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Abstract: Let 0 < @ < n and b be a locally integrable function. In this paper, we obtain the
characterization of compactness of the iterated commutator (Tq,); generated by the function b and
the fractional integral operator with the homogeneous kernel T, , on ball Banach function spaces. As
applications, we derive the characterization of compactness via the commutator (Tq,), on weighted
Lebesgue spaces, and further obtain a necessary and sufficient condition for the compactness of the
iterated commutator (7,);" generated by the function b and the fractional integral operator T, on
Morrey spaces. Moreover, we also show the necessary and sufficient condition for the compactness of
the commutator [b, T, ] generated by the function » and the fractional integral operator 7, on variable
Lebesgue spaces and mixed Morrey spaces.

Keywords: ball Banach function space; fractional integral operator; commutator; compactness
Mathematics Subject Classification: 42B20, 42B25, 42B35, 47B47

1. Introduction

In 1961, John and Nirenberg [1] introduced the space of functions of bounded mean oscillation
BMO(R™), which is defined as the set of all locally integrable functions f on R” such that

1
I fllsmon = sup — f|f(x) — faldx < oo,
s |Bl Jp
where the supremum is taken over all balls in R” and f3 := ﬁ fB f(x)dx. In 1976, Coifman et al. [2]

stated that b € BMO(R") if and only if the commutator

[0, T1f(x) = bT f(x) = T(bf)(x)

is bounded on LP(R") for 1 < p < oo, where T is the classical singular integral operator. In 1978,
Uchiyama [3] proved that b € BMO(R") if and only if the commutator generated by the locally
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integrable function b and the singular integral operator with the homogeneous kernel is bounded
on LP(R") for 1 < p < oo. Later, the characterization of BMO(R") was also established for various
function spaces including by Karlovich and Lerner [4] on variable exponent Lebesgue spaces and Di
Fazio and Ragusa [5] on Morrey spaces.

In 1978, Uchiyama [3] refined the boundedness results on the commutator [b, 7] to compactness.
This is achieved by requiring the symbol b € CMO(R"), which is the closure of C°(R") in the
BMO(R™). In 2012, Chen et al. [6] showed that b € CMO(R") if and only if the commutator generated
by the locally integrable function b and the singular integral operator with the homogeneous kernel is
compact on the Morrey spaces. Recently, Tao et al. [7] obtained that b € CMO(R") if and only if the
commutator generated by the locally integrable function b and the singular integral operator with the
homogeneous kernel is compact on ball Banach function spaces. The purpose of this paper is to prove
the characterization of compactness of the iterated commutator generated by the locally integrable
function and the fractional integral operator with the homogeneous kernel on ball Banach function
spaces.

In this paper, we establish the characterization of compactness of the iterated commutator (Tq.)}
generated by the locally integrable function b and the fractional integral operator with the homogeneous
kernel T, on ball Banach function spaces. As applications, we show that b € CMO(R") if and only
if the iterated commutator (T )} is compact from Lw,, R" to qu(R”) where 1 < p,g < oo, 5 = i -2
and w is a weight, and we obtain that » € CMO(R") if and only if the iterated commutator (Ta),,
generated by the locally integrable function b and the fractional integral operator is compact from
MJR") to Mi(R"), where 0 < p < g < 00,1 <t <s<00,1= ]—17 — %and { = £. Moreover, we obtain
that b € CMO(R") if and only if the commutator [b, T, ] generated by the locally integrable function
b and the fractional integral operator is compact from LPO(R") to LiO(R"), where ﬁ = ﬁ -z
We also obtain that b € CMO(R") if and only if the commutator [b,T,] generated by the locally
integrable function b and the fractional integral operator is compact from M" ’(R") to MZJ)(R"), where

=P P @= (@ ) g S e < S T d”o—q—o

To state our main results, we begin with the definition of the ball Banach function spaces introduced
in [8].

The symbol U(R") is denoted as the set of all measurable functions on R”. For any x € R" and
O<r<oolet B(x,r):={yeR":|x—y| <r}and

B:={B(x,r): xeR"and 0 < r < oo}. (L.1)

Definition 1.1. A quasi-Banach space X c UR") is called a ball quasi-Banach function space if it
satisfies the following conditions:

(i) Ifllx = O implies that f = 0 almost everywhere;

(ii) |g| < |f| almost everywhere implies that ||g|lx < ||fllx ;
(iii) 0 < f,, T f almost everywhere implies that ||fullx T I1fllx
(iv) B € B implies that yg € X, where B is asin (1.1) .

The ball quasi-Banach function space X is called the ball Banach function space if the norm of X
satisfies the triangle inequality: for all f,g € X,

If + gllx < IIfllx +1gllx (1.2)
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and, for any B € B, there exists a positive constant Cz) that is dependent on B, such that, for all f € X,

fB FWldx < Caplflx.

The following notion of the associate space of the ball Banach function space can be found in [9,
Chapter 1, Definitions 2.1 and 2.3].

Definition 1.2. For any a ball Banach function space X, the associate space X' is defined by
X' ={f e UR") : lIflx < oo},

where, for any f € UR"),
fllx == sup ||fg||L'(Rn),

{geX:ligllx=1}

and || - ||x- is called the associate norm of || - ||x .

The theory of commutators plays an important role in harmonic analysis (see, for example, [10-16])
and partial differential equations (see, for example, [17-19]).

Let 0 < @ < n. Recall that the fractional integral operator with the homogeneous kernel is defined
by

Qx-y)
Taof = | =2 f0)dy, (1.3)
o 1X =Yl
where the function Q satisfies the following conditions:
Q(Ax") := Q(x') forany 0 < 1 < co and x” € "/, (1.4)
f Q(x)do(x") =0, (1.5)
Snfl
1Q(x") — Q)| < X' —y'| for any ¥,y € S"', (1.6)

where S"7! := {x € R" : |x] = 1} denotes the unit sphere in R" and do is the area measure on S"!.
We suppose that m € N; the iterated commutator of the operator T, is defined by

(Ta.o)y (N = [0, (Taw))  1N®),  Tadhf(x) = Tau()).
Put T, :=T,,, where T, is a classical fractional integral operator, which is defined by

) dy

g |X =y

Tof(x) =

In 2014, Pérez et al. [20] introduced the iterated commutator generated by the locally integrable
function b and the multilinear singular integral operator, and they studied the boundedness of these
operators on product Lebesgue spaces. Bényi and Torres [21] studied the compactness of the iterated
commutator generated by two locally integrable functions by, b, and the bilinear singular integral
operator on the Lebesgue spaces. Later, Bényi et al. [22] extended the work of Bényi and Torres [21]
to weighted Lebesgue spaces. Wang et al. [23] studied the characterization of compactness of the
iterated commutator generated by two locally integrable functions b, b, as well as the bilinear
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fractional integral operator on the Lebesgue spaces. Hytonen and Lappas [24] studied the
compactness of the iterated commutator generated by two locally integrable functions by, b, and the
bilinear singular integral operator, the bilinear fractional integral operator and the bilinear Fourier
multiplier on the weighted Lebesgue spaces. Recently, Guo et al. [25] studied the compactness of the
iterated commutator generated by the locally integrable function » and the singular integral operator
with the homogeneous kernel on the weighted Lebesgue spaces. In this paper, we consider the
characterization of compactness of the iterated commutator (Tq,); generated by the locally
integrable function b and the fractional integral operator with the homogeneous kernel on ball Banach
function spaces.

To show our main results, we need some assumptions.

Let 0 < @ < n. For a locally integrable function f on R”, the fractional maximal operator M, is
defined by

M) = sup s [ 10, (1.7)
1B/ Jg

B>x

where the supremum is taken over all balls B € B containing x. For a locally integrable function f
on R”, the Hardy-Littlewood maximal operator M is defined by

1
M(f)(x) := sup — f lfO)ldy,
B>x |B| B

where the supremum is taken over all balls B € B containing x.

Assumption 1.1. Let X be a ball Banach function space. Suppose that the Hardy-Littlewood maximal
operator M is bounded on X and X'.

Assumption 1.2. Let X and Y be ball Banach function spaces. Then the following statements are true:

(i) The operator T, is bounded from X to Y.
(ii) Let x g be a characteristic function on the ball B. For any ball B, then

Il sllx I ally

|B|1+a/n S L.

(iii) The iterated commutator of the operator Tq , is bounded from X to Y, that is,

I(Ta.o)ylly S Wbillgyoll flx-

We also need the condition of the L*-Dini condition (see, for example, [26] ).

Definition 1.3. A function Q € L*(S""") is said to satisfy the L*-Dini condition if

1
f Vol gt ¢ oo, (1.8)
0 T
where, forany 0 < 7 < 1,
Weo(T) 1= sup 1Q(x) — Q).

{x,yES"’l :|x—y|<‘r}
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Theorem 1.1. Let 0 < a < n. Let X and Y be ball Banach function spaces satisfying
Assumptions 1.1, 1.2 (i) and (iii) and Tq , be the fractional integral operator with the homogeneous
kernel Q, where Q € L¥(S"™") satisfies (1.3), (1.4) and (1.8). If b € CMO(R"), then (Tq,.)} is compact
fromXtoY.

Theorem 1.2. Let 0 < @ <nand b € L] (R"). Let X and Y be ball Banach function spaces satisfying
Assumptions 1.1 and 1.2(i) and (ii). Let Tq, be the fractional integral operator with the homogeneous
kernel Q, where Q € L*(S"™") satisfies that there exists an open setT' C S"~! such that Q never vanishes

and never changes sign onI. If (Tq )} is compact from X to Y, then b € CMO(R").

Corollary 1.1. Let 0 < @ < nand b € L%OC (R™). Let X and Y be ball Banach function spaces
satisfying Assumptions 1.1 and 1.2 and Tq, be the fractional integral operator with the homogeneous
kernel Q, where Q satisfies (1.3), (1.4) and (1.5). Then (Tq,); is compact from X to Y if and only
ifbe CMOR").

We end this section by stating some conventions on notation. Let N := {1,2,...}. We always denote
by C a positive constant which is independent of the main parameters, but it may vary from line to line.
We also use C(, ... to denote a positive constant that is dependent on the indicated parameters a, 3, . . ..
The symbol f < gmeansthat f < Cg. If f < gand g < f, we then write f ~ g. If E is a subset of
R”, we denote by yp its characteristic function and by E¢ the set R"\ E. Furthermore, for any ¢ € (0, co0)
and any ball B := B(x,r) in R", with x € R" and r € (0, ), we let tB := B(x, tr). For any g € [1, o0],
we denote by ¢’ its conjugate exponent, namely, é -+ % =1.

2. Preliminaries

We present some necessary lemmas and notions in this section, which is very important to prove
our main results.
For any f € U(R"), the non-increasing rearrangement is defined by

ff@:=inf{>0: {xeR":|f(x)| >} <t}, 0<t<oo,

forany f € L! (R"),0 < A< 1and B C R", the local mean oscillation of f on B is defined by

ax(f:B) = g«f — c)w)"(AIB)).

loc

Lemma 2.1. [27, Lemma 2.1] Let 0 < A < 5. For any real-valued function b, we write

16llgpo, := sup ai(b; B).

BcCR”

Then there exists a positive constant C such that

-1
IBllBpo < 1bllsmo, < ClIbllsmo-

Lemma 2.2. [25, Theorem 3.3] Let 0 < A < % and b € BMO®R"). Then b € CMOR") if and only if
the function b satisfies the following conditions:

(i) hmsupaﬂ(b B) =

01Bj=r
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(ii) lim supa,(b; B) = 0;

r—>00 |pi—
(iii) lim  sup a,(b; B) = 0.

d— pnp(0,d)=0
Lemma 2.3. [28, Theorem 1.2] Let X be the ball Banach function space such that M is bounded
on X'. Forany b € L' (R"), we denote

loc

Ibllpoy = sup (6 = Dp)xsllx-

BCR" ”XB”X

Then there exists a positive constant C such that, for all b € BMOR"),
C™Ybllsmo < ClIbllsmoy < ClIbllgmo-

Lemma 2.4. [7, Lemma 2.6] Let X be a ball quasi-Banach function space satisfying the triangle
inequality as in (1.2). If f € X and g € X', then f and g are integrable and

fRn lf()g(ldx < llfllxllgllx -

Lemma 2.5. [8, Definition 2.6] Let 0 < p < oo and X be a ball Banach function space. The p-
convexification X? of X is defined by

XP = {f € UR™ : |fI € X)

1
equipped with the quasi-norm || fllx» = |l fI”]l5.

1
loc

Forany 0 < 8 < oo, f € L
M@ is defined by

(R™) and x € R", the powered Hardy-Littlewood maximal operator

MO = M) ) .

Lemma 2.6. [29, Remark 2.19] Let 0 < 6 < oo and X be a ball quasi-Banach function space. Assume
that there exists a positive constant C such that, for any f € UR"),

IMP(Pllx < ClIfllx-

Then there exists a positive constant C such that, for any ball B € B and 1 < 8 < oo,

I gsllx < CoBéllysllx, (2.2)

where the positive constant C is independent of B € B and 3.

Next, let us recall the following lemma introduced by Tao et al.in [7, Theorem 3.6], which is a
sufficient condition for subsets of ball Banach function spaces to be totally bounded and a
generalization in ball Banach function spaces of the well-known Fréchet-Kolmogorov theorem in
LP(R") with 1 < p < oo.

Lemma 2.7. Let X be a ball Banach function space. Then a subset ‘A of X is totally bounded if the
set A satisfies the following conditions:
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(i) Ais bounded, namely,

sup || fllx < oo
feA

(ii) For any given € € (0, 00), there exists a positive constant N such that, for any f € A,

1 X rerrwsmillx < €

(iii) A is uniformly vanishes equicontinuous, namely, for any given € € (0, ), there exists a positive
constant p such that, for any f € A and z € R" with |z| € [0, p),

IfC+2) - fOllx <e

Conversely, assume that X satisfies the following additional asumptions that C.(R") is dense in X and
that, for any f € X and y € R",

I llx = [1/C+ pllx.
If a subset A of X is totally bounded, then A satisfies (i)—(ii1) of Lemma 2.7.

Lemma 2.8. [7, Proposition 3.8] If X is a ball Banach function space with an absolutely continuous
norm, then C.(R") is dense in X.

The following lemma can be seen in [27, Proposition 4.1].

Lemma 2.9. Ler A € (0,1) and b € L (R"). Let Q € L¥(S"") satisfy that there exists an open
setT' C S"! such that Q never vanishes and never changes sign onT. There exist €y > 0 and ky > 10 yn
depending only on Q and n such that, for any ball B(xy,r9) C R" with xo € R" and ry € (0, ),
there exist another ball B(x,, ry) and measurable sets E C B(xy, rg) with |E| = %IB(xo, ro)| as well as
F C B(xy, ro) with |xg — x1| = 2kory and |F| = %IB(xl, ro)l and G C E X F with |G| > %IB(xo, ro)l? such

that they satisfy the following properties:

(i) forany x € E andy € F, a,(b; B) < |b(x) — b(y)|;
(ii) Q ( x_y) and b(x) — b(y) do not change sign on E X F;

lx—=yl

(iii) for any (x,y) € G, |Q( — )‘ > €.

x=yl

3. Proof of Theorem 1.1

In this section, we first recall the following smooth truncated technique in [30] (see also [7,31]).
Let ¢ € C*([0, 00)) satisfy

1, xe[0,1]

0<¢<1 and go(x):{o xe[looi.

Let 0 < a < nand Q € L>(S"!) satisfy (1.4), (1.5) and the L*-Dini condition. For any e € (0, o)
and any x,y € R", define K.(x,y) := lf_(’y‘l_iz, [1 — go(@)] . Let X be the ball Banach function space

satisfying Assumption 1.1. Using [7, Lemma 2.12] and [32, Lemma 7.4.5], we know that, for any
feX ee(0,00)and x € R",

15,060 i= [ Kenfoxdy <o
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Proposition 3.1. Let 0 < a < n and Q € L¥(S"") satisfy (1.4), (1.5) and (1.8). Then, for any
given € € (0,00), K, satisfies the following smoothness condition: there exists a positive constant C
which is independent of €, x,y and z for any x,y,z € R" with |z| < @ such that

1 42| ||
|K€(x9y)_Ke(x+Z’y)| < C Weo + B
lx =yl lx=yl)  |x =yt

Proof. For any x,y,z € R" with |z] < @ applying (1.4), we know that

|Q(x—y)—Q(x+z—y)|:‘Q(x_y)—ﬂ(m)‘gww( 4 )
lx =yl |x +z =yl lx =yl

Using the mean value theorem, for any x,y,z € R" with |z| < @, we have

o2

Qx-y) Qx+z-y)
|X _ yln—a |X oy — yln—a

| Ke(x,y) - KE(X+Z’y) | <

Qx+z-y) |x +z -l lx =yl
v 1 -
|x +z- yl” @ € €
<'Q(x—y)—Q(x+z—y) 1 B 1
" lx =yl lx+z -y -yl
||90,||L°°(R+) x+z-y |x—yl
Ix +z -y € € X{(x,y)eR"xR":_%espc—ylsze}(x’ y)
1 ( 4z ) Iz
S — Weo + —
|x —yI"= lx =y} lx—=yl=e
1 |2

+ E X +z— yln_aX{(x,y)eR"xR":_%eslx—ylsk}(x’ y)

1 ( 4z ) |z
S — Weo + T
=y =yl = yer
Thus, the proof of Proposition 3.1 is complete.

Proposition 3.2. Let 0 < @ <nand b € C’(R"). Let X and Y be ball Banach function spaces and T, o
be the fractional integral operator with homogeneous kernel Q, where Q € L¥(S"™") satisfies (1.3),
(1.4) and (1.8). Then there exists a positive constant C such that, for any € > 0, f € X and x € R",

(TR = (Taa)y ()] < CellVDIe g Ma(F)(X).
Moreover, if M, is bounded from X to Y, then
lim [[(T3));' = (Ta.0); -y = 0.
Proof. For f € X and x € R”, using the mean value theorem, we have

Q(x — _
f b(x) = b(y)I" S ni)m('x y') f(y)dy‘
{yER™:[x—y|<€) |x —y] €
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< f 1b() = BoIP 2E=D iay
yeR™:|x—y|<e} | I

FO
< 1l (so-H) IV 7o f lx = " ————dy
Le(sn1) L®(R™) Z ek |X _ yln—a

2]+1 <lx— y|< }

< 1 VDI Z i o fe|" " f{ iz O
YER™:x—yl< 55

S €l (1) IVl o gn) Z i Mo (f)(x)
< ellVBIL gy Mo ().
Applying Assumption 1.2(i), we have
T In () = Tawy (Dlly S Ma(Hlly < €llflx,

which implies that lim_,y+ ||(T£§L)’;1 — (Tq,0)} llx—y = 0. The proof of Proposition 3.2 is complete.

Proof of Theorem 1.1. Let b € CMO(R"). We know that, for any given k € (0, o), there exists a b €
CZ(R") such that ||b — b®|lsmogn) < k. Then, by the boundedness of (To,)" ,, from X to ¥, we obtain
the following, for any given « € (0, c0) and for any f € X;

[Ty (H) = Tau)in O, = |Taw)y DI, < 1o -5

BMO(R") ”f”X < Km”f”X

By Proposition 3.2, it suffices to show that, for any b € C° (R") and any € € (0, co) small enough, the
operator (T((f,)a);,” is compact from X to Y. Thus, we only need to prove that

Ac={TS A < Ifl < 1)

satisfies (i)—(iii) of Lemma 2.7 respectively.
For € < 1, applying Proposition 3.2 and Assumption 1.2(ii1), we have

TSROy < I Taw)y Olly + 1Tay(f) = TS Olly < (1 +Ollfllx < 21l

This proves that A, satisfies (i) of Lemma 2.7.

For (i) of Lemma 2.7, we suppose that there exists a positive constant R, such that supp(b) C
B(0,Ry). For any y € B(0,R;) and x € R" with [x| € (2R, o), we have that |[x — y| ~ |x|. Thus, for
any f € A, x € R" with |x] € (2R, ) and Q € L*(S"""), using Lemma 2.6, we have

(T RN < | 1b(x) - b(y)l If O)ldy

n @
Rn

< f LSO dy
B(O Ry X — YI"

/11 30,20l x

|n(r
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1
< .
~ |x|n—a

Applying Lemma 2.6 and [8, Lemma 2.15], we deduce that there exists 17 € (1, co) such that

X {xeRn: 2/N<|x|<2/“N}||Y

T )3 P erngsomlly < Z I

||na

< Z |I)({xeR":ZjNSkaZj”N}”Y
~ (2jN)n—(l

] n—-a—n/n
N)

Nn—a—n/n

Thus, A, satisfies the condition (ii) of Lemma 2.7.
Next, we prove that A, satisfies (iii) of Lemma 2.7. For any f € A and z € R"\{0} with |z] < £, we
see that

(TSR +2) = (T ()
() - b)) K(x, ) f()dy — fR (b(x+2) = b)) Kelx + 2, ) f()dy

< f (b(x +2) — b)) (Ke(x + 2,) — Ke(x,y)) F3)dy
{yeR™:|x—y|>€/4}

+ f (b(x +2) = b(yY)™ = (b(x) = bY)™) K(x, ) f(y)dy
{yeR™:|x—yl>€/4}
=: L1(x,2) + L(x, 2).

< Ix [x=yl

For I,(x, z), applying Proposition 3.1, if |z| , we have

Ii(x,z) < fl s 1b(x + 2) = bO)I™ [Ke(x + 2, y) = Ke(ox, MIf(WIdy
x=y|>€

4|z

Sf |b(x +z) — b(y)lma)oo( ) —|f(ldy
[yeRM:|x—y[>€/4} lx = I/ |x =yl

1
+ f Ib(x +2) — bO) £y
(R x—y[>€/4) lx =yl lx — |

=: I11(x,2) + I12(x, 2).

For 1;,(x, z), by the L*-Dini condition, we obtain that

li(x,z) = f Ib(x + 2) — b(Y)|" weo ( il ) iy
(YR [x—yl>€/4) lx = yl/ |x =yl

N Iz
I S o [
lz["|[V D[} (R™) £ 2i2¢ bR 2|2t x— yl” o ——|f()Idy
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(o)

m Izl 1
S [NV o) Z“’“’(zf—ze 2771l Jyyepmppyiaii ol

]:

(o)

|z

< "IVl o, Z Wer (2]._26) Mo ()

§ 2l 27 d
< Iz ||Vb||L°°(R" Mo () (x) Z Wea (21 26) L<i+1> t

8
< VDI o Mo ()(X) f ( < )7

8lz|
< 2" IVBI[ oo gy Ma(f)(x) f w (t) —
For I,(x, z), by the mean value theorem,

1

E| |2j—1 Eln—a

- 1
152 S BPIVBI ) ) f 0y < kML),
j=1 {yeR":|x—y|<2/ 1€}

Applying Assumption 1.2(i) and the L*-Dini condition, we obtain that
WLG DNy S 1™ - [IMeflly < J2l™ - 11f1lx < J2I™.
Next, we write
I(b(x +2) = b(y)" = (b(x) = b())"| = I(B(x + 2) = b(x) + b(x) = b(y)" = (b(x) = b())"|
= Z; C,(b(x + 2) = b(x)) (b(x) = b(y))"~
=

m m—j
= > Chib(x+2) = b)Y > Ch_b(x)'b(y)" /™.
j=1 i=0
Thus, for I,(x, z), we have

L(x,2) < Z CLlb(x +2) = b(x)V Z i Ib()l Gl

j=1

2D o \

m—j

+ Z Cilb(x +2) = b(x)V Z Ci,_ bl

f b(y)" /" [K (x,y) =
le—yl>e/2 |x
Q(x
[ o |
[x—y|>€/2 lx =yl
m—j . (
<k ). C

m— lQ( m— i
[ by 2D e [ by 2D ) yl
=0 {yERM:e2|x—y|>€/2} lx =yl [x—y|>€/2 lx =yl

m—j
S Chy [Ma®™ 7 1)) + Tu0" 7 ()]
i=0
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Assumption 1.2(1) yields

m—j
LG, Dlly Sl ) Chsy Mo )00 + Ta0" 7 @), S 12l Ufllx < 12l
i=0

Combining the estimates of /; and I,, we have
Hm (TR +2) = (TG )y (DOl = 0,

which implies the condition (iii) of Lemma 2.7. Thus, the iterated commutator (Tg)a 4 1s compact

from X to Y for any given b € C’(R") and € € (0, c0). The proof of Theorem 1.1 is complete.
4. Proof of Theorem 1.2

In this section, we first show the lower and upper estimates of the iterated commutator of the
fractional integral operator (Tq,); . Furthermore, we give the proof of Theorem 1.2.

Now, we begin to show the lower estimate of the iterated commutator of the fractional integral
operator (Tq)}'

Proposition 4.1. Let 0 < @ < nand b € L] (R"). Let X and Y be ball Banach function spaces
satisfying Assumption 1.2(ii) and Tq, be the fractional integral operator with the homogeneous kernel
Q, where Q € L™(S"") satisfies that there exists an open set I C S"! such that Q never vanishes and
never changes sign on I'. Let B := B(xy, r9) and ko, €, G, E and F be as in Lemma 2.9. Then there
exists a positive constant C that is independent of B and just depends on a, A, ko, € and n such that,
for any measurable set U C R" with |U| < gIB(xo, ro)l,

(Ta.0), (xrxewlly = Ca(b; BY"|lxrllx.

Proof. Applying Lemma 2.9, we have

a,(b: BY"2(ko + 1)BI 2 (E\U x F) 1 G| < ~ f f (O = bON" o X =Yl
€ Jew lJr X =y lx =yl
1
<— |(Ta.0)y (xr)(0)ldx

€ JE\U
1
< €—||(Tg,a)Z"(XF))(E\U||Y Axewlly-
0
And using the facts that |U| < £|B(xo, ro)| and |F| = §|B(xy, ro)l, |G| > §|B(xo, ro)I*, we see

I(E\U x F) NG| 2 |G| - [U]|F]|

A A A
> ng(-x()a ro)* — §|B(xo, ro)l - §|B(X1, ro)l

A
= E|B(xo, ro)l*.
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We apply Assumption 1.2(ii) and obtain that

I rllxyevully
12(ko + DB|~'+/" - |B]?

Iy Fllxl evolly .
~ 2(ko + DB|*e/n I(Tae), rxewlly

< |I/Y2(k0+l)B||X”/Y2(ko+l)B”Y’
S Rk + DB|*al

S I(Ta), xr)xewlly.

ax(b; B)"|lxrllx <

“WTaw), xr)xewlly

N(Taw)y cr)xewlly

The proof of Proposition 4.1 is complete.

Obviously, we have the following corollary.

Corollary 4.1. Ler0 < a <nand b € L, (R"). Let X and Y be ball Banach function spaces satisfying
Assumption 1.2(ii) and Tq , be the fractional integral operator with the homogeneous kernel Q, where

Q € L¥(S" 1) satisfies that there exists an open set T C S"! such that Q never vanishes and never
changes sign on T If (Tq,)} is bounded from X to Y, then b € BMO(R").

Next, we give the upper estimate of the commutator (7q,); .

Proposition 4.2. Let 0 < @ < nand b € BMOR"). Let X and Y be ball Banach function spaces
satisfying Assumption 1.1 and Assumption 1.2(i) and Tq, be the fractional integral operator with the
homogeneous kernel Q, where Q € L¥(S"™") satisfies that there exists an open set I’ C S*! such that
Q never vanishes and never changes sign on I'. Let B = B(xy, r9) and F and ko be as in Lemma 2.9.
Then, there exist positive constants d satisfying dy < d < oo, § and C that is independent on d, B, d,,
and ko such that,

Ty Ocr e maslly < C27"dlIbl Gy o el

Proof. Let B = B(xy,19), B(x1,10), €, ko, G, E, and F be as in Lemma 2.9. Taking dy > 0 such
that 2% € (4k,, 00), we get the following for any x € 2¢*'B\2B and y € F C B(x1, ro):

|x —y| ~ 2%,

By Lemma 2.4, for any x € 2! B\2?B, we have

£X( Ix_il )
f (b(x) = bO)" —=ody

lx — y|"—

|(Ta.a)y (xr)(0)] =

Xy

Q(Ix—yl)
flb(x) bB(x,.r0) + DBix1r) — DO —ydy

| o1
x—y

m—i i Q(|X_Y|)
mlb(x) bp(xy o)l f|b3(x, ) — bO)N' ——— = e

—i ”Q”L‘”(Sn—l) ;
124B(x1, ro)|! =/ j; DB(x1.r) — DOy
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< D Calb() = b "

— 129B(xy, ro)|! =/

Applying Lemma 2.3 and the fact that F' C B(x;, ry), we have

|||bB(x1,r0) - bll/\/F”X’ < |||bB(x1,r0) - bVXB(xl,ro)”X’
= Wbscerr) = Bliaem iy
< ”b”lBMO”/VB(XI,ro)”X'-

Hence

”/YB()C]J‘())”X/”/YF”X ||b||l
124B(x;, ro)|!=aln T TEMO"

(Tan)f GO S D Chlb(x) = ba "™
i=0

|||bB(x1,r0) —bI'xrllxllxrllx.

4.1)

Let k € {2,4,6,---}, depending only on k, such that xy € 2“B(x,, r). Thus, for any y € B(x,,2¢"'ry),

we have
[y — x| < |y —xol + |xo —x1| < 2d+1r0 + 2%y < 2d+Kr0

which implies that
B(xo, 2"*'rg) € B(x1, 2 rg).

Thus, we have
|bB(x1,r0) - b2d+"B(x1,r0)| < (d + ©)2"bllgmo-

Using Lemma 2.6 and [8, Lemma?2.15], we can see that

Igslly < B"lxslly.
Applying Lemma 2.8, we have

WB(xX) = Dpey ™ X 2a+1 pr2aglly < NNB(X) = Bpeey o)™ X 2ar B, o)l
d
<2" /nd”b||BM0”XB(x1,rO)”Y-

By Assumption 1.2(i), we obtain that
Wesllyllesllx

B

~

In fact, it is easy to see that

1 C
D (rerr:m, fozpilly < ;”M(xf”Y < ;||f||x-

Let f e L
we obtain that M, (fxp) > y for almost every x € Band y := 5 1| f15B|". Thus, we have

\flsllslly < 1Flalwerraat, rooslly < 1F1s - Cy~ ' fxsllx = 2C1BI7 | fxsllx-

Further, we obtain that

Vs L leslllall = e a,,,w«Bnysup{ f g0l ; ||g||x<1}

(4.2)

4.3)

o (R For almost every x € R and [flax(x) = g J, FOy - o) < IBE Mo(fxa)(0,
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= sup {IBI""Iglsllyslly : llglix < 1}

< sup {2C]lgxallx : lligllx < 1}

< 1.
Using (4.1)-(4.3), we have
”/\/B(xl,ro)”X’H/\/F”X”b”l‘
29 B(x;, ro)|!—e/n TTEMO

i=0
m
. . s mlbelberll,
< > G2 dlblgsiol s nlly 1ol
- > d 1-a/n BMO
- 29B(x1, 7o)

I(Taq), rlly S Z CLlIB(xX) = bpiey )" N2ar maaslly

“XB(xl,ro)”X/ “XB(xl,ro)”Y
129B(x1, ro)|' =/

d(2-1
< 2"Vl ol k-

< 2"MdlIbligyo

e rllx

Leto := 1 -2 > 0. Then we complete the proof of Proposition 4.2.

Proof of Theorem 1.2. By Corollary 4.1, we conclude that b € BMO(R"); then, without loss of
generality, we can assume that [|b|[pyorr) = 1. To show that b € CMO(R"), we use a contradiction
argument via Lemma 2.2. Observe that, if b ¢ CMO(R"), then b does not satisfy at least one condition
among (i), (i1) and (iii) of Lemma 2.2. To finish the proof of this theorem, we only need to show that,
if b does not satisfy at least one condition among (i), (ii) and (iii) of Lemma 2.2, then (Tq,); is not
compact from X to Y. We prove this by three cases on b as follows.

Case 1: Suppose that b does not satisfy (i) of Lemma 2.2. Then, there exist a constant ¢ € (0, 1) and
a sequence of balls {B;} ey with |B;| — 0 as j — oo such that, for any j € N,

a,(b; B)) > &, (4.4)
where A € (0, 1/2). For any given ball B := B(xy, ry), let E and F be the set mentioned in Lemma 2.9,

fo= rlix'xr

and 2Cy = C(ik.z.n be as in Proposition 4.1. Then, by Proposition 4.1, we conclude that, for any
measurable set U C R" with [U| < §|B],

I(Ta.a)y (Fxewlly = 2Coaa(b; BY™. (4.5)

For such chosen Cj and €y, by Proposition 4.2, there exists a positive constant d such that

I(Ta.a)y (X rmatoslly < Z I(Taa)y (X at0rt1 patosiplly < Coeg'- (4.6)
k=0

Take a subsequence of balls {B;} ey, still denoted by {B|} e, such that, for any j € N,

|Bj| . {/12 -2d }
—— <min{ —,27°%" % .
|B 1] 64
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Let Bj. = (|Bj|/|Bj_1|)1/2”Bj for any j € N and j > 2. It is easy to see that, for any j € N and j > 2,

1
1Bl \* oA
(lB-jll >2% and |Bj| < ZIBj-il
-

From this and the monotonicity of {B} jay, we deduce that, for any integers k and j with k > j > 2,
do * * A A
2B, C Bk and |Bk| < ngk—ll < ngjl (47)

Now, for any j € N, let E; and F'; be the sets associated with B; as in Lemma 2.9 with B replaced by
Bj, and
fi = ler ik xe,-

Then, for any integers k and j with k > j > 2, by (4.4), (4.5), (4.6) and (4.7), we conclude that

I(Taa)y FidxEnslly = 2Coaa(b; B))"™ = 2Co€;

and
I(Ta.0)y Foxenslly < I(Taa), (fidkemaoslly < Coy s
which further implies that

I(Ta.w), (f)) = Taw), Flly = I(Ta.e)y (f) = Taw), fd)bxeslly
2 |(Taa)y Fixepslly = ITa.e), Fxes:lly

> C0€6n.

Therefore, {(Tq,.), (fj)}jav 1s not relatively compact from X to ¥, which leads to a contradiction with
the compactness of (Tq,), from X to Y. This shows that b satisfies (i) of Lemma 2.2, which is the
desired conclusion.

Case 2: Suppose that b does not satisfy (ii) of Lemma 2.2. In this case, similarly to the above Case 1,
there exist a constant € € (0, 1) and a sequence of balls {B} e with |B;| — oo as j — oo such that, for
any j € N,

a,(b;B)) > & and B, < min x 2~ 2don
AU, Dj) = €& |BJ+1| = 647 s

where Cj and d are as in Case 1 such that (4.5) and (4.6) hold true. For any j € N, let E;, F; and f; be

as in Case 1 and B;‘. = (IBJ-I/IBj,ll)”z"Bj for any j > 2. It is easy to see that, for any integers k and j
withk > j > 2,

A
2dOBk C BZ and |BZ| < ngjl
Using a method similar to that used in Case 1, we conclude that
(Taw)y, (f) — Tad, (flly = Cogy';

hence {(Tq,); (fj)}jen 1s not relatively compact from X to Y, which is a contradiction. This shows that
b satisfies (ii) of Lemma 2.2, which is also the desired conclusion.
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Case 3: Suppose that b does not satisfy (iii) of Lemma 2.2. In this case, there exist a constant & € (0, 1)
and a sequence of balls {B;};ay such that, for any j € N,

a,l(b; BJ) > €. (48)

From this and Cases 1 and 2, we deduce that there exist a constant d; € [dy, o) with d, as in Lemma 2.9
and a subsequence of balls {B} ;ay, still denoted by {B} e, such that

Bjl~1, YjeN,

and
24B;N2%B; =0, VYi#]

Forany j e N, let £}, F';, fj and Cy be as in Case 1. Notice that, for any positive integers k and j,
(2*Bin E;) c (2B n2B)) = 0.
By this, Proposition 4.1 with U := 0 and (4.8), we conclude that, for any positive integers k and j,
I(Ta.0)y X e 2t ly = I(Taw)y (FXElly = 2Coar(b; B)" = 2Co€y (4.9)

Moreover, by Proposition 4.2, we deduce that, for any positive integers k and J,

I(Ta.)y fxep20slly < 1(Ta), foxemawslly < Cogy'- (4.10)
Combining (4.9) and (4.10), we obtain
I(Taa)s (f) = (Taa)y flly 2 I{(Ta.a), (f) = Taw), )X Ep208ly

2 Ty Uidxepoislly = T a.a)y, (fX e 2mp,ly

> C()E(r)n;

hence {(Tq,); (fj)}jen is not relatively compact from X to Y, which is a contradiction. This shows that
b satisfies (ii1) of Lemma 2.2, which completes the proof of Theorem 1.2.

5. Applications

5.1. Weighted Lebesgue spaces

We begin this section with the definition of Muckenhoupt weights A,(R"). A weight will always
mean a positive function which is locally integrable. Also, for a weight w and a measurable set E, we
define w(E) := fE w(y)dy.

Definition 5.1. For 1 < p < oo, a weight w is said to be of class A,(R") if

1 f v (1 Y
sup | — a)(x)dx) (— f w(x)'7P dx) < 0.
Bc£(|3| 5 1Bl Js
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Definition 5.2. For 1 < p,q < oo, a weight w is said to be of class A, ,(R") if

1 i1 Y
sup (— f a)(x)"dx) (— f w(x)™? dx) < 00,
Bcre \|Bl Jp 1Bl Js

Next, let us recall the weighted Lebesgue spaces which are defined as follows.

Definition 5.3. Let 1 < p < oo and w be a weight. The weighted Lebesgue space LL(R™) denotes the
set of all locally integrable functions f on R" such that

1/p
ez @y == (Ln |f(x)|pa)(x)dx) < oo,

Theorem 5.1. Let0 < a <n, 1 < p,q < oo and i = % — % Letw € A, ((R") and Tq o be a fractional

integral operator with the homogeneous kernel Q, where Q € L*(S"™") satisfies (1.3), (1.4) and (1.8).
Ifb e CMOR"), then (Tq,))! is compact from L, ,(R") to L! (R").

Theorem 5.2. Let0 < @ <n, 1 < p,q < o and é = % - % Letwe A, ,R"), b € L%OC (R™") and Tq
be a fractional integral operator with the homogeneous kernel Q, where Q € L*(S"") satisfies that
there exists an open set T C S"~! such that Q never vanishes and never changes sign on T. If (Tae)) is

compact from L ,(R") to L! (R"), then b € CMO(R").

wP

Corollary 5.1. Let 0 < a <n, 1 < p,g < o and}l = i — 2 Letw € A, (R", b € L} _(R") and
T, be a fractional integral operator with the homogeneous kernel Q, where Q satisfies (1.3)—(1.5).
Then (Tq,), is compact from Lf),, R" to LZ),, (R™) if and only if b € CMO(R").

Proof. Let X := LZ,,(R") and w € A, (R"). From [33], we then get that w? € A,(R") and w? €
Ay (R"). By the fact that M is bounded on LZ},,(R") and X’, where X’ = LZ):q, (R™) in [34, Theorem 3.1],
Toe : LY,(R") — LI,(R") in [35, Theorem 1] and the iterated commutator (Tq, )}’ is bounded from
LY, (R") to L! (R") in [36, Theorem 1] for | < p,q < 00,0 < @ < n, é = % - 2and w € A, (R"), we
then use Holder’s inequality to obtain that

sl sl
Ivally llysllx Ly Lor
|B|l+a/n - |B|1+a//n

1 , 1/q 1 1/p

- —-q _ p

|BlfBa)()c) dx) (|B| Lw(x) dx)
(1

Thus, Theorems 1.1 and 1.2 and Corollary 1.1 are true with X replaced by L” ,(R") and Y replaced
by L?,(R").

5.2. Morrey spaces

Recall that the definition of the Morrey space M (R") holds for 0 < p < g < oo and was introduced
by Morrey in [39].
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Definition 5.4. Let 0 < p < g < 0. The Morrey space M}, (R") is defined to be the set of all measurable
functions f on R" such that

. 1/p-1
| f1pse ey 2= sup |B] P /r”f”L’(B) < 0o,
P
BeB

where B isasin (1.1).

Theorem5.3.L6t0<a/<n,1<p§q<oo,1<t£s<oo,§:;—7—%and§:g.LetbGLl

R")
P loc
and T, be a fractional integral operator. Then (T,)] is compact from Mj(R") to M;(R") if and only

ifb e CMOR").

Proof. We know that the Morrey space is the ball Banach function space in [8, P. 86]. Moreover, [b, T, ]
is bounded from M}(R") to M;(R") in [37, Theorem 3.1]for 1 < p<g<eco,1<r<s<oco, 1= 717 -«

and § = %, and (7,); is bounded from Mg(R”) to M}(R") in [40, Corollary 3] for 1 < p < g < oo,

l<t<s<oo,l=L_2andl =1 Ttis easy to calculate that
s p n s P

bsllxlislly: _ Walgliallony_|B)'et>
|B|]+a/n - |B|1+a/n ~ |B|l+a/n ~

Thus, using Corollary 1.1, we complete the proof of Theorem 5.3.

5.3. Variable Lebesgue spaces

In this section, we apply our results on variable Lebesgue spaces with X = LPO(R"), Y = LIO(R")

and ﬁ - ﬁ = . We write p_ := ess Rinf p(x) and p, := ess sup p(x). Recall the definition of the
xeRM xeR”

variable Lebesgue spaces.

Definition 5.5. Let p(-) : R" — [0, 00) be a measurable function. Then the variable Lebesgue space
LPOR") is defined to be the set of all measurable functions f on R" such that

(x)
(2] s} <o

Lemma 5.1. /38, Theorem 1.1] Let p(-) : R" i [0, 00) be a measurable function satisfying that

Ilf|lzpe := inf {/1 € (0,00) :

Rn

1
lp(x) —pOI < C iflx—yl < > (G.D

—log(lx — y|)
and

lp(x) — p) < C
then M is bounded in L’©(R") and LP" (R™).

Lemma 5.2. [4], Lemma 2.5] Let p(x) satisfy (5.1) and (5.2), and let it satisfy that 1 < p_ < p, < oo.
Then,

Togte + 1) if |xl < |yl; (5.2)

\BI"  if|B| < 2" and x € B;

Il Bll Loy Ry ~ e
71 B B > 1,

where p(c0) = lim p(x).
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1

Theorem 5.4. Let 0 < a < min{n,n/p,}, 1 < p_ < p; < oo and — q(x) =25~ % Letb € Ll10C R™

and T, be a fractional integral operator. Then [b, T, is compact from LPO(R") to L1O(R") if and only
ifbe CMO(R™).

Proof. If 1 < p_ < p, < oo, we know that the space L”(')(R”) is a ball Banach function space in [8].

If p(x) satisfies (5.1) and (5.2), 1 < p_ < p, < o0 and —— (x) q(lx) = £, then g(x) also satisfies (5.1)

and (5.2), 1 < g- < g+ < oo. Let0 < @ < n/p,. We know that if p(x) satisfies (5 1) and (5. 2) and

1 < p_ £ py < oo, T, is bounded from LPO(R") to LI in [42, theorem 2] for —— (x) (lx s = 2 and
[b, T,] is bounded from LP“(R") to L) in [37, Theorem 3.1] for W - ﬁ =2 If [ﬁ - ﬁ =< then
L 4+ _L = 1+— and -— + —— =1 + £ Thus, using Lemma 5.2, we have
p(x) q(x)y p(e0) q(0)
I sllxleslly  Iallzeollysllar <1
|B|1+a/n - |B|1+a/n ~ o

Applying Corollary 1.1, we have the desired result.

5.4. Mixed Morrey spaces
Let us begin with the definition of the mixed-norm Lebesgue spaces.

Definition 5.6. Let 7 := (pi, ..., pa) € (0,c0]". The mixed-norm Lebesgue space LP (R") is defined to
be the set of all measurable functions f on R" such that

1

P1
1A ls@ny = {f"'[flf(xl,...,xn)l”‘ dxl] ---dxn} <o
R R

with the usual modifications made when p; = oo for some i € {1,...,n}.

Next, we recall the definition of the mixed Morrey spaces. In 2019, Nogayama [43, 44] first
introduced the mixed Morrey space M;O (R™), which is defined as follows.

Definition 5.7. Let p = (p1, p2,- -+, pn) € (1,00)" and py € (1, ) satisfy

n =~ 1

Po P j
The mixed Morrey space M;" (R™) is defined to be the set of all measurable functions f such that

o

Iy == SllplQI”0 " ”fXQ”Lp < oo,

Let 7 = (p1, p2,- -+, pn) € (1,00)" and py € (1, o0) satisty

n — 1

po 4 pj

The mixed Morrey space is a ball Banach function space in [45, Remark 2.9]. Moreover, the space
B;? (R™) is the associate space of the mixed Morrey space M;“ (R™) and M is bounded in BZ,O, R™.

AIMS Mathematics Volume 9, Issue 2, 3126-3149.



3146

Definition 5.8. Let 7 = (p1, p2, -+, pn) € (1,0)", py € (1, 00) and % <X 1%" A measurable function

b(x) is said to be a (py, p’)-block if there exists a cube Q such that
supp b < Q. |1blls» < |QI Z1 7177

The block spaces Bg{(R”) denote the measurable function set of f = X2 A;ibi(x), where {A;}2, € € !
and b; is a (py, p')-block for any i. The norm ||f||B,,6(Rn)f0r fe BZ@(R") is defined as
7’

IIfIIBp;) = inf{ll{/li}}’illle1 f= Z Abi(x), {82, € €', by is a (py, P’) — block for any i}-
P’ i=1

= 2 n n 1 =n n 1 1 1 a
e o0 00, — < . - = <L - = = ==
Theorem S.5. Let 0 < @ <n, 1 < po,qo <00, 1 <p,g <00, =<3 o oS 2w =9 n

and p% = qq—;. Letb € LlloC (R™) and T, be a fractional integral operator. Then [b,T,] is compact from
MgO(R”) fo MZ,O(R”) if and only if b € CMO(R™).

Proof. Given T, is bounded from M?(R”) to MZP(R”) in [43, Theorem 1.11] for q‘—o = pio - % and
pﬁo = ;—; and [b, T,] is bounded from M?(R”) to M;O(R”) in [44, Theorem 1.2] for % = ,,LO — & and
p% = qi;, by [44, Example 2.8], it is easy to see that

v sllxlly slly ”/\/B”M;U“/\/B”(M;Oy |B|!/Po+1/4,
|B|1+oz/n - |B|1+a//n S |B|l+a/n

Thus, using Corollary 1.1, we finish the proof of Theorem 5.4.

6. Conclusions

In this work, we establish the characterization of compactness of the iterated commutator (Tq )}
generated by the locally integrable function b and the fractional integral operator with the homogeneous
kernel T, on ball Banach function spaces. As applications, we show that b € CMO(R") if and only if
the iterated commutator (T, ), is compact from LZ,, RM to LZ),, (R™) and we obtain that b € CMO(R")
if and only if the iterated commutator (T,);" generated by the locally integrable function b and the
fractional integral operator is compact from Mf,’ (R™) to M}(R"). Moreover, we obtain that b € CMO(R")
if and only if the commutator [b, T,] generated by the locally integrable function » and the fractional
integral operator is compact from LPO(R") to L9V (R"). We also have that b € CMO(R") if and only
if the commutator [b, T,] generated by the locally integrable function » and the fractional integral
operator is compact from M;O(R") to M;O(R”).

Use of AI tools declaration

The authors declare that they have not used artificial intelligence tools in the creation of this article.

AIMS Mathematics Volume 9, Issue 2, 3126-3149.



3147

Acknowledgments

The authors want to express their sincere thanks to the referees for the valuable remarks and

suggestions. This work was supported by the National Natural Science Foundation of
China (No. 12061069).

Contflict of interest

The authors declare that there is no conflict of interest.

References

1. F John, L. Nirenberg, On functions of bounded mean oscillation, Commun. Pure Appl. Math.,
14 (1961), 415-426. https://doi.org/10.1002/cpa.3160140317

2. R. R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several
variables, Ann. of Math., 103 (1976), 611-635. https://doi.org/10.2307/1970954

3. A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J., 30 (1978), 163—
171. https://doi.org/10.2748/tmj/1178230105

4. A.Karlovich, A. Lerner, Commutators of singular integrals on generalized L” spaces with variable
exponent, Publ. Mat., 49 (2005), 111-125.

5. G. Di Fazio, M. A. Ragusa, Commutators and Morrey spaces, Boll. Unione Mat. Ital. A, 7 (1991),
323-332.

6. Y. Chen, Y. Ding, X. Wang, Compactness of commutators for singular integrals on Morrey spaces,
Can. J. Math., 64 (2012), 257-281. https://doi.org/10.4153/CIM-2011-043-1

7. J.Tao, D. Yang, W. Yuan, Y. Zhang, Compactness characterizations of commutators on ball Banach
function spaces, Potential Anal., 58 (2023), 645—679. https://doi.org/10.1007/s11118-021-09953-w

8. Y. Sawano, K. P. Ho, D. Yang, S. Yang, Hardy spaces for ball quasi-Banach function spaces, Diss.
Math., 525 (2017), 1-102. https://doi.org/10.4064/dm750-9-2016

9. C. Bennett, R. Sharpley, Interpolation of operators, Academic Press, 1988.

10. H. Yang, J. Zhou, Commutators of parameter Marcinkiwicz integral with functions
in Campanato spaces on Orlicz-Morrey spaces, Filomat., 37 (2023), 7255-7273.
https://doi.org/10.2298/FIL2321255Y

11. K. Ho, Fractional integral operators with homogeneous kernels on Morrey spaces with variable
exponents, J. Math. Soc. Japan., 69 (2017), 1059-1077. https://doi.org/10.2969/jmsj/06931059

12. M. A. Ragusa, Commutators of fractional integral operators on vanishing-Morrey spaces, J. Glob.
Optim., 40 (2008), 361-368. https://doi.org/10.1007/s10898-007-9176-7

13. A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey
spaces, Filomat., 34 (2020), 931-944. https://doi.org/10.2298/FIL2003931S

14. H. Yang, J. Zhou, Some characterizations of Lipschitz spaces via commutators of the Hardy-
Littlewood maximal operator on slice spaces, Proc. Ro. Acad. Ser. A., 24 (2023), 223-230.
https://doi.org/10.59277/PRA-SER.A.24.3.03

AIMS Mathematics Volume 9, Issue 2, 3126-3149.


http://dx.doi.org/https://doi.org/10.1002/cpa.3160140317
http://dx.doi.org/https://doi.org/10.2307/1970954
http://dx.doi.org/https://doi.org/10.2748/tmj/1178230105
http://dx.doi.org/https://doi.org/10.4153/CJM-2011-043-1
http://dx.doi.org/https://doi.org/10.1007/s11118-021-09953-w
http://dx.doi.org/https://doi.org/10.4064/dm750-9-2016
http://dx.doi.org/https://doi.org/10.2298/FIL2321255Y
http://dx.doi.org/https://doi.org/10.2969/jmsj/06931059
http://dx.doi.org/https://doi.org/10.1007/s10898-007-9176-7
http://dx.doi.org/https://doi.org/10.2298/FIL2003931S
http://dx.doi.org/https://doi.org/10.59277/PRA-SER.A.24.3.03

3148

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

29.

30.

31.

. J. Tan, J. Zhao, Rough fractional integrals and its commutators on variable Morrey spaces, C. R.
Math., 353 (2015), 1117-1122. https://doi.org/10.1016/j.crma.2015.09.024

J. Tan, Z. Liu, J. Zhao, On some multilinear commutators in variable Lebesgue spaces, J. Math.
Inequal., 11 (2017), 715-734. https://doi.org/10.7153/jmi-2017-11-57

M. A. Ragusa, Local Holder regularity for solutions of elliptic systems, Duke Math. J., 113 (2002),
385-397. https://doi.org/10.1215/S0012-7094-02-11327-1

Y. Chen, Q. Deng, Y. Ding, Commutators with fractional differentiation for second-
order elliptic operators on R", ~Commun. Contemp. Math., 22 (2020), 1950010.
https://doi.org/10.1142/S021919971950010X

Y. Chen, Y. Ding, G. Hong, Commutators with fractional differentiation and
new characterizations of BMO-Sobolev spaces, Anal. PDE, 9 (2016), 1497-1522.
https://doi.org/10.2140/apde.2016.9.1497

C. Pérez, G. Pradolini, R. H. Torres, R. Trujillo-Gonzalez, End-points estimates for iterated
commutators of multilinear singular integrals, Bull. London Math. Soc., 46 (2014), 26-42.
https://doi.org/10.1112/blms/bdt065

A. Bényi, R. H. Torres, Compact bilinear operators and commutators, Proc. Amer. Math. Soc.,
141 (2013), 3609-3621.

A. Bényi, W. Damian, K. Moen, R. H. Torres, Compact bilinear commutators: the weighted case,
Michigan Math. J., 64 (2015), 39-51.

D. Wang, J. Zhou, Z. Teng, Characterization of CMO via compactness of the commutators
of bilinear fractional integral operators, Anal. Math. Phys., 9 (2019), 1669-1688.
https://doi.org/10.1007/s13324-018-0264-2

T. Hytonen, S. Lappas, Extrapolation of compactness on weighted spaces: Bilinear operators,
Indagat. Math., 33 (2022), 397-420. https://doi.org/10.1016/j.indag.2021.09.007

W. Guo, H. Wu, D. Yang, A revised on the compactness of commutators, Can. J. Math., 73 (2021),
1667-1697. https://doi.org/10.4153/S0008414X20000644

S. Lu, Y. Ding, D. Yan, Singular integrals and related topics, World Scientific, 2007.

A. K. Lerner, S. Ombrosi, I. P. Rivera-Rios, Commutators of singular integrals revisited, Bull.
London Math. Soc., 51 (2019), 107-119. https://doi.org/10.1112/blms.12216

M. Izuki, T. Noi, Y. Sawano, The John-Nirenberg inequality in ball Banach function
spaces and application to characterization of BMO, J. Inequal. Appl., 2019 (2019), 268.
https://doi.org/10.1186/s13660-019-2220-6

Y. Zhang, S. Wang, D. Yang, W. Yuan, Weak Hardy-type spaces associated with ball quasi-
Banach function spaces I: Decompositions with applications to boundedness of Calder6n-Zygmund
operators, Sci. China Math., 64 (2021), 2007-2064. https://doi.org/10.1007/s11425-019-1645-1

A. Clop, V. Cruz, Weighted estimates for Beltrami equations, Ann. Fenn. Math., 38 (2013), 91-113.
https://doi.org/10.5186/aasfm.2013.3818
S. G. Krantz, S. Y. Li, Boundedness and compactness of integral operators on spaces

of homogeneous type and applications, II, J. Math. Anal. Appl., 258 (2001), 642-657.
https://doi.org/10.1006/jmaa.2000.7403

AIMS Mathematics Volume 9, Issue 2, 3126-3149.


http://dx.doi.org/https://doi.org/10.1016/j.crma.2015.09.024
http://dx.doi.org/https://doi.org/10.7153/jmi-2017-11-57
http://dx.doi.org/https://doi.org/10.1215/S0012-7094-02-11327-1
http://dx.doi.org/https://doi.org/10.1142/S021919971950010X
http://dx.doi.org/https://doi.org/10.2140/apde.2016.9.1497
http://dx.doi.org/https://doi.org/10.1112/blms/bdt065
http://dx.doi.org/https://doi.org/10.1007/s13324-018-0264-2
http://dx.doi.org/https://doi.org/10.1016/j.indag.2021.09.007
http://dx.doi.org/https://doi.org/10.4153/S0008414X20000644
http://dx.doi.org/https://doi.org/10.1112/blms.12216
http://dx.doi.org/https://doi.org/10.1186/s13660-019-2220-6
http://dx.doi.org/https://doi.org/10.1007/s11425-019-1645-1
http://dx.doi.org/https://doi.org/10.5186/aasfm.2013.3818
http://dx.doi.org/https://doi.org/10.1006/jmaa.2000.7403

3149

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

—
AtMS A[MS Press terms of the

==

L. Grafakos, Classical Fourier analysis, New York: Springer, 2014.

J. Garcia-Cuerva, J. L. R. de Francia, Weighted norm inequalities and related topics, North-Holland
mathematics studies, 1985.

K. Andersen, R. John, Weighted inequalities for vecter-valued maximal functions and singular
integrals, Stud. Math., 69 (1981), 19-31. https://doi.org/10.4064/sm-69-1-19-31

B. Muckenhoupt, R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer.
Math. Soc., 192 (1974), 261-274. https://doi.org/10.1090/S0002-9947-1974-0340523-6

Y. Ding, S. Lu, Higher order commutators for a class of rough operators, Ark. Mat., 37 (1999),
33-44. https://doi.org/10.1007/BF02384827

D. R. Adams, A note on Riesz potentials, Duke Math. J., 42 (1975), 765-778.
https://doi.org/10.1215/S0012-7094-75-04265-9

C. Capone, D. Cruz-Uribe, A. SFO Fiorenza, The fractional maximal operator and
fractional integrals on variable L” spaces, Rev. Mat. Iberoamericana, 23 (2007), 743-770.
https://doi.org/10.4171/RMI/511

C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer.
Math. Soc., 43 (1938) 126-166. https://doi.org/10.2307/1989904

T. Iida, Weighted estimates of higher order commutators generated by BMO-functions
and the fractional integral operator on Morrey spaces, J. Inequal. Appl., 2016 (2016), 4.
https://doi.org/10.1186/s13660-015-0953-4

H. Wang, Commutators of singular integral operator on herz-type hardy spaces with variable
exponent, J. Korean Math. Soc., 54 (2017), 713-732. https://doi.org/10.4134/JKMS.j150771

M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent,
Rend. Circ. Mat. Palermo, 59 (2010), 461-472. https://doi.org/10.1007/s12215-010-0034-y

T. Nogayama, Mixed Morrey  spaces, Positivity, 23 (2019, 961-1000.
https://doi.org/10.1007/s11117-019-00646-8

T. Nogayama, Boundedness of commutators of fractional integral operators
on mixed Morrey spaces, Integr. Transf. Spec. F, 30 (2019), 790-816.
https://doi.org/10.1080/10652469.2019.1619718

H. Zhang, J. Zhou, The Ko&the dual of mixed Morrey spaces and applications, 2022.
https://doi.org/10.48550/arXiv.2204.00518

©2024 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 9, Issue 2, 3126-3149.


http://dx.doi.org/https://doi.org/10.4064/sm-69-1-19-31
http://dx.doi.org/https://doi.org/10.1090/S0002-9947-1974-0340523-6
http://dx.doi.org/https://doi.org/10.1007/BF02384827
http://dx.doi.org/https://doi.org/10.1215/S0012-7094-75-04265-9
http://dx.doi.org/https://doi.org/10.4171/RMI/511
http://dx.doi.org/https://doi.org/10.2307/1989904
http://dx.doi.org/https://doi.org/10.1186/s13660-015-0953-4
http://dx.doi.org/https://doi.org/10.4134/JKMS.j150771
http://dx.doi.org/https://doi.org/10.1007/s12215-010-0034-y
http://dx.doi.org/https://doi.org/10.1007/s11117-019-00646-8
http://dx.doi.org/https://doi.org/10.1080/10652469.2019.1619718
http://dx.doi.org/https://doi.org/10.48550/arXiv.2204.00518
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Proof of Theorem 1.1
	Proof of Theorem 1.2
	Applications
	Weighted Lebesgue spaces
	Morrey spaces
	Variable Lebesgue spaces
	Mixed Morrey spaces

	Conclusions

