Research article Special Issues

Single index regression for locally stationary functional time series

  • Received: 11 September 2024 Revised: 04 December 2024 Accepted: 09 December 2024 Published: 30 December 2024
  • MSC : 60F05, 62F40, 60G15, 60K05, 60K15

  • In this research, we formulated an asymptotic theory for single index regression applied to locally stationary functional time series. Our approach involved introducing estimators featuring a regression function that exhibited smooth temporal changes. We rigorously established the uniform convergence rates for kernel estimators, specifically the Nadaraya-Watson (NW) estimator for the regression function. Additionally, we provided a central limit theorem for the NW estimator. Finally, the theory was supported by a comprehensive simulation study to investigate the finite-sample performance of our proposed method.

    Citation: Breix Michael Agua, Salim Bouzebda. Single index regression for locally stationary functional time series[J]. AIMS Mathematics, 2024, 9(12): 36202-36258. doi: 10.3934/math.20241719

    Related Papers:

  • In this research, we formulated an asymptotic theory for single index regression applied to locally stationary functional time series. Our approach involved introducing estimators featuring a regression function that exhibited smooth temporal changes. We rigorously established the uniform convergence rates for kernel estimators, specifically the Nadaraya-Watson (NW) estimator for the regression function. Additionally, we provided a central limit theorem for the NW estimator. Finally, the theory was supported by a comprehensive simulation study to investigate the finite-sample performance of our proposed method.



    加载中


    [1] A. Ait-Saïdi, F. Ferraty, R. Kassa, P. Vieu, Cross-validated estimations in the single-functional index model, Statistics, 42 (2008), 475–494. https://doi.org/10.1080/02331880801980377 doi: 10.1080/02331880801980377
    [2] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281. https://doi.org/10.1080/10485252.2022.2027412 doi: 10.1080/10485252.2022.2027412
    [3] G. Aneiros, P. Vieu, Partial linear modelling with multi-functional covariates, Comput. Stat., 30 (2015), 647–671. https://doi.org/10.1007/s00180-015-0568-8 doi: 10.1007/s00180-015-0568-8
    [4] G. Aneiros-Pérez, P. Vieu, Automatic estimation procedure in partial linear model with functional data, Statist. Papers, 52 (2011), 751–771. https://doi.org/10.1007/s00362-009-0280-2 doi: 10.1007/s00362-009-0280-2
    [5] S. Attaoui, N. Ling, Asymptotic results of a nonparametric conditional cumulative distribution estimator in the single functional index modeling for time series data with applications, Metrika, 79 (2016), 485–511. https://doi.org/10.1007/s00184-015-0564-6 doi: 10.1007/s00184-015-0564-6
    [6] S. Attaoui, A. Laksaci, E. O. Said, A note on the conditional density estimate in the single functional index model, Statist. Probab. Lett., 81 (2011), 45–53. https://doi.org/10.1016/j.spl.2010.09.017 doi: 10.1016/j.spl.2010.09.017
    [7] S. Attaoui, B. Bentata, S. Bouzebda, A. Laksaci, The strong consistency and asymptotic normality of the kernel estimator type in functional single index model in presence of censored data, AIMS Mathematics, 9 (2024), 7340–7371. https://doi.org/10.3934/math.2024356 doi: 10.3934/math.2024356
    [8] A. Aue, A. van Delft, Testing for stationarity of functional time series in the frequency domain, Ann. Statist., 48 (2020), 2505–2547. https://doi.org/10.1214/19-AOS1895 doi: 10.1214/19-AOS1895
    [9] B. Auestad, D. Tjøstheim, Identification of nonlinear time series: first order characterization and order determination, Biometrika, 77 (1990), 669–687. https://doi.org/10.2307/2337091 doi: 10.2307/2337091
    [10] K. Benhenni, F. Ferraty, M. Rachdi, P. Vieu, Local smoothing regression with functional data, Comput. Statist., 22 (2007), 353–369. https://doi.org/10.1007/s00180-007-0045-0 doi: 10.1007/s00180-007-0045-0
    [11] N. E. Berrahou, S. Bouzebda, L. Douge, Functional uniform-in-bandwidth moderate deviation principle for the local empirical processes involving functional data, Math. Meth. Stat., 33 (2024), 26–69. https://doi.org/10.3103/S1066530724700030 doi: 10.3103/S1066530724700030
    [12] S. Bhattacharjee, H. G. Müller, Single index Fréchet regression, Ann. Statist., 51 (2023), 1770–1798. https://doi.org/10.1214/23-AOS2307 doi: 10.1214/23-AOS2307
    [13] V. I. Bogachev, Gaussian measures, In: Mathematical surveys and monographs, American Mathematical Society, 62 (1998).
    [14] D. Bosq, Linear processes in function spaces: Theory and applications, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-1154-9
    [15] O. Bouanani, S. Bouzebda, Limit theorems for local polynomial estimation of regression for functional dependent data, AIMS Mathematics, 9 (2024), 23651–23691. https://doi.org/10.3934/math.20241150 doi: 10.3934/math.20241150
    [16] S. Bouzebda, General tests of conditional independence based on empirical processes indexed by functions, Jpn. J. Stat. Data Sci., 6 (2023), 115–177. https://doi.org/10.1007/s42081-023-00193-3 doi: 10.1007/s42081-023-00193-3
    [17] S. Bouzebda, Limit theorems in the nonparametric conditional single-index $U$-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 12 (2024), 1996. https://doi.org/10.3390/math12131996 doi: 10.3390/math12131996
    [18] S. Bouzebda, Uniform in number of neighbor consistency and weak convergence of k-Nearest neighbor single index conditional processes and k-Nearest neighbor single index conditional U-processes involving functional mixing data, Symmetry, 16 (2024), 1576. https://doi.org/10.3390/sym16121576 doi: 10.3390/sym16121576
    [19] S. Bouzebda, Weak convergence of the conditional single index $U $-statistics for locally stationary functional time series, AIMS Mathematics, 9 (2024), 14807–14898. https://doi.org/10.3934/math.2024720 doi: 10.3934/math.2024720
    [20] S.Bouzebda, S. Didi, Additive regression model for stationary and ergodic continuous time processes, Comm. Statist. Theory Methods, 46 (2017), 2454–2493. https://doi.org/10.1080/03610926.2015.1048882 doi: 10.1080/03610926.2015.1048882
    [21] S. Bouzebda, S. Didi, Multivariate wavelet density and regression estimators for stationary and ergodic discrete time processes: asymptotic results, Comm. Statist. Theory Methods, 46 (2017), 1367–1406. https://doi.org/10.1080/03610926.2015.1019144 doi: 10.1080/03610926.2015.1019144
    [22] S. Bouzebda, S. Didi, Some asymptotic properties of kernel regression estimators of the mode for stationary and ergodic continuous time processes, Rev. Mat. Complut., 34 (2021), 811–852. https://doi.org/10.1007/s13163-020-00368-6 doi: 10.1007/s13163-020-00368-6
    [23] S. Bouzebda, B. Nemouchi, Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional $U$-statistics involving functional data, J. Nonparametr. Stat., 32 (2020), 452–509. https://doi.org/10.1080/10485252.2020.1759597 doi: 10.1080/10485252.2020.1759597
    [24] S. Bouzebda, B. Nemouchi, Weak-convergence of empirical conditional processes and conditional $U$-processes involving functional mixing data, Stat. Inference Stoch. Process., 26 (2023), 33–88. https://doi.org/10.1007/s11203-022-09276-6 doi: 10.1007/s11203-022-09276-6
    [25] S. Bouzebda, A. Nezzal, Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional $U$-statistics involving functional data, Jpn. J. Stat. Data Sci., 5 (2022), 431–533. https://doi.org/10.1007/s42081-022-00161-3 doi: 10.1007/s42081-022-00161-3
    [26] S. Bouzebda, A. Nezzal, Uniform in number of neighbors consistency and weak convergence of $k$NN empirical conditional processes and $k$NN conditional $U$-processes involving functional mixing data, AIMS Mathematics, 9 (2024), 4427–4550. https://doi.org/10.3934/math.2024218 doi: 10.3934/math.2024218
    [27] S. Bouzebda, I. Soukarieh, Nonparametric conditional $U$-processes for locally stationary functional random fields under stochastic sampling design, Mathematics, 11 (2023), 16. https://doi.org/10.3390/math11010016 doi: 10.3390/math11010016
    [28] S. Bouzebda, A. Laksaci, M. Mohammedi, Single index regression model for functional quasi-associated time series data, REVSTAT, 20 (2022), 605–631. https://doi.org/10.57805/revstat.v20i5.391 doi: 10.57805/revstat.v20i5.391
    [29] S. Bouzebda, A. Nezzal, T. Zari, Uniform consistency for functional conditional U-statistics using delta-sequences, Mathematics, 11 (2023), 161. https://doi.org/10.3390/math11010161 doi: 10.3390/math11010161
    [30] S. Bouzebda, A. Laksaci, M. Mohammedi, The $k$-nearest neighbors method in single index regression model for functional quasi-associated time series data, Rev. Mat. Complut., 36 (2023), 361–391. https://doi.org/10.1007/s13163-022-00436-z doi: 10.1007/s13163-022-00436-z
    [31] D. Chen, P. Hall, H. G. Müller, Single and multiple index functional regression models with nonparametric link, Ann. Statist., 39 (2011), 1720–1747. http://dx.doi.org/10.1214/11-AOS882 doi: 10.1214/11-AOS882
    [32] R. Chen, R. S. Tsay, Functional-coefficient autoregressive models, J. Amer. Statist. Assoc., 88 (1993), 298–308. https://doi.org/10.1080/01621459.1993.10594322 doi: 10.1080/01621459.1993.10594322
    [33] A. Cuevas, A partial overview of the theory of statistics with functional data, J. Statist. Plann. Inference, 147 (2014), 1–23. https://doi.org/10.1016/j.jspi.2013.04.002 doi: 10.1016/j.jspi.2013.04.002
    [34] R. Dahlhaus, On the kullback-leibler information divergence of locally stationary processes, Stochastic Process. Appl., 62 (1996), 139–168. https://doi.org/10.1016/0304-4149(95)00090-9 doi: 10.1016/0304-4149(95)00090-9
    [35] R. Dahlhaus, Fitting time series models to nonstationary processes, Ann. Statist., 25 (1997), 1–37. https://doi.org/10.1214/aos/1034276620 doi: 10.1214/aos/1034276620
    [36] R. Dahlhaus, W. Polonik, Nonparametric quasi-maximum likelihood estimation for Gaussian locally stationary processes, Ann. Statist., 34 (2006), 2790–2824. https://doi.org/10.1214/009053606000000867 doi: 10.1214/009053606000000867
    [37] R. Dahlhaus, S. S. Rao, Statistical inference for time-varying ARCH processes, Ann. Statist., 34 (2006), 1075–1114. https://doi.org/10.1214/009053606000000227 doi: 10.1214/009053606000000227
    [38] R. Dahlhaus, S. Richter, W. B. Wu, Towards a general theory for nonlinear locally stationary processes, Bernoulli, 25 (2019), 1013–1044. https://doi.org/10.3150/17-BEJ1011 doi: 10.3150/17-BEJ1011
    [39] Y. A. Davydov, Convergence of distributions generated by stationary stochastic processes, Theory Probab. Appl., 13 (1968), 691–696. https://doi.org/10.1137/1113086 doi: 10.1137/1113086
    [40] Z. C. Elmezouar, F. Alshahrani, I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Strong consistency rate in functional single index expectile model for spatial data, AIMS Mathematics, 9 (2024), 5550–5581. https://doi.org/10.3934/math.2024269 doi: 10.3934/math.2024269
    [41] J. Fan, Q. Yao, Nonlinear time series: Nonparametric and parametric methods, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-69395-8
    [42] S. Feng, P. Tian, Y. Hu, G. Li, Estimation in functional single-index varying coefficient model, J. Statist. Plann. Inference, 214 (2021), 62–75. https://doi.org/10.1016/j.jspi.2021.01.003 doi: 10.1016/j.jspi.2021.01.003
    [43] F. Ferraty, P. Vieu, Nonparametric functional data analysis: Theory and practice, New York: Springer, 2006. https://doi.org/10.1007/0-387-36620-2
    [44] F. Ferraty, A. Peuch, P. Vieu, Modèle à indice fonctionnel simple, C. R. Acad. Sci. Paris, Ser. I, 336 (2003), 1025–1028. https://doi.org/10.1016/S1631-073X(03)00239-5 doi: 10.1016/S1631-073X(03)00239-5
    [45] L. Ferré, A. F. Yao, Smoothed functional inverse regression, Statist. Sinica, 15 (2005), 665–683.
    [46] T. Gasser, P. Hall, B. Presnell, Nonparametric estimation of the mode of a distribution of random curves, J. R. Stat. Soc. Ser. B Stat. Methodol., 60 (1998), 681–691. https://doi.org/10.1111/1467-9868.00148 doi: 10.1111/1467-9868.00148
    [47] G. Geenens, Curse of dimensionality and related issues in nonparametric functional regression, Statist. Surveys, 5 (2011), 30–43. http://dx.doi.org/10.1214/09-SS049 doi: 10.1214/09-SS049
    [48] A. Goia, P. Vieu, An introduction to recent advances in high/infinite dimensional statistics, J. Multivariate Anal., 146 (2016), 1–6. https://doi.org/10.1016/j.jmva.2015.12.001 doi: 10.1016/j.jmva.2015.12.001
    [49] V. V. Gorodeckiĭ, On the strong mixing property for linearly generated sequences, Theory Probab. Appl, 22 (1978), 411–413. https://doi.org/10.1137/1122049 doi: 10.1137/1122049
    [50] L. Gu, L. Yang, Oracally efficient estimation for single-index link function with simultaneous confidence band, Electron. J. Statist., 9 (2015), 1540–1561.
    [51] P. Hall, Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 67 (1984), 175–196. https://doi.org/10.1007/BF00535267 doi: 10.1007/BF00535267
    [52] P. Hall, C. C. Heyde, Martingale limit theory and its application, Academic Press, 1980. https://doi.org/10.1016/C2013-0-10818-5
    [53] W. Hardle, J. S. Marron, Optimal bandwidth selection in nonparametric regression function estimation, Ann. Statist., (1985), 1465–1481. https://doi.org/10.1214/aos/1176349748 doi: 10.1214/aos/1176349748
    [54] W. Härdle, P. Hall, H. Ichimura, Optimal smoothing in single-index models, Ann. Statist., 21 (1993), 157–178. https://doi.org/10.1214/aos/1176349020 doi: 10.1214/aos/1176349020
    [55] L. Horváth, P. Kokoszka, Inference for functional data with applications, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-3655-3
    [56] Z. Jiang, Z. Huang, J. Zhang, Functional single-index composite quantile regression, Metrika, 86 (2023), 595–603. https://doi.org/10.1007/s00184-022-00887-w doi: 10.1007/s00184-022-00887-w
    [57] D. Kurisu, Nonparametric regression for locally stationary functional time series, Electron. J. Stat., 16 (2022), 3973–3995. https://doi.org/10.1214/22-EJS2041 doi: 10.1214/22-EJS2041
    [58] J. Li, C. Huang, H. Zhu, A functional varying-coefficient single-index model for functional response data, J. Amer. Statist. Assoc., 112 (2017), 1169–1181. https://doi.org/10.1080/01621459.2016.1195742 doi: 10.1080/01621459.2016.1195742
    [59] H. Liang, X. Liu, R. Li, C. L. Tsai, Estimation and testing for partially linear single-index models, Ann. Statist., 38 (2010), 3811–3836. https://doi.org/10.1214/10-AOS835 doi: 10.1214/10-AOS835
    [60] E. Liebscher, Strong convergence of sums of $\alpha$-mixing random variables with applications to density estimation. Stoch. Process. Appl., 65 (1996), 69–80. https://doi.org/10.1016/S0304-4149(96)00096-8 doi: 10.1016/S0304-4149(96)00096-8
    [61] N. Ling, P. Vieu, Nonparametric modelling for functional data: selected survey and tracks for future, Statistics, 52 (2018), 934–949. https://doi.org/10.1080/02331888.2018.1487120 doi: 10.1080/02331888.2018.1487120
    [62] N. Ling, L. Cheng, P. Vieu, Single functional index model under responses MAR and dependent observations, In: Functional and high-dimensional statistics and related fields, Cham: Springer, 2020,161–168. https://doi.org/10.1007/978-3-030-47756-1_22
    [63] N. Ling, L. Cheng, P. Vieu, H. Ding, Missing responses at random in functional single index model for time series data, Stat. Papers, 63 (2022), 665–692. https://doi.org/10.1007/s00362-021-01251-2 doi: 10.1007/s00362-021-01251-2
    [64] E. Masry, Nonparametric regression estimation for dependent functional data: asymptotic normality, Stoch. Process. Appl., 115 (2005), 155–177. https://doi.org/10.1016/j.spa.2004.07.006 doi: 10.1016/j.spa.2004.07.006
    [65] E. Masry, D. Tjøstheim, Nonparametric estimation and identification of nonlinear ARCH time series: Strong convergence and asymptotic normality, Econometric Theory, 11 (1995), 258–289.
    [66] E. Masry, D. Tjøstheim, Additive nonlinear ARX time series and projection estimates, Econometric Theory, 13 (1997), 214–252. https://doi.org/10.1017/S0266466600005739 doi: 10.1017/S0266466600005739
    [67] M. Mohammedi, S. Bouzebda, A. Laksaci, The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data, J. Multivariate Anal., 181 (2021), 104673. https://doi.org/10.1016/j.jmva.2020.104673 doi: 10.1016/j.jmva.2020.104673
    [68] M. Mohammedi, S. Bouzebda, A. Laksaci, O. Bouanani, Asymptotic normality of the k-NN single index regression estimator for functional weak dependence data, Comm. Statist. Theory Methods, 53 (2024), 3143–3168. https://doi.org/10.1080/03610926.2022.2150823 doi: 10.1080/03610926.2022.2150823
    [69] M. H. Neumann, R. von Sachs, Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra, Ann. Statist., 25 (1997), 38–76. https://doi.org/10.1214/aos/1034276621 doi: 10.1214/aos/1034276621
    [70] Y. Nie, L. Wang, J. Cao, Estimating functional single index models with compact support, Environmetrics, 34 (2023), e2784. https://doi.org/10.1002/env.2784 doi: 10.1002/env.2784
    [71] S. Novo, G. Aneiros, P. Vieu, Automatic and location-adaptive estimation in functional single-index regression, J. Nonparametr. Stat., 31 (2019), 364–392. https://doi.org/10.1080/10485252.2019.1567726 doi: 10.1080/10485252.2019.1567726
    [72] M. B. Priestley, Evolutionary spectra and non-stationary processes, J. R. Stat. Soc. Ser. B Stat. Methodol., 27 (1965), 204–229. https://doi.org/10.1111/j.2517-6161.1965.tb01488.x doi: 10.1111/j.2517-6161.1965.tb01488.x
    [73] M. Rachdi, P. Vieu, Nonparametric regression for functional data: Automatic smoothing parameter selection, J. Statist. Plann. Inference, 137 (2007), 2784–2801. https://doi.org/10.1016/j.jspi.2006.10.001 doi: 10.1016/j.jspi.2006.10.001
    [74] M. Rachdi, M. Alahiane, I. Ouassou, P. Vieu, Generalized functional partially linear single-index models, In: Functional and high-dimensional statistics and related fields, Cham: Springer, 2020,221–228. https://doi.org/10.1007/978-3-030-47756-1_29
    [75] J. O. Ramsay, B. W. Silverman, Functional data analysis, New York: Springer, 2010. https://doi.org/10.1007/b98888
    [76] K. Sakiyama, M. Taniguchi, Discriminant analysis for locally stationary processes, J. Multivariate Anal., 90 (2004), 282–300. https://doi.org/10.1016/j.jmva.2003.08.002 doi: 10.1016/j.jmva.2003.08.002
    [77] J. Q. Shi, T. Choi, Gaussian process regression analysis for functional data, New York: Chapman and Hall/CRC, 2011. https://doi.org/10.1201/b11038
    [78] B. W. Silverman, Density estimation for statistics and data analysis, New York: Routledge, 2018. https://doi.org/10.1201/9781315140919
    [79] R. A. Silverman, Locally stationary random processes, IRE Trans. Inform. Theory, 3 (1957), 182–187. https://doi.org/10.1109/TIT.1957.1057413 doi: 10.1109/TIT.1957.1057413
    [80] W. Stute, L. X. Zhu, Nonparametric checks for single-index models, Ann. Statist., 33 (2005), 1048–1083. https://doi.org/10.1214/009053605000000020 doi: 10.1214/009053605000000020
    [81] Q. Tang, L. Kong, D. Rupper, R. J. Karunamuni, Partial functional partially linear single-index models, Statist. Sinica, 31 (2021), 107–133.
    [82] A. van Delft, M. Eichler, Locally stationary functional time series, Electron. J. Statist., 12 (2018), 107–170. https://doi.org/10.1214/17-EJS1384 doi: 10.1214/17-EJS1384
    [83] M. Vogt, Nonparametric regression for locally stationary time series, Ann. Statist., 40 (2012), 2601–2633. https://doi.org/10.1214/12-AOS1043 doi: 10.1214/12-AOS1043
    [84] C. S. Withers, Conditions for linear processes to be strong-mixing, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 57 (1981), 477–480. https://doi.org/10.1007/BF01025869 doi: 10.1007/BF01025869
    [85] J. T. Zhang, Analysis of variance for functional data, 1st Eds., New York: Chapman and Hall/CRC, 2013. https://doi.org/10.1201/b15005
    [86] H. Zhu, R. Zhang, Y. Liu, H. Ding, Robust estimation for a general functional single index model via quantile regression, J. Korean Stat. Soc., 51 (2022), 1041–1070. https://doi.org/10.1007/s42952-022-00174-4 doi: 10.1007/s42952-022-00174-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(138) PDF downloads(22) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog