b(x) is said to be a (p′0, p⃗

′)-block if there exists a cube Q such that

supp b ⊂ Q, ∥b∥L p⃗ ′ ≤ |Q|
1
n
∑n

i=1
1
pi
− 1

p0 .

The block spaces B
p′0
p⃗ ′(R

n) denote the measurable function set of f =
∑∞

i=1 λibi(x), where {λi}
∞
i=1 ∈ ℓ

1

and bi is a (p′0, p⃗
′)-block for any i. The norm ∥ f ∥

B
p′0
p⃗ ′ (R

n)
for f ∈ B

p′0
p⃗ ′(R

n) is defined as

∥ f ∥
B

p′0
p⃗ ′
= inf

∥{λi}
∞
i=1∥ℓ1 : f =

∞∑
i=1

λibi(x), {λi}
∞
i=1 ∈ ℓ

1, bi is a (p′0, p⃗
′) − block for any i

 .
Theorem 5.5. Let 0 < α < n, 1 < p0, q0 < ∞, 1 < p⃗, q⃗ < ∞, n

p0
≤

∑n
j=1

1
p j

, n
q0
≤

∑n
j=1

1
q j

, 1
q0
= 1

p0
− αn

and p⃗
p0
=

q⃗
q0

. Let b ∈ L1
loc (Rn) and Tα be a fractional integral operator. Then [b,Tα] is compact from

M
p0

p⃗ (Rn) toMq0

q⃗ (Rn) if and only if b ∈ CMO(Rn).

Proof. Given Tα is bounded from Mp0

p⃗ (Rn) to Mq0

q⃗ (Rn) in [43, Theorem 1.11] for 1
q0
= 1

p0
− αn and

p⃗
p0
=

q⃗
q0

and [b,Tα] is bounded from Mp0

p⃗ (Rn) to Mq0

q⃗ (Rn) in [44, Theorem 1.2] for 1
q0
= 1

p0
− αn and

p⃗
p0
=

q⃗
q0

, by [44, Example 2.8], it is easy to see that

∥χB∥X∥χB∥Y′

|B|1+α/n
=
∥χB∥Mp0

p⃗
∥χB∥(Mq0

q⃗ )′

|B|1+α/n
≲
|B|1/p0+1/q′0

|B|1+α/n
≲ 1.

Thus, using Corollary 1.1, we finish the proof of Theorem 5.4.

6. Conclusions

In this work, we establish the characterization of compactness of the iterated commutator (TΩ,α)m
b

generated by the locally integrable function b and the fractional integral operator with the homogeneous
kernel TΩ,α on ball Banach function spaces. As applications, we show that b ∈ CMO(Rn) if and only if
the iterated commutator (TΩ,α)m

b is compact from Lp
ωp(Rn) to Lq

ωq(Rn) and we obtain that b ∈ CMO(Rn)
if and only if the iterated commutator (Tα)m

b generated by the locally integrable function b and the
fractional integral operator is compact from Mp

q (Rn) to Ms
t (Rn). Moreover, we obtain that b ∈ CMO(Rn)

if and only if the commutator [b,Tα] generated by the locally integrable function b and the fractional
integral operator is compact from Lp(·)(Rn) to Lq(·)(Rn). We also have that b ∈ CMO(Rn) if and only
if the commutator [b,Tα] generated by the locally integrable function b and the fractional integral
operator is compact fromMp0

p⃗ (Rn) toMq0

q⃗ (Rn).
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