Research article

Bihomomorphisms and biderivations in Lie Banach algebras

  • Received: 04 October 2019 Accepted: 25 February 2020 Published: 27 February 2020
  • MSC : 39B52, 47B47, 39B62, 17B40

  • In this paper, we solve the following bi-additive $s$-functional inequality $ \begin{array}{*{20}{c}}{\left\| {f(x - y, y + z) + f\left( {y + z, z - x} \right) + f\left( {z + x, x - z} \right) - f\left( {x - y, x + y} \right)} \right.}\\\;\;\;\;\;\;\;\;\;\;\;{ \le \left\| {s\left( {f\left( {y - z, z + x} \right) + f\left( {z + x, x - y} \right) + f\left( {x + y, y - x} \right) - f\left( {y - z, y + z} \right)} \right)} \right\|, }\end{array}~~~~~~\left( {0.1} \right) $ where $s$ is a fixed nonzero complex number satisfying $|s| \lt 1$. Furthermore, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive $s$-functional inequality (0.1).

    Citation: Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park. Bihomomorphisms and biderivations in Lie Banach algebras[J]. AIMS Mathematics, 2020, 5(3): 2196-2210. doi: 10.3934/math.2020145

    Related Papers:

  • In this paper, we solve the following bi-additive $s$-functional inequality $ \begin{array}{*{20}{c}}{\left\| {f(x - y, y + z) + f\left( {y + z, z - x} \right) + f\left( {z + x, x - z} \right) - f\left( {x - y, x + y} \right)} \right.}\\\;\;\;\;\;\;\;\;\;\;\;{ \le \left\| {s\left( {f\left( {y - z, z + x} \right) + f\left( {z + x, x - y} \right) + f\left( {x + y, y - x} \right) - f\left( {y - z, y + z} \right)} \right)} \right\|, }\end{array}~~~~~~\left( {0.1} \right) $ where $s$ is a fixed nonzero complex number satisfying $|s| \lt 1$. Furthermore, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive $s$-functional inequality (0.1).


    加载中


    [1] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science Ed. Wiley, New York, 1940.
    [2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224. doi: 10.1073/pnas.27.4.222
    [3] T. Aoki, On the stability of the linear transformationin Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66. doi: 10.2969/jmsj/00210064
    [4] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Am. Math. Soc., 72 (1978), 297-300.
    [5] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436. Doi.org/10.1006/jmaa.1994.1211. doi: 10.1006/jmaa.1994.1211
    [6] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., 62 (2001), 303-309. doi: 10.1007/PL00000156
    [7] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 66 (2003), 191-200. doi: 10.1007/s00010-003-2684-8
    [8] W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., 71 (2006), 149-161. doi: 10.1007/s00010-005-2775-9
    [9] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707-710.
    [10] C. Park, Additive ρ-functional inequalities and equations, J. Math. Inequal., 9 (2015), 17-26.
    [11] C. Park, Additive ρ-functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., 9 (2015), 397-407.
    [12] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995), 143-190. doi: 10.1007/BF01831117
    [13] V. Govindan, C. Park, S. Pinelas, et al., Solution of a 3-D cubic functional equation and its stability, AIMS Math., 5 (2020), 1693-1705. doi: 10.3934/math.2020114
    [14] Pl. Kannappan, P. K. Sahoo, Cauchy difference-a generalization of Hosszú functional equation, Proc. Nat. Acad. Sci. India, 63 (1993), 541-550.
    [15] A. Najati, Homomorphisms in quasi-Banach algebras associated with a Pexiderized CauchyJensen functional equation, Acta Math. Sin. (Engl. Ser.), 25 (2009), 1529-1542. doi: 10.1007/s10114-009-7648-z
    [16] C. Park, Y. Cho, M. Han, Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations, J. Inequal. Appl., 2007, Art. ID 41820 (2007).
    [17] M. Ramdoss, P. Selvan-Arumugam, C. Park, Ulam stability of linear differential equations using Fourier transform, AIMS Math., 5 (2020), 766-780. doi: 10.3934/math.2020052
    [18] J. Bae, W. Park, Approximate bi-homomorphisms and bi-derivations in C*-ternary algebras, Bull. Korean Math. Soc., 47 (2010), 195-209. doi: 10.4134/BKMS.2010.47.1.195
    [19] J. Shokri, C. Park, D. Shin, Approximate bi-homomorphisms and bi-derivations in intuitionistic fuzzy ternary normed algebras, J. Comput. Anal. Appl., 23 (2017), 713-722.
    [20] C. Park, Biderivations and bihomomorphisms in Banach algebras, Filomat, 33 (2019), 2317-2328.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3438) PDF downloads(432) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog