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Abstract: In this paper, we solve the following bi-additive s-functional inequality

If(x=y,y+2)+ fO+zz2-x)+ fz+x,x-2) = f(x =y, x + Yl (0.1)
<ls(f—zz+x)+ fz+x,x=y)+ f(x+y,y—x) = f(y -2y + 2,

where s is a fixed nonzero complex number satisfying |s| < 1. Furthermore, we prove the Hyers-Ulam
stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive
s-functional inequality (0.1).
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concerning the
stability of group homomorphisms. The functional equation f(x+y) = f(x)+ f(y) is called the Cauchy
equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers’
Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by
considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained
by Gavruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit
of Rassias’ approach.

Gilanyi [6] showed that if f satisfies the functional inequality

12 (x) +2f () = fx =l < [Ilf (x + y)l (1.1)
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then f satisfies the Jordan-von Neumann functional equation

2f(x) +2f() = fx +y) + f(x = y).

See also [7]. Fechner [8] and Giladnyi [9] proved the Hyers-Ulam stability of the functional
inequality (1.1). Park [10, 11] defined additive p-functional inequalities and proved the Hyers-Ulam
stability of the additive p-functional inequalities in Banach spaces and non-Archimedean Banach
spaces. The stability problems of various functional equations and functional inequalities have been
extensively investigated by a number of authors (see [12—17]).

Bae and Park [18] proved the Hyers-Ulam stability of bthomomorphisms and biderivations in C*-
ternary algebras, Shokri, Park and Shin [19] proved the Hyers-Ulam stability of bthomomorphisms
and biderivations in intuitionistic fuzzy ternary normed algebras, and Park [20] proved the Hyers-Ulam
stability of biderivations and bihomomorphisms in Banach algebras.

Definition 1.1. Let A, B be Lie Banach algebras. A bi-additive mapping H : A X A — B is called a

bihomomorphism if H satisfies

H([x,y],[z,z])
H([x, x], [y, z])

[H(x,2), H(y, 2)],
[H(x,y), H(x,2)]

for all x,y,z € A.

Definition 1.2. Let A be a Lie Banach algebra. A bi-additive mapping § : A X A — A is called a
biderivation if ¢ satisfies

o([x, y],2)
o(x, [y, zD)

[6(x, 2),y] + [x,6(y, 2)],
[6(x,y),z] + [y,0(x, 2)]

for all x,y,z € A.

This paper is organized as follows: In Section 2, we solve the bi-additive s-functional inequality
(0.1) and prove the Hyers-Ulam stability of the bi-additive s-functional inequality (0.1) in complex
Banach spaces. In Section 3, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations
in Lie Banach algebras, associated with the bi-additive s-functional inequality (0.1).

Assume that s is a fixed nonzero complex number with |s| < 1.

2. Bi-additive s-functional inequality (0.1)

Throughout this section, let X be a complex normed space and Y a complex Banach space.
We solve and investigate the bi-additive s-functional inequality (0.1) in complex normed spaces.

Theorem 2.1. If a mapping f : X* — Y satisfies (0.1) for all x,y,z € X, then f : X*> — Y is bi-additive.

Proof. Assume that f satisfies (0.1). Replacing x by y, y by z and z by x in (0.1), we get

If O —zz+x)+ fle+x,x=y)+ f(x+y,y—x) = fOO—zy+ 2l
Sls(fz—xx+y)+ f(x+y,y=-2)+ f(0+z.2-y) = f(z—x,2+ X)) (2.1)
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for all x,y,z € X. Replacing x by z, y by x, and z by y in (0.1), we get
Ifz=xx+y)+ fx+y.y=2) + [ +2.2-y) = flz=xz+ 1)l
Sls(fx=yy+2) + fO0+z2-0) + fe+xx-2) - f(x=y, x + )
for all x,y,z € X. By (0.1), (2.1), (2.2), we obtain
1f(x=y.y+2)+ fO+22-0)+ fz+x,x-2) - flx -y, x+))I

<SSP =-yy+2)+ fO+zz2-0)+ f@+x,x—2)— fx—y, x+ )l
Sfx=y.y+2)+ fO+zz2-0)+ fz+x,x-2) = f(x =y, x+ Y)ll

for all x,y,z € X. From (2.3), we get the equality
fa=y.y+2)+f0+22-0)+ flz+xx-2) - fx-y,x+y) =0

for all x,y,z € X. By putting x =y =z =01in (2.4), we get

f(0,0) =0.
Then let’s put in (2.4) x = z = 0. We have

f(»,0) =0.
Next we take in (2.4) y = z = 0. Then
f(x,0)+ f(0,-x) = 0.

But we already know that f(x,0) = 0. Therefore,

f0,-x) =0.
Replacing x and y by =* and z by x—;y in (2.4), we get

Jy) + fx,=y) =0
for all x,y € X. Replacing x by 5, yby =3, zby 5 + yin (2.4), we get
Sy + fOy) + f(x+y,-y) =0
for all x,y € X. Replacing x by x + y in (2.5), we get
Jx+y, )+ fx+y,-y) =0

for all x,y € X. It follows from (2.6) and (2.7) that

f(x,y)"'f(y,y)_f(x'i'y,Y) =0

=y
2

SO =0+ f(=x,—x=y) = f(x,y) =0

for all x,y € X. Replacing x by %, y by 5=, and z by —=* in (2.4), we get
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for all x,y € X. Replacing y by x in (2.5), we get f(x, x) = —f(x, —x) for all x € X, and together with

(2.9), we obtain
fx) + () = f(=x,-x=y) =0
for all x,y € X. Replacing x by 5 +y, yby —5 +y, and z by 3 in (2.4), we get
J) + o, =)+ f(x+y,y) = f(x,2y) =0
for all x,y € X. Adding (2.8) and (2.11), we obtain

2f(x,y) = f(x,2y) =2f () + fO,y) + f,—y) — f(x,2y) =0

(2.10)

(2.11)

(2.12)

where the first equality comes from replacing y by x in (2.5). Replacing x by x —y and y by y + z in

(2.8), we get
—fa=yy+2) - fO+zy+2)+ fx+2y+2) =0
for all x,y,z € X. Replacing x by —y — z and y by x + y in (2.10), we get
fy—2-y-+f(=y-z,x+y) = fO+2,-x+2)=0
for all x,y,z € X. Replacing x by y + z and letting y = 0 in (2.10), we get
fO+zy+)—-f(-=y-2-y-2)=0

for all x,y,z € X. Adding (2.4), (2.13), (2.14) and (2.15), we obtain

f+z,x-2) - fx=—y,x+y)+ f(x+z,y+2)+ f(-=y—z,x+y)=0

Xty

for all x, y,z € X. Replacing x by ==, y by

y+z—Xx
2

, 2 by 5% in (2.16), we get
f(x7y)_f(x_§7y+§)+f(xa§)+f(_§’y+§):0

-y-z x+y

for all x,y,z € X. Replacing x by 5=, y by — =%, z by =5= in (2.16), we get

for all x,y,z € X. Adding (2.17) and (2.18), and from (2.5) and (2.12), we obtain

and so

fn+ f(x,2)— fx,y+2) =0

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)
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for all x,y,z € X. Thus f : X*> — Y is additive in the second variable.
Replacing y by y — x and z by x in (2.19), we get

—fy =)= frx)+ f(x,y) =0 (2.20)

for all x,y € X and replacing y by y — x in (2.10), we get

JOx) + Oy =x) = f(=x,-y) =0 (2.21)

for all x,y € X. Adding (2.20) and (2.21), we get

fO,y) = f(=x=y)=0 (2.22)

for all x,y € X. Replacing y by z and z by y in (2.14), we get

fx=zy+2)+ fo+z,y—-x)+ f(x+y,x—y)— f(x—2,x+2)=0 (2.23)

for all x,y,z € X. Using (2.5), (2.22) and (2.23), we obtain

JO+tzx=-+fz-—xy+2)+f(x-z,x+2) - f(x+y,x—y) (2.24)
=—fOo+zy-x0)-fx-zy++fx—z,x+2) - f(x+y,x-y)
=—(fx-zy++fO+zy-0)+fx+y,x—y) - f(x—z,x+2) =0

for all x,y,z € X.

Define a mapping g : X> — Y by g(x,y) = f(y, x) for all x,y € X. Then, from (2.24), g also satisfies
(2.4). Thus, in a similar way, we can prove that g is additive in the second variable, which yields that
f : X?> — Y is additive in the first variable.

Therefore, f : X> — Y is a bi-additive mapping. O

Now, we prove the Hyers-Ulam stability of the bi-additive s-functional inequality (0.1).

Theorem 2.2. Let 0 < r < 2 and 0 be nonnegative real number. If a mapping f : X* — Y satisfies
f@0,x) = f(x,0) = 0 and

If(x=y,y+2)+ fO+z,2=x)+ fz+x,x-2) = f(x =y, x + Y)ll
<ls(f-zz+x0)+ fz+x,x=y)+ f(x+y,y—x) = f(y —zy + )l
+O(|Ix” + lIyll” + llzIl") (2.25)

for all x,y,z € X, then there exists a unique bi-additive mapping B : X*> — Y such that

r

0
If(x.y) = Blx pll < 7—E(x. y) (2.26)

for all x,y € X, where the function E : X* — R is defined as

r

+(

r

E(x,y) = (

+ 76 + 12|s])

+26 + 4|s])

X x
1— sl 4 1—|s] 2
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r

1
(1—|S|
3
Sy
7

1 —s]

x|’ : 3
+1ﬂj¥ +@o+mm)§ +u6+&m-g

r

+
(I—ISI

r 4
+(1—|S|+3)

r

x =2y
4

x+2y
4

+ 18 + 2|s])

5)

+ 10)”%

r

" 1
1 —s]

x+y
2

X-)
2

+ (

forall x,y € X.
Proof. Replacing x by y, y by z, z by x in (2.25), we get

IfO—zz+x)+ fle+x,x=y)+ f(x+y,y—x) = fOO -z, y+ 2l
<ls(fz=xx+y)+ f(x+y,y=2)+ f(y+z,2-y) = f(z—x,2+ X))
+O(/xl|” + Iyl + l1zlI")

for all x,y,z € X. Replacing x by z, y by x, z by y in (2.25), we get

If@—x,x+y)+fx+y,y-2)+ fO+z,z2-y) - flz—x,z+ x|
Sls(fx=yy+2)+ fy+z2-x)+ flz+x,x—2) = f(x =y, x +y))
+6(1xll" + Iyl + 11zl

for all x,y,z € X. By (2.25), (2.28) and (2.29), we obtain

If(x=y,y+2)+ fO+2,2=x)+ fz+x,x-2) = f(x =y, x +Y)ll
<IsPlf(x=y.y+2)+ fO+z2- 20+ flz+x,x—2) = f(x =y, x+ )|
+(1 + |s] + [sP)Ixl” + Iyll” + llzll")

and so

If(x=y,y+2)+ fO+z2-x)+ fz+x,x-2) = f(x =y, x + Y)ll

1 r r r
< = OIxIl" + 1yl + Mzl
1 —1s]

for all x,y,z € X. Replacing x, y by =* and z by 5* in (2.25), we get

r

+

r

x+y
2

)

x —
£ G ) + £k, =yl < 62 ” 2
for all x,y € X. Replacing x by % y by —g, zby % +yin (2.25), we get

fCx,y) + f,y) + f(x+y, =
ISl (= = yox +3) + Fx + 7220 — fex— vyl + 9(2||§

r

)

agn
2)’

r

for all x,y € X. Replacing x by —3, y by 7 +y, z by 5 in (2.25), we get

r

)

agn
2 y

r

IsIf(=x =y, x +y) + f(x +y,%) = f(=x =y, »Il < |s16(2 Hg

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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for all x,y € X. Replacing x by x + y in (2.31), we get

= foxsyon = s w2 3]+ 2] .34
for all x,y € X. Adding (2.32), (2.33) and (2.34), we obtain
£ + 10 - S+l < @+ ispe 5| + 3 +9]) (2.35)
for all x,y € X. Replacing x by 2, y by =5, z by —=% in (2.25), we get
1) = f -0 = f-x—x =il < o[22 236)
for all x,y € X. Setting x = y = 0 and replacing z by x in (2.25), we get
£ (e, x) + f (e, =0l < OIxll") (2.37)
for all x € X. Adding (2.36) and (2.37), we get
150 + £ = fox—x =l < 6 2 252 238)

for all x,y € X. Replacing x by § + y and y by —3 + y and z by 5 in (2.30), we get

£ y) + £ =) + F(x+3,3) — f(x. 29 < %Me(Hg o + ”—g o + Hg Ny 239)
for all x,y € X. Adding (2.35), (2.39) and (2.37) (here, we replace x by y), we obtain
12/ (x,y) = f(x,2y)ll < OE;(x, y) (2.40)
for all x, y, z € X, where the function E; : X*> — R is defined as
By = (o + 2+ 0 [ 0] + |5 o+ g+ 4w 2|5 o
for all x,y € X. Replacing x by x — y and y by y + zin (2.35), we get
==y y+2) - f+zy+2)+ flx+zy+2)ll
<@+ Ishol 2 + 122 E (2.41)
for all x,y,z € X. Replacing x by —y — z and y by x + y in (2.38) gives
If(=y=-z-y-2+f(=y-zx+y) = fO+2z,-x+2)
<013+ 12 sy + 2 (2.42)
for all x,y,z € X. Replacing x by y + z and setting y = 0 in (2.38), we get
IfG+zy+2) - f=y—z-y-2l < 9(3||y—J2rZ||’ +ly +2ll") (2.43)
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for all x,y,z € X. Adding (2.30), (2.41), (2.42) and (2.43), we obtain

If(x+z,x—2) = fx—y,x+y)+ f(x+z,y+2)+ f(=y -z, x + Y|l < OEs(x,y,2)

for all x, y, z € X, where the function E, : X> — R is defined as

1 X — r
Ey(x,y,2) = T |Sl(llelr + I+ lzll”) + (4 + 21s]) 2+ +1s) 7
L9 x;z T lx+ 22y +z||"

,zbyx——1n(244) we get

for all x,y,z € X. Replacing x by 3,

|re—xem £ (5-5+3) -1 (x3) -1 (555 )

2° 72
y —x+y y)

< E5|=

= 2(2’ > Y72

for all x,y € X. Replacing x by 5%, y by -3, z by 52 in (2.44), we get

H —f(x, —y)+f(———y) f( g)—f(—g%—stEz(x;y,—g,x;y)

for all x,y € X. Replacing x by —5 and y by —3 + y in (2.31), we get

r

y

Hf(—g,—gw)ﬂ‘(—— 5= H 9(2 )
for all x,y € X. Replacing x by § and y by 5§ —y in (2.31), we get
X X X vl lx=y]|
— — - = — < 0(2|=
Hf(z’z )f(z 2+y ezl =l
for all x,y € X. Replacing y by 5 in (2.40), we get
X X
12f(x, 5) = f(x, Oll < OE, (x, 5)
for all x € X. Replacing y by y — x in (2.38), we get
| Y| .
= f G0 = flry =0+ f=x=pl < 6@ [+ le= S|+ )

for all x,y € X. Adding (2.31), (2.46), (2.47), (2.48), (2.49), (2.50) and (2.51), we obtain

I1f(x,y) = f(=x, =Yl < OE3(x,y)
for all x,y € X, where the function E;3 : X> — R is defined as

3x|| 1

Ex(6y) = (o + 3+ Dl + @+ 205D\ 5| + (o

X
+9 +2ls)||=

x+y+2z|

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)
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r

-y
2

+ (14 + 4|s|)

1

S 5T 1)

+7)

x+y
2

y
— i Dlk=Z
+(1—|s|+ )H" 2

for all x,y € X. Replacing y by z and z by y in (2.30), we get

I-fx—zy+2—-fO+z,—x+y)—fx+y,x—y)+ f(x—z,x+ 2

< O™ + 11" + Il (2.53)

1 —s

for all x,y,z € X. Replacing x by —x + z and y by y + zin (2.52), we get
If(=x+zy+2) - f(x—2,-y -l < OE(=x + 2,y +2) (2.54)

for all x,y,z € X. Replacing x by x —zand y by y + zin (2.31), we get

x—=y=2z|" |lx+y|
=2y +2+ flx—z -y =2l < 62| —5 =) (2.55)
for all x,y,z € X. Replacing x by y+ zand y by x — y in (2.31), we get
-x+2y+z, X+Z,
IfG+zx=)+fO+z-x+yl < 9(2II+II + IITII ) (2.56)

for all x,y,z € X. Adding (2.53), (2.54), (2.55) and (2.56), we obtain

= fx+y,x=Y+f(x—2,x+2)+ f(=x+2,y+2) + f + 2, x = V)| < OE4(x,y,2) (2.57)
for all x, y, z € X, where the function E4 : X> — R is defined as

y+z|f

Ey(x,y,2) =
2

1
Cllell” + 117+ 1121l +( 9)”
1—|s|

x+y|
+ + 8
(1—|s| ) 2

—x+2y+z|
e

r

1
1 —|s|

x+y+2z 2x+y—z2

2

+( +1)

=+ 3)

ISI
+
= Is
1

1 —1s]

x+z||
2

)'+(

5 + 3+ [s)llx = zll"

r

@+ 20| X 0+ 24s)| S5+ (a + ais) |

for all x,y,z € X. Replacing x by x +y, yby x —y, and z by y in (2.57), we get

| = f2x,2y) + f(x, x+2y) + f(—=x,x) + f(x,20)|| S OE4(x + y,x = y,Y) (2.58)

for all x,y € X. Replacing x by y and z by x +y (2.57), we get

I = (=%, x+2y) = f(x, x + 2y)I| < OE4(y,y, x +) (2.59)

for all x,y € X. Replacing x by y, y by —y, and z by x +y (2.57), we get
1f (=2, x4 2y) + f(x, x) + (0, 29| < OE4(y, =y, x + y) (2.60)
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for all x,y € X. Setting x = y = 0 and replacing z by x in (2.57), we get
Il = f(=x, %) = f(x, 0ll < 0E4(0,0, x) (2.61)
for all x € X. Adding (2.58), (2.59), (2.60) and (2.61) and adding (2.40) twice, we obtain

1/ (2x,2y) = 4f(x, Il < Es(x,y) (2.62)

for all x,y € X, where the function Es : X> — R is defined as

Es(x,y) = (1_|S| +76 + 12|s]) g r+(1—9|s| +26+4|s|)||x||r+(1_1|S| +1) 3—2x '
+ (56 + 16lsD)| (16 + 8ls) 34—x r+(l_3|s|+5) Sy r
+ (o 18+ 2D %C+y r+(1_|s| +10)lyl"
b (o Il e

for all x,y € X.
For any positive integer n, replacing x by 2"~'x and y by 2""!y in (2.62), and dividing both sides by
4" we obtain

1 Lo 2y’
e - ez <o(3) B .63

for all x,y € X. For any nonnegative integers u, v satisfying u < v, by (2.63), we obtain

1

1 1 < |1 o
SI@x2y - | Y | ey - ety
n=u+1
— rou+l r v+l
= oy CORENCY
<> H(Z) E(x,y) = 62 1_14 E(x,y) (2.64)
n=u+1 4

for all x,y € X. It follows from (2.64) that the sequence {4%, f(2"x,2"y)} is Cauchy for all x,y € X.
Since Y is a Banach space, then this sequence converges. So we can define the mapping B : X> — Y
by

1
B(x,y) := lim ym f(2"x,2"y)
for all x,y € X. Setting v = 0 and passing the limit # — oo in (2.64), we get (2.26). Also, from (2.25),

IB(x—y,y+2)+B(y+z,z—x)+B(z+x,x—2) = B(x—y,x +y)||
1
= }ii?o |I4—”(f(2"(x -,2"y+2) + f2"(y +2),2"(z— x))
+f(2"(z+ x),2"(x —2) = f(2"(x = ), 2" (x + M|
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< lim |S|||4in(f(2"(y —-2,2z+ ) + 2"z +x),2"(x - y))
+f2"(x+y), 2"y - x) - f2"6 - 2,2" G + )l
+Tim 26+ Iy + 1)
=IsllBy =z, z+x) + Blz+x,x=y) + Blx +y,y = X) = By =z, y + 2|
for all x,y,z € X. So, by Theorem 2.1, the mapping B : X*> — Y is bi-additive.

Now, let A : X?> — Y be another bi-additive specified what the conditions are. Then, for any positive
integer n, we have

1 1
1Bx,y) = ACe, DI = Nl B2"x, 2y) = 2 AR %, 2°Y)ll

1 1 1 1
<Ml BQx2%) = 2 f27x P9 + 1l 2 f (270, 279) = AR, 2|

1 r+1 r r+1
< — EQ2"x,2"%) = " E(x, 2.65
T T N = ()5 ExY) (2.65)
for all x,y € X. When n tends to infinity in (2.65), we have B(x,y) = A(x,y) for all x,y € X. This
proves the uniqueness of the bi-additive mapping B, as desired. O

Theorem 2.3. Let r > 2 and 6 be nonnegative real number. If a mapping f : X*> — Y satisfies
f(O,x) = f(x,0) = 0 and (2.25) for all x,y,z € X, then there exists a unique bi-additive mapping
B : X?> — Y such that

r

If(x.y) = Blx pll < 77— ECx. y) (2.66)

for all x,y € X, where the function E : X*> — R is defined in (2.27).

Proof. Assume that f satisfies (0.1). By the same inappropriate as in the proof of Theorem 2.2, we
obatin (2.62). For any positive integer n, replacing x by 3+ and y by 5 in (2.62), and multiplying
both sides by 4", we obtain

n X y n 1 y
4 f(?’?)_ ' f(2n+1 2n+1)

for all x,y € X. For any nonnegative integer u, v satisfying u < v, by (2.67), we obtain

oz 3)-erpls S e ) el

< 0(;) E(x,y) (2.67)

n=v—1

)
n=u

2u’ Qu 2
(4 ) -G
< Z 9(2) E(x,y) = ﬁE( y) (2.68)

for all x,y € X. It follows from (2.68) that the sequence {4" f(3;, 2,, } is Cauchy for all x,y € X. Since
Y is a Banach space, this sequence converges. So we can define the mapping B : X*> — Y by

Y

X
B(x,y) := lim 4" f(=, =
(x,y) == lim 4%f (=2, °0)
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for all x,y € X. Setting v = 0 and passing the limit # — oo in (2.68), we obtain (2.66). Also, from
(2.25),

IIB(x—y,y+Z)+B(V+z,z—X)+B(Z+x x=2)=Blx—y, x+yll

= lim [4"(FC 2, f(y+Z’Z2n R I (e
sgggo|s|||4"<f Rl B ””

n

1 4 r r r
+ Lim 2Ol + [+l
=IsllB(y —z,z+x) + Blz+x,x =)+ Bx+y,y = x) = By —z,y + )|

for all x,y,z € X. So, by Theorem 2.1, the mapping B : X*> — Y is bi-additive.
Now, let A : X?> — Y be another bi-additive specified what the conditions are. Then, for any positive
integer n, we have

IIB(x,y)—A(x,y)II=|I4"B(2— ) 4”A(— e

2n
Xy X Xy
<4”B———4”—— 4 Ly grat, X
< I4B(5 50) = 4'F G 30+ W F(G 30 = #°AG 20
2r+10 4 2r+19
<4t = " 2.
<o E(5 5 = () 5 EC) (2.69)

for all x,y € X. When n tends to infinity in (2.69), we have B(x,y) = A(x,y) for all x,y € X. This
proves the uniqueness of the bi-additive mapping B, as desired. m|

3. Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras

Throughout this section, let X and Y be complex Lie Banach algebras.
We prove the Hyers-Ulam stability of bihomomorphisms associated with the bi-additive
s-functional inequality (0.1).

Theorem 3.1. Let r # 2 and 6 be nonnegative real number. If a mapping f : X*> — Y satisfies
f@0,x) = f(x,0) = 0 and (2.25), and

£ (Tx, ¥, [2,2D) = [F(x, 2), £ DI < Ol + Iyl + 11077, (3.1

£ (Lx, X1, [, 2D) = [F G ), £ O DT < OCllell” + Iyl + 1121l (3.2)

for all x,y,z € X, then there exists a unique bihomomorphism H : X* — Y such that

r

12" — 4

I1f(x,y) = H(x, )l < E(x,y) (3.3)

for all x,y € X, where the function E : X*> — R is defined as (2.27)
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Proof. First, we deal with the case r < 2.

By Theorem 2.2, H(x,y) := lim,_,q ﬁ f(2"x,2"y) is a unique bi-additive mapping which satisfies
(3.3).

Replacing x by 2"x, y by 2"y, and z by 2"z in (3.1), we obtain

1 1
lim || 7= f@Lx 3], 4%z, 2D) = 12 [F(27x, 272), f(27y, 2°2)]
1
= lim —2IA(12°x, 279), [2%2,2°2]) = [£(27x. 2°2), f(279. 2%
4r
< lim ()"0l + Iy + IzlI")? = 0 (3.4)

for all x,y,z € X.
Adding (3.4), we get

IH([x, yl, [z, z]) = [H(x, 2), H(y, D]

: 1 n n 1 n n 1 n n
= lim ||43f(22 [x,y],2"[z,2]) - [4—nf(2 x,2"2), 4—nf(2 ¥, 2"2)]l

1 1
< lim [l -2 f (47 y] 4z 2]) = 72 127 2%), f(279, 271 < O

for all x,y,z € X. Thus we have H([x, V], [z,z]) = [H(x,2), H(y,7)] for all x,y,z € X. By a similar
method, we can also prove that H([x, x],[y,z]) = [H(x,y),H(x,z)], and thus H : X*> — Y is a
bihomomorphism.

Now, assume that r > 2.

By Theorem 2.3, H(x,y) := lim, 4" f(3:, 5;) is a unique bi-additive mapping which satisfies (3.3).

Replacing x by 3, y by 3, and z by % in (3.1), we obtain

[x,y] [z,z]

lim [[16" f( )— 16"[f<§, §>,f<§, §>]n

4n 0 4n
) Xy Z z X z y z
= 1lim 16" f([=, =1, [=, —=]) - [f(=, =), f(=, —
lm 161755 50 (57 5D = UG ) F G 501
. 1611 r r r
S’}g{}o($) Ollxll” + IIyll” + llzll")* = 0 (3.5

for all x,y,z € X.
Adding (3.5), we get

IH([x, y], [z, z]) = [H(x, 2), H(y, 2]ll

T A B3 J I k5 N I IS S
—r}ggllél A 2 22,1) [4 f(zn’zn)’4 f(zn’zn)]ll
[x,y] [z,2]

) X z y z

<1 16" , - 16" f(=, =), f(=, )] <0

< lim 16" f(72= =220 = 16115 50 S e )

for all x,y,z € X. Thus we have H([x, V], [z,z]) = [H(x,2), H(y,7)] for all x,y,z € X. By a similar
method, we can also prove that H([x, x],[v,z]) = [H(x,y),H(x,z)] and thus H : X> — Y is a

bihomomorphism. O
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Remark 3.2. We have defined the new useful bi-additive functional inequality (0.1), which was not
appeared in any papers or any books, and solved the bi-additive functional inequality (0.1).
Furthermore, we have proved the Hyers-Ulam-Rassais stability of the bi-additive functional inequality
(0.1) by the direct method.

Many authors have only tried to investigate bihomomorphisms and biderivations in Banach
algebras, C*-ternary algebras and C~*-algebras. But in this paper, we have proved the
Hyers-Ulam-Rassias stability of bihomomorphisms and biderivations in Lie Banach algebras
associated with the bi-additive functional inequality (0.1).

4. Conclusions

In this paper, we have introduced and solved the bi-additive s-functional inequality (0.1) and we
have proved the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras
associated with the bi-additive s-functional inequality (0.1).
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