

http://www.aimspress.com/journal/Math

AIMS Mathematics, 5(3): 2196-2210.

DOI: 10.3934/math.2020145 Received: 04 October 2019 Accepted: 25 February 2020 Published: 27 February 2020

Research article

Bihomomorphisms and biderivations in Lie Banach algebras

Tae Hun Kim¹, Ha Nuel Ju¹, Hong Nyeong Kim¹, Seong Yoon Jo¹ and Choonkil Park^{2,*}

- ¹ Mathematics Branch, Seoul Science High School, Seoul 03066, Korea
- ² Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
- * Correspondence: Email: baak@hanyang.ac.kr; Tel: +82222200892; Fax: +82222810019.

Abstract: In this paper, we solve the following bi-additive s-functional inequality

$$||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$

$$\leq ||s(f(y-z,z+x) + f(z+x,x-y) + f(x+y,y-x) - f(y-z,y+z))||,$$
(0.1)

where s is a fixed nonzero complex number satisfying |s| < 1. Furthermore, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive s-functional inequality (0.1).

Keywords: Hyers-Ulam stability; bi-additive s-functional inequality; Lie Banach algebra;

bihomomorphism; biderivation

Mathematics Subject Classification: 39B52, 47B47, 39B62, 17B40

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. The functional equation f(x+y) = f(x) + f(y) is called the *Cauchy equation*. In particular, every solution of the Cauchy equation is said to be an *additive mapping*. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

Gilányi [6] showed that if f satisfies the functional inequality

$$||2f(x) + 2f(y) - f(x - y)|| \le ||f(x + y)|| \tag{1.1}$$

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(x + y) + f(x - y).$$

See also [7]. Fechner [8] and Gilányi [9] proved the Hyers-Ulam stability of the functional inequality (1.1). Park [10, 11] defined additive ρ -functional inequalities and proved the Hyers-Ulam stability of the additive ρ -functional inequalities in Banach spaces and non-Archimedean Banach spaces. The stability problems of various functional equations and functional inequalities have been extensively investigated by a number of authors (see [12–17]).

Bae and Park [18] proved the Hyers-Ulam stability of bihomomorphisms and biderivations in C^* -ternary algebras, Shokri, Park and Shin [19] proved the Hyers-Ulam stability of bihomomorphisms and biderivations in intuitionistic fuzzy ternary normed algebras, and Park [20] proved the Hyers-Ulam stability of biderivations and bihomomorphisms in Banach algebras.

Definition 1.1. Let A, B be Lie Banach algebras. A bi-additive mapping $H: A \times A \rightarrow B$ is called a *bihomomorphism* if H satisfies

$$H([x, y], [z, z]) = [H(x, z), H(y, z)],$$

 $H([x, x], [y, z]) = [H(x, y), H(x, z)]$

for all $x, y, z \in A$.

Definition 1.2. Let A be a Lie Banach algebra. A bi-additive mapping $\delta: A \times A \to A$ is called a *biderivation* if δ satisfies

$$\delta([x, y], z) = [\delta(x, z), y] + [x, \delta(y, z)],$$

$$\delta(x, [y, z]) = [\delta(x, y), z] + [y, \delta(x, z)]$$

for all $x, y, z \in A$.

This paper is organized as follows: In Section 2, we solve the bi-additive s-functional inequality (0.1) and prove the Hyers-Ulam stability of the bi-additive s-functional inequality (0.1) in complex Banach spaces. In Section 3, we prove the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras, associated with the bi-additive s-functional inequality (0.1).

Assume that s is a fixed nonzero complex number with |s| < 1.

2. Bi-additive s-functional inequality (0.1)

Throughout this section, let X be a complex normed space and Y a complex Banach space. We solve and investigate the bi-additive s-functional inequality (0.1) in complex normed spaces.

Theorem 2.1. If a mapping $f: X^2 \to Y$ satisfies (0.1) for all $x, y, z \in X$, then $f: X^2 \to Y$ is bi-additive.

Proof. Assume that f satisfies (0.1). Replacing x by y, y by z and z by x in (0.1), we get

$$||f(y-z,z+x) + f(z+x,x-y) + f(x+y,y-x) - f(y-z,y+z)||$$

$$\leq ||s(f(z-x,x+y) + f(x+y,y-z) + f(y+z,z-y) - f(z-x,z+x))||$$
(2.1)

for all $x, y, z \in X$. Replacing x by z, y by x, and z by y in (0.1), we get

$$||f(z-x,x+y) + f(x+y,y-z) + f(y+z,z-y) - f(z-x,z+x)||$$

$$\leq ||s(f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y))||$$
(2.2)

for all $x, y, z \in X$. By (0.1), (2.1), (2.2), we obtain

$$||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$

$$\leq ||s^{3}(f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y))||$$

$$\leq ||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$
(2.3)

for all $x, y, z \in X$. From (2.3), we get the equality

$$f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y) = 0$$
 (2.4)

for all $x, y, z \in X$. By putting x = y = z = 0 in (2.4), we get

$$f(0,0) = 0.$$

Then let's put in (2.4) x = z = 0. We have

$$f(y, 0) = 0.$$

Next we take in (2.4) y = z = 0. Then

$$f(x,0) + f(0,-x) = 0.$$

But we already know that f(x, 0) = 0. Therefore,

$$f(0, -x) = 0.$$

Replacing x and y by $\frac{x-y}{2}$ and z by $\frac{x+y}{2}$ in (2.4), we get

$$f(x, y) + f(x, -y) = 0 (2.5)$$

for all $x, y \in X$. Replacing x by $\frac{x}{2}$, y by $-\frac{x}{2}$, z by $\frac{x}{2} + y$ in (2.4), we get

$$f(x,y) + f(y,y) + f(x+y,-y) = 0 (2.6)$$

for all $x, y \in X$. Replacing x by x + y in (2.5), we get

$$f(x+y,y) + f(x+y,-y) = 0 (2.7)$$

for all $x, y \in X$. It follows from (2.6) and (2.7) that

$$f(x,y) + f(y,y) - f(x+y,y) = 0 (2.8)$$

for all $x, y \in X$. Replacing x by $\frac{x+y}{2}$, y by $\frac{y-x}{2}$, and z by $-\frac{x+y}{2}$ in (2.4), we get

$$f(x, -x) + f(-x, -x - y) - f(x, y) = 0 (2.9)$$

for all $x, y \in X$. Replacing y by x in (2.5), we get f(x, x) = -f(x, -x) for all $x \in X$, and together with (2.9), we obtain

$$f(x,x) + f(x,y) - f(-x,-x-y) = 0 (2.10)$$

for all $x, y \in X$. Replacing x by $\frac{x}{2} + y$, y by $-\frac{x}{2} + y$, and z by $\frac{x}{2}$ in (2.4), we get

$$f(x, y) + f(y, -y) + f(x + y, y) - f(x, 2y) = 0$$
(2.11)

for all $x, y \in X$. Adding (2.8) and (2.11), we obtain

$$2f(x,y) - f(x,2y) = 2f(x,y) + f(y,y) + f(y,-y) - f(x,2y) = 0$$
(2.12)

where the first equality comes from replacing y by x in (2.5). Replacing x by x - y and y by y + z in (2.8), we get

$$-f(x-y,y+z) - f(y+z,y+z) + f(x+z,y+z) = 0$$
(2.13)

for all $x, y, z \in X$. Replacing x by -y - z and y by x + y in (2.10), we get

$$f(-y-z, -y-z) + f(-y-z, x+y) - f(y+z, -x+z) = 0$$
(2.14)

for all $x, y, z \in X$. Replacing x by y + z and letting y = 0 in (2.10), we get

$$f(y+z, y+z) - f(-y-z, -y-z) = 0 (2.15)$$

for all $x, y, z \in X$. Adding (2.4), (2.13), (2.14) and (2.15), we obtain

$$f(x+z, x-z) - f(x-y, x+y) + f(x+z, y+z) + f(-y-z, x+y) = 0$$
 (2.16)

for all $x, y, z \in X$. Replacing x by $\frac{x+y}{2}$, y by $\frac{y+z-x}{2}$, z by $\frac{x-y}{2}$ in (2.16), we get

$$f(x,y) - f\left(x - \frac{z}{2}, y + \frac{z}{2}\right) + f\left(x, \frac{z}{2}\right) + f\left(-\frac{z}{2}, y + \frac{z}{2}\right) = 0$$
 (2.17)

for all $x, y, z \in X$. Replacing x by $\frac{x-y-z}{2}$, y by $-\frac{x+y}{2}$, z by $\frac{x+y+z}{2}$ in (2.16), we get

$$f(x, -y - z) - f\left(x - \frac{z}{2}, -y - \frac{z}{2}\right) + f\left(x, \frac{z}{2}\right) + f\left(-\frac{z}{2}, -y - \frac{z}{2}\right) = 0$$
 (2.18)

for all $x, y, z \in X$. Adding (2.17) and (2.18), and from (2.5) and (2.12), we obtain

$$f(x,y) - f\left(x - \frac{z}{2}, y + \frac{z}{2}\right) - f\left(x - \frac{z}{2}, -y - \frac{z}{2}\right) + 2f\left(x, \frac{z}{2}\right) + f\left(-\frac{z}{2}, y + \frac{z}{2}\right) + f\left(-\frac{z}{2}, -y - \frac{z}{2}\right) + f(x, -y - z) = 0$$

and so

$$f(x,y) + f(x,z) - f(x,y+z) = 0 (2.19)$$

for all $x, y, z \in X$. Thus $f: X^2 \to Y$ is additive in the second variable.

Replacing y by y - x and z by x in (2.19), we get

$$-f(x, y - x) - f(x, x) + f(x, y) = 0 (2.20)$$

for all $x, y \in X$ and replacing y by y - x in (2.10), we get

$$f(x,x) + f(x,y-x) - f(-x,-y) = 0 (2.21)$$

for all $x, y \in X$. Adding (2.20) and (2.21), we get

$$f(x,y) - f(-x - y) = 0 (2.22)$$

for all $x, y \in X$. Replacing y by z and z by y in (2.14), we get

$$f(x-z,y+z) + f(y+z,y-x) + f(x+y,x-y) - f(x-z,x+z) = 0$$
 (2.23)

for all $x, y, z \in X$. Using (2.5), (2.22) and (2.23), we obtain

$$f(y+z,x-y) + f(z-x,y+z) + f(x-z,x+z) - f(x+y,x-y)$$

$$= -f(y+z,y-x) - f(x-z,y+z) + f(x-z,x+z) - f(x+y,x-y)$$

$$= -(f(x-z,y+z) + f(y+z,y-x) + f(x+y,x-y) - f(x-z,x+z)) = 0$$
(2.24)

for all $x, y, z \in X$.

Define a mapping $g: X^2 \to Y$ by g(x, y) = f(y, x) for all $x, y \in X$. Then, from (2.24), g also satisfies (2.4). Thus, in a similar way, we can prove that g is additive in the second variable, which yields that $f: X^2 \to Y$ is additive in the first variable.

Therefore,
$$f: X^2 \to Y$$
 is a bi-additive mapping.

Now, we prove the Hyers-Ulam stability of the bi-additive s-functional inequality (0.1).

Theorem 2.2. Let 0 < r < 2 and θ be nonnegative real number. If a mapping $f: X^2 \to Y$ satisfies f(0,x) = f(x,0) = 0 and

$$||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$

$$\leq ||s(f(y-z,z+x) + f(z+x,x-y) + f(x+y,y-x) - f(y-z,y+z))||$$

$$+\theta(||x||^r + ||y||^r + ||z||^r)$$
(2.25)

for all $x, y, z \in X$, then there exists a unique bi-additive mapping $B: X^2 \to Y$ such that

$$||f(x,y) - B(x,y)|| \le \frac{2^r \theta}{4 - 2^r} E(x,y)$$
 (2.26)

for all $x, y \in X$, where the function $E: X^2 \to \mathbb{R}$ is defined as

$$E(x,y) = \left(\frac{14}{1-|s|} + 76 + 12|s|\right) \left\|\frac{x}{4}\right\|^r + \left(\frac{9}{1-|s|} + 26 + 4|s|\right) \left\|\frac{x}{2}\right\|^r$$

$$+ \left(\frac{1}{1-|s|}+1\right) \left\|\frac{3x}{4}\right\|^{r} + \left(56+16|s|\right) \left\|\frac{x}{8}\right\|^{r} + \left(16+8|s|\right) \left\|\frac{3x}{8}\right\|^{r}$$

$$+ \left(\frac{3}{1-|s|}+5\right) \left\|\frac{x-2y}{4}\right\|^{r} + \left(\frac{4}{1-|s|}+18+2|s|\right) \left\|\frac{x+2y}{4}\right\|^{r}$$

$$+ \left(\frac{7}{1-|s|}+10\right) \left\|\frac{y}{2}\right\|^{r} + \left(\frac{4}{1-|s|}+3\right) \left\|\frac{x+y}{2}\right\|^{r} + \frac{1}{1-|s|} \left\|\frac{x-y}{2}\right\|^{r}$$

$$(2.27)$$

for all $x, y \in X$.

Proof. Replacing x by y, y by z, z by x in (2.25), we get

$$||f(y-z,z+x) + f(z+x,x-y) + f(x+y,y-x) - f(y-z,y+z)||$$

$$\leq ||s(f(z-x,x+y) + f(x+y,y-z) + f(y+z,z-y) - f(z-x,z+x))||$$

$$+\theta(||x||^r + ||y||^r + ||z||^r)$$
(2.28)

for all $x, y, z \in X$. Replacing x by z, y by x, z by y in (2.25), we get

$$||f(z-x,x+y) + f(x+y,y-z) + f(y+z,z-y) - f(z-x,z+x)||$$

$$\leq ||s(f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y))||$$

$$+\theta(||x||^r + ||y||^r + ||z||^r)$$
(2.29)

for all $x, y, z \in X$. By (2.25), (2.28) and (2.29), we obtain

$$||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$

$$\leq |s|^{3}||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$

$$+(1+|s|+|s|^{2})\theta(||x||^{r}+||y||^{r}+||z||^{r})$$

and so

$$||f(x-y,y+z) + f(y+z,z-x) + f(z+x,x-z) - f(x-y,x+y)||$$

$$\leq \frac{1}{1-|s|}\theta(||x||^r + ||y||^r + ||z||^r)$$
(2.30)

for all $x, y, z \in X$. Replacing x, y by $\frac{x-y}{2}$ and z by $\frac{x+y}{2}$ in (2.25), we get

$$||f(x,y) + f(x,-y)|| \le \theta(2 \left\| \frac{x-y}{2} \right\|^r + \left\| \frac{x+y}{2} \right\|^r)$$
 (2.31)

for all $x, y \in X$. Replacing x by $\frac{x}{2}$, y by $-\frac{x}{2}$, z by $\frac{x}{2} + y$ in (2.25), we get

$$||f(x,y) + f(y,y) + f(x+y,-y)||$$

$$\leq |s|||f(-x-y,x+y) + f(x+y,x) - f(-x-y,y)|| + \theta(2\left\|\frac{x}{2}\right\|^r + \left\|\frac{x}{2} + y\right\|^r)$$
(2.32)

for all $x, y \in X$. Replacing x by $-\frac{x}{2}$, y by $\frac{x}{2} + y$, z by $\frac{x}{2}$ in (2.25), we get

$$|s|||f(-x-y,x+y)+f(x+y,x)-f(-x-y,y)|| \le |s|\theta(2\left\|\frac{x}{2}\right\|^r + \left\|\frac{x}{2} + y\right\|^r)$$
 (2.33)

for all $x, y \in X$. Replacing x by x + y in (2.31), we get

$$\|-f(x+y,y)-f(x+y,-y)\| \le \theta(2\left\|\frac{x}{2}\right\|^r + \left\|\frac{x}{2} + y\right\|^r)$$
 (2.34)

for all $x, y \in X$. Adding (2.32), (2.33) and (2.34), we obtain

$$||f(x,y) + f(y,y) - f(x+y,y)|| \le (2+|s|)\theta(2\left\|\frac{x}{2}\right\|^r + \left\|\frac{x}{2} + y\right\|^r)$$
(2.35)

for all $x, y \in X$. Replacing x by $\frac{x+y}{2}$, y by $\frac{-x+y}{2}$, z by $-\frac{x+y}{2}$ in (2.25), we get

$$||f(x,y) - f(x,-x) - f(-x,-x-y)|| \le \theta(2 \left\| \frac{x+y}{2} \right\|^r + \left\| \frac{x-y}{2} \right\|^r)$$
 (2.36)

for all $x, y \in X$. Setting x = y = 0 and replacing z by x in (2.25), we get

$$||f(x,x) + f(x,-x)|| \le \theta(||x||^r) \tag{2.37}$$

for all $x \in X$. Adding (2.36) and (2.37), we get

$$||f(x,x) + f(x,y) - f(-x, -x - y)|| \le \theta(2 \left\| \frac{x+y}{2} \right\|^r + \left\| \frac{x-y}{2} \right\|^r + ||x||^r)$$
(2.38)

for all $x, y \in X$. Replacing x by $\frac{x}{2} + y$ and y by $-\frac{x}{2} + y$ and z by $\frac{x}{2}$ in (2.30), we get

$$||f(x,y) + f(y,-y) + f(x+y,y) - f(x,2y)|| \le \frac{1}{1-|s|} \theta(\left\|\frac{x}{2} + y\right\|^r + \left\|-\frac{x}{2} + y\right\|^r + \left\|\frac{x}{2}\right\|^r)$$
 (2.39)

for all $x, y \in X$. Adding (2.35), (2.39) and (2.37) (here, we replace x by y), we obtain

$$||2f(x,y) - f(x,2y)|| \le \theta E_1(x,y) \tag{2.40}$$

for all $x, y, z \in X$, where the function $E_1 : X^2 \to \mathbb{R}$ is defined as

$$E_1(x,y) = \left(\frac{1}{1-|s|} + 2 + |s|\right) \left\| \frac{x}{2} + y \right\|^r + \frac{1}{1-|s|} \left\| -\frac{x}{2} + y \right\|^r + \left(\frac{1}{1-|s|} + 4 + 2|s|\right) \left\| \frac{x}{2} \right\|^r + \|y\|^r$$

for all $x, y \in X$. Replacing x by x - y and y by y + z in (2.35), we get

$$||-f(x-y,y+z)-f(y+z,y+z)+f(x+z,y+z)||$$

$$\leq (2+|s|)\theta(2||\frac{x-y}{2}||^r+||\frac{x+y+2z}{2}||^r)$$
(2.41)

for all $x, y, z \in X$. Replacing x by -y - z and y by x + y in (2.38) gives

$$||f(-y-z,-y-z) + f(-y-z,x+y) - f(y+z,-x+z)|| \le \theta(2||\frac{x-z}{2}||^r + ||\frac{x+2y+z}{2}||^r + ||y+z||^r)$$
(2.42)

for all $x, y, z \in X$. Replacing x by y + z and setting y = 0 in (2.38), we get

$$||f(y+z,y+z) - f(-y-z,-y-z)|| \le \theta(3||\frac{y+z}{2}||^r + ||y+z||^r)$$
(2.43)

for all $x, y, z \in X$. Adding (2.30), (2.41), (2.42) and (2.43), we obtain

$$||f(x+z, x-z) - f(x-y, x+y) + f(x+z, y+z) + f(-y-z, x+y)|| \le \theta E_2(x, y, z)$$
 (2.44)

for all $x, y, z \in X$, where the function $E_2 : X^3 \to \mathbb{R}$ is defined as

$$E_{2}(x, y, z) = \frac{1}{1 - |s|} (||x||^{r} + ||y||^{r} + ||z||^{r}) + (4 + 2|s|) \left\| \frac{x - y}{2} \right\|^{r} + (2 + |s|) \left\| \frac{x + y + 2z}{2} \right\|^{r} + 2 \left\| \frac{x - z}{2} \right\|^{r} + \left\| \frac{x + 2y + z}{2} \right\|^{r} + 2||y + z||^{r} + 3 \left\| \frac{y + z}{2} \right\|^{r}$$

$$(2.45)$$

for all $x, y, z \in X$. Replacing x by $\frac{y}{2}$, y by $\frac{-x+y}{2}$, z by $x - \frac{y}{2}$ in (2.44), we get

$$\left\| -f(x, -x + y) + f\left(\frac{x}{2}, -\frac{x}{2} + y\right) - f\left(x, \frac{x}{2}\right) - f\left(-\frac{x}{2}, -\frac{x}{2} + y\right) \right\|$$

$$\leq E_2\left(\frac{y}{2}, \frac{-x + y}{2}, x - \frac{y}{2}\right) \tag{2.46}$$

for all $x, y \in X$. Replacing x by $\frac{x-y}{2}$, y by $-\frac{y}{2}$, z by $\frac{x+y}{2}$ in (2.44), we get

$$\left\| -f(x, -y) + f\left(\frac{x}{2}, \frac{x}{2} - y\right) - f\left(x, \frac{x}{2}\right) - f\left(-\frac{x}{2}, \frac{x}{2} - y\right) \right\| \le E_2\left(\frac{x - y}{2}, -\frac{y}{2}, \frac{x + y}{2}\right) \tag{2.47}$$

for all $x, y \in X$. Replacing x by $-\frac{x}{2}$ and y by $-\frac{x}{2} + y$ in (2.31), we get

$$\left\| f\left(-\frac{x}{2}, -\frac{x}{2} + y\right) + f\left(-\frac{x}{2}, \frac{x}{2} - y\right) \right\| \le \theta(2 \left\| \frac{y}{2} \right\|^r + \left\| \frac{x - y}{2} \right\|^r) \tag{2.48}$$

for all $x, y \in X$. Replacing x by $\frac{x}{2}$ and y by $\frac{x}{2} - y$ in (2.31), we get

$$\left\| -f\left(\frac{x}{2}, \frac{x}{2} - y\right) - f\left(\frac{x}{2}, -\frac{x}{2} + y\right) \right\| \le \theta(2\left\|\frac{y}{2}\right\|^r + \left\|\frac{x - y}{2}\right\|^r) \tag{2.49}$$

for all $x, y \in X$. Replacing y by $\frac{x}{2}$ in (2.40), we get

$$||2f(x, \frac{x}{2}) - f(x, x)|| \le \theta E_1(x, \frac{x}{2})$$
(2.50)

for all $x \in X$. Replacing y by y - x in (2.38), we get

$$\|-f(x,x) - f(x,y-x) + f(-x,-y)\| \le \theta(2\left\|\frac{y}{2}\right\|' + \left\|x - \frac{y}{2}\right\|' + \|x\|^r)$$
 (2.51)

for all $x, y \in X$. Adding (2.31), (2.46), (2.47), (2.48), (2.49), (2.50) and (2.51), we obtain

$$||f(x,y) - f(-x,-y)|| \le \theta E_3(x,y)$$
 (2.52)

for all $x, y \in X$, where the function $E_3 : X^2 \to \mathbb{R}$ is defined as

$$E_3(x,y) = \left(\frac{1}{1-|s|} + 3 + |s|\right) ||x||^r + (4+2|s|) \left\| \frac{3x}{4} \right\|^r + \left(\frac{1}{1-|s|} + 9 + 2|s|\right) \left\| \frac{x}{2} \right\|^r$$

$$+ (14+4|s|) \left\| \frac{x}{4} \right\|^r + \left(\frac{2}{1-|s|} + 9 \right) \left\| \frac{y}{2} \right\|^r + \left(\frac{2}{1-|s|} + 7 \right) \left\| \frac{x-y}{2} \right\|^r$$

$$+ \left(\frac{1}{1-|s|} + 1 \right) \left\| \frac{x+y}{2} \right\|^r + \left(\frac{1}{1-|s|} + 1 \right) \left\| x - \frac{y}{2} \right\|^r$$

for all $x, y \in X$. Replacing y by z and z by y in (2.30), we get

$$|| - f(x - z, y + z) - f(y + z, -x + y) - f(x + y, x - y) + f(x - z, x + z)||$$

$$\leq \frac{1}{1 - |s|} \theta(||x||^r + ||y||^r + ||z||^r)$$
(2.53)

for all $x, y, z \in X$. Replacing x by -x + z and y by y + z in (2.52), we get

$$||f(-x+z,y+z) - f(x-z,-y-z)|| \le \theta E_3(-x+z,y+z)$$
(2.54)

for all $x, y, z \in X$. Replacing x by x - z and y by y + z in (2.31), we get

$$||f(x-z,y+z) + f(x-z,-y-z)|| \le \theta(2 \left\| \frac{x-y-2z}{2} \right\|^r + \left\| \frac{x+y}{2} \right\|^r)$$
 (2.55)

for all $x, y, z \in X$. Replacing x by y + z and y by x - y in (2.31), we get

$$||f(y+z,x-y)+f(y+z,-x+y)|| \le \theta(2||\frac{-x+2y+z}{2}||^r + ||\frac{x+z}{2}||^r)$$
 (2.56)

for all $x, y, z \in X$. Adding (2.53), (2.54), (2.55) and (2.56), we obtain

$$\|-f(x+y,x-y)+f(x-z,x+z)+f(-x+z,y+z)+f(y+z,x-y)\| \le \theta E_4(x,y,z) \tag{2.57}$$

for all $x, y, z \in X$, where the function $E_4 : X^3 \to \mathbb{R}$ is defined as

$$\begin{split} E_4(x,y,z) &= \frac{1}{1-|s|} (||x||^r + ||y||^r + ||z||^r) + (\frac{2}{1-|s|} + 9) \left\| \frac{y+z}{2} \right\|^r \\ &+ (\frac{2}{1-|s|} + 8) \left\| \frac{x+y}{2} \right\|^r + (\frac{1}{1-|s|} + 3) \left\| \frac{-x+y+2z}{2} \right\|^r + (\frac{1}{1-|s|} + 1) \left\| \frac{2x+y-z}{2} \right\|^r \\ &+ 2 \left\| \frac{-x+2y+z}{2} \right\|^r + \left\| \frac{x+z}{2} \right\|^r + (\frac{1}{1-|s|} + 3 + |s|) ||x-z||^r \\ &+ (4+2|s|) \left\| \frac{3(x-z)}{4} \right\|^r + (\frac{1}{1-|s|} + 9 + 2|s|) \left\| \frac{x-z}{2} \right\|^r + (14+4|s|) \left\| \frac{x-z}{4} \right\|^r \end{split}$$

for all $x, y, z \in X$. Replacing x by x + y, y by x - y, and z by y in (2.57), we get

$$||-f(2x,2y)+f(x,x+2y)+f(-x,x)+f(x,2y)|| \le \theta E_4(x+y,x-y,y)$$
 (2.58)

for all $x, y \in X$. Replacing x by y and z by x + y (2.57), we get

$$|| - f(-x, x + 2y) - f(x, x + 2y)|| \le \theta E_4(y, y, x + y)$$
(2.59)

for all $x, y \in X$. Replacing x by y, y by -y, and z by x + y (2.57), we get

$$||f(-x, x+2y) + f(x, x) + f(x, 2y)|| \le \theta E_4(y, -y, x+y)$$
(2.60)

for all $x, y \in X$. Setting x = y = 0 and replacing z by x in (2.57), we get

$$|| - f(-x, x) - f(x, x)|| \le \theta E_4(0, 0, x)$$
(2.61)

for all $x \in X$. Adding (2.58), (2.59), (2.60) and (2.61) and adding (2.40) twice, we obtain

$$||f(2x, 2y) - 4f(x, y)|| \le E_5(x, y) \tag{2.62}$$

for all $x, y \in X$, where the function $E_5 : X^2 \to \mathbb{R}$ is defined as

$$E_{5}(x,y) = \left(\frac{14}{1-|s|} + 76 + 12|s|\right) \left\|\frac{x}{2}\right\|^{r} + \left(\frac{9}{1-|s|} + 26 + 4|s|\right) \|x\|^{r} + \left(\frac{1}{1-|s|} + 1\right) \left\|\frac{3x}{2}\right\|^{r}$$

$$+ \left(56 + 16|s|\right) \left\|\frac{x}{4}\right\|^{r} + \left(16 + 8|s|\right) \left\|\frac{3x}{4}\right\|^{r} + \left(\frac{3}{1-|s|} + 5\right) \left\|\frac{x}{2} - y\right\|^{r}$$

$$+ \left(\frac{4}{1-|s|} + 18 + 2|s|\right) \left\|\frac{x}{2} + y\right\|^{r} + \left(\frac{7}{1-|s|} + 10\right) \|y\|^{r}$$

$$+ \left(\frac{4}{1-|s|} + 3\right) \|x + y\|^{r} + \frac{1}{1-|s|} \|x - y\|^{r}$$

for all $x, y \in X$.

For any positive integer n, replacing x by $2^{n-1}x$ and y by $2^{n-1}y$ in (2.62), and dividing both sides by 4^n , we obtain

$$\left\| \frac{1}{4^n} f(2^n x, 2^n y) - \frac{1}{4^{n-1}} f(2^{n-1} x, 2^{n-1} y) \right\| \le \theta \left(\frac{2^r}{4} \right)^n E(x, y)$$
 (2.63)

for all $x, y \in X$. For any nonnegative integers u, v satisfying u < v, by (2.63), we obtain

$$\left\| \frac{1}{4^{\nu}} f(2^{\nu} x, 2^{\nu} y) - \frac{1}{4^{\mu}} f(2^{\mu} x, 2^{\mu} y) \right\| \le \sum_{n=u+1}^{n=\nu} \left\| \frac{1}{4^n} f(2^n x, 2^n y) - \frac{1}{4^{n-1}} f(2^{n-1} x, 2^{n-1} y) \right\|$$

$$\le \sum_{n=u+1}^{n=\nu} \theta \left(\frac{2^r}{4} \right)^n E(x, y) = \theta \frac{\left(\frac{2^r}{4} \right)^{u+1} - \left(\frac{2^r}{4} \right)^{v+1}}{1 - \frac{2^r}{4}} E(x, y)$$
(2.64)

for all $x, y \in X$. It follows from (2.64) that the sequence $\{\frac{1}{4^n}f(2^nx, 2^ny)\}$ is Cauchy for all $x, y \in X$. Since Y is a Banach space, then this sequence converges. So we can define the mapping $B: X^2 \to Y$ by

$$B(x, y) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x, 2^n y)$$

for all $x, y \in X$. Setting v = 0 and passing the limit $u \to \infty$ in (2.64), we get (2.26). Also, from (2.25),

$$||B(x - y, y + z) + B(y + z, z - x) + B(z + x, x - z) - B(x - y, x + y)||$$

$$= \lim_{n \to \infty} ||\frac{1}{4^n} (f(2^n(x - y), 2^n(y + z)) + f(2^n(y + z), 2^n(z - x)) + f(2^n(z + x), 2^n(x - z)) - f(2^n(x - y), 2^n(x + y))||$$

$$\leq \lim_{n \to \infty} |s| \|\frac{1}{4^n} (f(2^n(y-z), 2^n(z+x)) + f(2^n(z+x), 2^n(x-y)) + f(2^n(x+y), 2^n(y-x)) - f(2^n(y-z), 2^n(y+z))) \|$$

$$+ \lim_{n \to \infty} \frac{2^{nr}}{4^n} \theta(\|x\|^r + \|y\|^r + \|z\|^r)$$

$$= |s| \|B(y-z, z+x) + B(z+x, x-y) + B(x+y, y-x) - B(y-z, y+z)\|$$

for all $x, y, z \in X$. So, by Theorem 2.1, the mapping $B: X^2 \to Y$ is bi-additive.

Now, let $A: X^2 \to Y$ be another bi-additive specified what the conditions are. Then, for any positive integer n, we have

$$||B(x,y) - A(x,y)|| = ||\frac{1}{4^n}B(2^nx, 2^ny) - \frac{1}{4^n}A(2^nx, 2^ny)||$$

$$\leq ||\frac{1}{4^n}B(2^nx, 2^ny) - \frac{1}{4^n}f(2^nx, 2^ny)|| + ||\frac{1}{4^n}f(2^nx, 2^ny) - \frac{1}{4^n}A(2^nx, 2^ny)||$$

$$\leq \frac{1}{4^n}\frac{2^{r+1}\theta}{4 - 2^r}E(2^nx, 2^ny) = (\frac{2^r}{4})^n\frac{2^{r+1}\theta}{4 - 2^r}E(x,y)$$
(2.65)

for all $x, y \in X$. When n tends to infinity in (2.65), we have B(x, y) = A(x, y) for all $x, y \in X$. This proves the uniqueness of the bi-additive mapping B, as desired.

Theorem 2.3. Let r > 2 and θ be nonnegative real number. If a mapping $f: X^2 \to Y$ satisfies f(0,x) = f(x,0) = 0 and (2.25) for all $x,y,z \in X$, then there exists a unique bi-additive mapping $B: X^2 \to Y$ such that

$$||f(x,y) - B(x,y)|| \le \frac{2^r \theta}{2^r - 4} E(x,y)$$
 (2.66)

for all $x, y \in X$, where the function $E : X^2 \to \mathbb{R}$ is defined in (2.27).

Proof. Assume that f satisfies (0.1). By the same inappropriate as in the proof of Theorem 2.2, we obtain (2.62). For any positive integer n, replacing x by $\frac{x}{2^{n+1}}$ and y by $\frac{y}{2^{n+1}}$ in (2.62), and multiplying both sides by 4^n , we obtain

$$\left\| 4^n f\left(\frac{x}{2^n}, \frac{y}{2^n}\right) - 4^{n+1} f\left(\frac{x}{2^{n+1}}, \frac{y}{2^{n+1}}\right) \right\| \le \theta \left(\frac{4}{2^r}\right)^n E(x, y) \tag{2.67}$$

for all $x, y \in X$. For any nonnegative integer u, v satisfying u < v, by (2.67), we obtain

$$\left\| 4^{u} f\left(\frac{x}{2^{u}}, \frac{y}{2^{u}}\right) - 4^{v} f\left(\frac{x}{2^{v}}, \frac{y}{2^{v}}\right) \right\| \leq \sum_{n=u}^{n=v-1} \left\| 4^{n} f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right) - 4^{n+1} f\left(\frac{x}{2^{n+1}}, \frac{y}{2^{n+1}}\right) \right\|$$

$$\leq \sum_{n=u}^{n=v-1} \theta\left(\frac{4}{2^{r}}\right)^{n} E(x, y) = \theta\frac{\left(\frac{4}{2^{r}}\right)^{u} - \left(\frac{4}{2^{r}}\right)^{v}}{1 - \frac{4}{2^{r}}} E(x, y)$$
(2.68)

for all $x, y \in X$. It follows from (2.68) that the sequence $\{4^n f(\frac{x}{2^n}, \frac{y}{2^n})\}$ is Cauchy for all $x, y \in X$. Since Y is a Banach space, this sequence converges. So we can define the mapping $B: X^2 \to Y$ by

$$B(x, y) := \lim_{n \to \infty} 4^n f(\frac{x}{2^n}, \frac{y}{2^n})$$

for all $x, y \in X$. Setting v = 0 and passing the limit $u \to \infty$ in (2.68), we obtain (2.66). Also, from (2.25),

$$||B(x-y,y+z) + B(y+z,z-x) + B(z+x,x-z) - B(x-y,x+y)||$$

$$= \lim_{n \to \infty} ||4^n (f(\frac{x-y}{2^n}, \frac{y+z}{2^n}) + f(\frac{y+z}{2^n}, \frac{z-x}{2^n}) + f(\frac{z+x}{2^n}, \frac{x-z}{2^n}) - f(\frac{x-y}{2^n}, \frac{x+y}{2^n}))||$$

$$\leq \lim_{n \to \infty} |s|||4^n (f(\frac{y-z}{2^n}, \frac{z+x}{2^n}) + f(\frac{z+x}{2^n}, \frac{x-y}{2^n}) + f(\frac{x+y}{2^n}, \frac{y-x}{2^n}) - f(\frac{y-z}{2^n}, \frac{y+z}{2^n}))||$$

$$+ \lim_{n \to \infty} \frac{4^n}{2^{nr}} \theta(||x||^r + ||y||^r + ||z||^r)$$

$$= |s|||B(y-z, z+x) + B(z+x, x-y) + B(x+y, y-x) - B(y-z, y+z)||$$

for all $x, y, z \in X$. So, by Theorem 2.1, the mapping $B: X^2 \to Y$ is bi-additive.

Now, let $A: X^2 \to Y$ be another bi-additive specified what the conditions are. Then, for any positive integer n, we have

$$||B(x,y) - A(x,y)|| = ||4^{n}B(\frac{x}{2^{n}}, \frac{y}{2^{n}}) - 4^{n}A(\frac{x}{2^{n}}, \frac{y}{2^{n}})||$$

$$\leq ||4^{n}B(\frac{x}{2^{n}}, \frac{y}{2^{n}}) - 4^{n}f(\frac{x}{2^{n}}, \frac{y}{2^{n}})|| + ||4^{n}f(\frac{x}{2^{n}}, \frac{y}{2^{n}}) - 4^{n}A(\frac{x}{2^{n}}, \frac{y}{2^{n}})||$$

$$\leq 4^{n}\frac{2^{r+1}\theta}{2^{r}-4}E(\frac{x}{2^{n}}, \frac{y}{2^{n}}) = (\frac{4}{2^{r}})^{n}\frac{2^{r+1}\theta}{2^{r}-4}E(x,y)$$
(2.69)

for all $x, y \in X$. When n tends to infinity in (2.69), we have B(x, y) = A(x, y) for all $x, y \in X$. This proves the uniqueness of the bi-additive mapping B, as desired.

3. Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras

Throughout this section, let *X* and *Y* be complex Lie Banach algebras.

We prove the Hyers-Ulam stability of bihomomorphisms associated with the bi-additive s-functional inequality (0.1).

Theorem 3.1. Let $r \neq 2$ and θ be nonnegative real number. If a mapping $f: X^2 \to Y$ satisfies f(0,x) = f(x,0) = 0 and (2.25), and

$$||f([x,y],[z,z]) - [f(x,z),f(y,z)]|| \le \theta(||x||^r + ||y||^r + ||z||^r)^2, \tag{3.1}$$

$$||f([x,x],[y,z]) - [f(x,y),f(x,z)]|| \le \theta(||x||^r + ||y||^r + ||z||^r)^2$$
(3.2)

for all $x, y, z \in X$, then there exists a unique bihomomorphism $H: X^2 \to Y$ such that

$$||f(x,y) - H(x,y)|| \le \frac{2^r \theta}{|2^r - 4|} E(x,y)$$
 (3.3)

for all $x, y \in X$, where the function $E: X^2 \to \mathbb{R}$ is defined as (2.27)

Proof. First, we deal with the case r < 2.

By Theorem 2.2, $H(x, y) := \lim_{n\to\infty} \frac{1}{4^n} f(2^n x, 2^n y)$ is a unique bi-additive mapping which satisfies (3.3).

Replacing x by $2^n x$, y by $2^n y$, and z by $2^n z$ in (3.1), we obtain

$$\lim_{n \to \infty} \|\frac{1}{16^n} f(4^n[x, y], 4^n[z, z]) - \frac{1}{16^n} [f(2^n x, 2^n z), f(2^n y, 2^n z)]\|$$

$$= \lim_{n \to \infty} \frac{1}{16^n} \|f([2^n x, 2^n y], [2^n z, 2^n z]) - [f(2^n x, 2^n z), f(2^n y, 2^n z)]\|$$

$$\leq \lim_{n \to \infty} (\frac{4^r}{16})^n \theta(\|x\|^r + \|y\|^r + \|z\|^r)^2 = 0$$
(3.4)

for all $x, y, z \in X$.

Adding (3.4), we get

$$||H([x,y],[z,z]) - [H(x,z),H(y,z)]||$$

$$= \lim_{n \to \infty} ||\frac{1}{4^{2n}} f(2^{2n}[x,y],2^{2n}[z,z]) - [\frac{1}{4^n} f(2^n x,2^n z),\frac{1}{4^n} f(2^n y,2^n z)]||$$

$$\leq \lim_{n \to \infty} ||\frac{1}{16^n} f(4^n[x,y],4^n[z,z]) - \frac{1}{16^n} [f(2^n x,2^n z),f(2^n y,2^n z)]|| \leq 0$$

for all $x, y, z \in X$. Thus we have H([x, y], [z, z]) = [H(x, z), H(y, z)] for all $x, y, z \in X$. By a similar method, we can also prove that H([x, x], [y, z]) = [H(x, y), H(x, z)], and thus $H: X^2 \to Y$ is a bihomomorphism.

Now, assume that r > 2.

By Theorem 2.3, $H(x, y) := \lim_{n \to \infty} 4^n f(\frac{x}{2^n}, \frac{y}{2^n})$ is a unique bi-additive mapping which satisfies (3.3). Replacing x by $\frac{x}{2^n}$, y by $\frac{y}{2^n}$, and z by $\frac{z}{2^n}$ in (3.1), we obtain

$$\lim_{n \to \infty} \|16^{n} f(\frac{[x, y]}{4^{n}}, \frac{[z, z]}{4^{n}}) - 16^{n} [f(\frac{x}{2^{n}}, \frac{z}{2^{n}}), f(\frac{y}{2^{n}}, \frac{z}{2^{n}})]\|$$

$$= \lim_{n \to \infty} 16^{n} \|f([\frac{x}{2^{n}}, \frac{y}{2^{n}}], [\frac{z}{2^{n}}, \frac{z}{2^{n}}]) - [f(\frac{x}{2^{n}}, \frac{z}{2^{n}}), f(\frac{y}{2^{n}}, \frac{z}{2^{n}})]\|$$

$$\leq \lim_{n \to \infty} (\frac{16}{4^{r}})^{n} \theta(\|x\|^{r} + \|y\|^{r} + \|z\|^{r})^{2} = 0$$
(3.5)

for all $x, y, z \in X$.

Adding (3.5), we get

$$\begin{aligned} & \|H([x,y],[z,z]) - [H(x,z),H(y,z)]\| \\ & = \lim_{n \to \infty} \|4^{2n} f(\frac{[x,y]}{2^{2n}},\frac{[z,z]}{2^{2n}}) - [4^n f(\frac{x}{2^n},\frac{z}{2^n}),4^n f(\frac{y}{2^n},\frac{z}{2^n})]\| \\ & \leq \lim_{n \to \infty} \|16^n f(\frac{[x,y]}{4^n},\frac{[z,z]}{4^n}) - 16^n [f(\frac{x}{2^n},\frac{z}{2^n}),f(\frac{y}{2^n},\frac{z}{2^n})]\| \leq 0 \end{aligned}$$

for all $x, y, z \in X$. Thus we have H([x, y], [z, z]) = [H(x, z), H(y, z)] for all $x, y, z \in X$. By a similar method, we can also prove that H([x, x], [y, z]) = [H(x, y), H(x, z)] and thus $H: X^2 \to Y$ is a bihomomorphism.

Remark 3.2. We have defined the new useful bi-additive functional inequality (0.1), which was not appeared in any papers or any books, and solved the bi-additive functional inequality (0.1). Furthermore, we have proved the Hyers-Ulam-Rassais stability of the bi-additive functional inequality (0.1) by the direct method.

Many authors have only tried to investigate bihomomorphisms and biderivations in Banach algebras, C^* -ternary algebras and C^* -algebras. But in this paper, we have proved the Hyers-Ulam-Rassias stability of bihomomorphisms and biderivations in **Lie** Banach algebras associated with the bi-additive functional inequality (0.1).

4. Conclusions

In this paper, we have introduced and solved the bi-additive *s*-functional inequality (0.1) and we have proved the Hyers-Ulam stability of bihomomorphisms and biderivations in Lie Banach algebras associated with the bi-additive *s*-functional inequality (0.1).

Acknowledgments

This work was supported by the Seoul Science High School R&E program in 2018. C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF -2017R1D1A1B04032937).

Conflict of interest

The authors declare that they have no competing interests.

References

- 1. S. M. Ulam, *Problems in Modern Mathematics*, Chapter VI, Science Ed. Wiley, New York, 1940.
- 2. D. H. Hyers, *On the stability of the linear functional equation*, Proc. Nat. Acad. Sci. U.S.A., **27** (1941), 222–224.
- 3. T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66.
- 4. Th. M. Rassias, *On the stability of the linear mapping in Banach spaces*, Proc. Am. Math. Soc., **72** (1978), 297–300.
- 5. P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., **184** (1994), 431–436. Doi.org/10.1006/jmaa.1994.1211.
- 6. A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aequationes Math., **62** (2001), 303–309.
- 7. J. Rätz, *On inequalities associated with the Jordan-von Neumann functional equation*, Aequationes Math., **66** (2003), 191–200.
- 8. W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math., **71** (2006), 149–161.

- 9. A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl., 5 (2002), 707–710.
- 10. C. Park, Additive ρ -functional inequalities and equations, J. Math. Inequal., 9 (2015), 17–26.
- 11. C. Park, *Additive* ρ -functional inequalities in non-Archimedean normed spaces, J. Math. Inequal., **9** (2015), 397–407.
- 12. G. L. Forti, *Hyers-Ulam stability of functional equations in several variables*, Aequationes Math., **50** (1995), 143–190.
- 13. V. Govindan, C. Park, S. Pinelas, et al., *Solution of a 3-D cubic functional equation and its stability*, AIMS Math., **5** (2020), 1693–1705.
- 14. Pl. Kannappan, P. K. Sahoo, *Cauchy difference-a generalization of Hosszú functional equation*, Proc. Nat. Acad. Sci. India, **63** (1993), 541–550.
- 15. A. Najati, Homomorphisms in quasi-Banach algebras associated with a Pexiderized Cauchy-Jensen functional equation, Acta Math. Sin. (Engl. Ser.), 25 (2009), 1529–1542.
- 16. C. Park, Y. Cho, M. Han, *Stability of functional inequalities associated with Jordan-von Neumann type additive functional equations*, J. Inequal. Appl., **2007**, Art. ID 41820 (2007).
- 17. M. Ramdoss, P. Selvan-Arumugam, C. Park, *Ulam stability of linear differential equations using Fourier transform*, AIMS Math., **5** (2020), 766–780.
- 18. J. Bae, W. Park, *Approximate bi-homomorphisms and bi-derivations in C*-ternary algebras*, Bull. Korean Math. Soc., **47** (2010), 195–209.
- 19. J. Shokri, C. Park, D. Shin, *Approximate bi-homomorphisms and bi-derivations in intuitionistic fuzzy ternary normed algebras*, J. Comput. Anal. Appl., **23** (2017), 713–722.
- 20. C. Park, Biderivations and bihomomorphisms in Banach algebras, Filomat, 33 (2019), 2317–2328.

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)