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1. Introduction

In recent decades, there has been a burgeoning interest in statistical issues related to the analysis
of functional random variables, particularly those taking values in infinite-dimensional spaces. This
surge is driven by the increasing availability of data collected on ever more refined temporal and
spatial grids, common in fields such as meteorology, medicine, satellite imagery, and various other
research domains. Consequently, the statistical modeling of these data, conceptualized as random
functions, has engendered numerous challenging theoretical and computational research questions.
Several monographs can be consulted for a comprehensive understanding of both theoretical and
practical aspects of functional data analysis. Specifically, the researchers in [14] examined linear
models for random variables within a Hilbert space, while the researchers in [75] provide insights into
scalar-on-function and function-on-function linear models, functional principal component analysis,
and parametric discriminant analysis. For those interested in nonparametric methods, particularly

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241719


36203

kernel-type estimation for scalar-on-function nonlinear regression models, [43] offers an extensive
exploration, extending these methodologies to classification and discrimination analysis. Additionally,
the researchers in [55] discuss extending several pivotal statistical concepts—such as goodness-of-fit
tests, portmanteau tests, and change detection—to the functional data framework. The researchers
in [85] focus on the analysis of variance for functional data, and the researcher in [77] delves into
regression analysis for Gaussian processes. The literature also encompasses semiparametric models,
including but not limited to projection pursuit models [31], partial linear models [3], and functional
sliced inverse regression [45]. The authors of [40] investigated functional expectile regression as a
framework for modeling spatial financial risk, proposing a nonparametric estimator tailored to the
FSIR structure. In [15], the researchers addressed the intricate task of estimating the regression
function operator and its partial derivatives for stationary mixing random processes using local
higher-order polynomial fitting, achieving a key result in establishing the joint asymptotic normality
of the estimators. Moreover, [26] focused on the weak convergence of the conditional empirical
process indexed by a suitable function class and the k-NN conditional U-processes in the context
of functional explanatory variables, that is extented in [18]. A notable contribution of this work
was the establishment of sharp, almost uniform consistency in the number of neighbors for the
proposed estimator. Finally, estimators for the single-index conditional U-statistics operator, designed
to accommodate the nonstationary nature of the data-generating process, were analyzed in the time
series framework in [19] and extended to spatial data in [17], building on the foundational work
of [27]. For more recent insights and surveys on functional data modeling and analysis, readers can
refer to [2, 4, 23, 25, 28–30, 33, 47, 67].

Literature strongly advocates for regression models that incorporate dimension reduction
techniques. Single-index models, widely employed for this purpose, assume that the influence of
predictors on the response can be simplified to a single index. This index, representing a projection
in a specified direction, is combined with a nonparametric link function. By doing so, these models
reduce the predictors to a single-variable index while retaining crucial characteristics. Notably, the
nonparametric link function operates solely on a one-dimensional index, mitigating issues associated
with high dimensionality, often referred to as the curse of dimensionality. The single-index model
extends the concept of linear regression by incorporating a link function equivalent to the identity
function (see [12, 50, 54, 59, 80]). Advances in functional data analysis underscore the need for
models addressing dimensionality effects (see [33, 48, 61] for recent surveys, and [2, 24] for related
studies). Semiparametric approaches naturally emerge as suitable candidates for such models. In
this context, [44] and [1] investigated the functional single-index model (FSIM). The researchers
in [56] introduced functional single-index composite quantile regression, estimating the unknown
slope function and link function using B-spline basis functions. The researchers in [70] proposed a
compact functional single-index model with a coefficient function that is nonzero only in a subregion.
The researchers in [86] focused on estimating a general functional single-index model, where the
conditional distribution of the response depends on the functional predictor through a functional
single-index structure. The researchers in [81] developed a new estimation procedure that combines
functional principal component analysis of the functional predictors, B-spline modeling for parameters,
and profile estimation of unknown parameters and functions in the model.

Additionally, [62, 63] investigated the estimation of the functional single-index regression
model with missing responses at random for strongly mixing time series data. The researchers
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in [42] introduced a functional single-index varying coefficient model, with the functional predictor
forming the single-index part. Utilizing functional principal component analysis and basis function
approximation, they obtained estimators for the slope function and coefficient functions, proposing
an iterative estimation procedure. [71] developed an automatic and location-adaptive procedure for
estimating regression in an FSIM based on k-Nearest Neighbors (kNN) ideas. Motivated by the
analysis of imaging data, [58] proposed a novel functional varying-coefficient single-index model for
regression analysis of functional response data on a set of covariates of interest. The researchers in [5]
and [7] investigated a functional Hilbertian regressor for nonparametric estimation of the conditional
cumulative distribution with a scalar response variable in the single-index structure. In particular,
the authors of the last reference tackled the challenge of nonparametric estimation for the regression
function within the FSIM under a random censoring framework for the i.i.d. data. In an alternative
approach, [31] extended their methodology to the multi-index case, avoiding anchoring the true
parameter to a prespecified sieve. They provided a detailed theoretical analysis of a direct kernel-
based estimation scheme, establishing a polynomial convergence rate. For references on the subject,
we refer to [6, 28, 30, 68, 74].

The common assumption of stationarity in time series modeling has led to the development of
numerous models, techniques, and methodologies. However, this assumption is often inappropriate
for spatio-temporal data, even after applying detrending and deseasonalization methods. Many key
time series models exhibit nonstationarity, as observed in various physical phenomena and economic
data, rendering traditional stationary approaches inadequate. To address this issue, [79] introduced
the concept of the locally stationary random process, which approximates a nonstationary process by
treating it as stationary over short time intervals. This notion of local stationarity has been further
explored in the works of [35,36,69,72,76], among others. Notably, the seminal work by [35] provides
a strong theoretical foundation for inference on locally stationary processes.

1.1. Paper contribution

In [64], the author examined the asymptotic properties of nonparametric regression for dependent
functional data, focusing on stationary processes. Building on this foundation, our work extends
the framework to accommodate nonstationary processes, leveraging more advanced techniques in a
more realistic setting. Specifically, we introduce the concept of local stationarity to model time-
dependent functional data in the single index setting. While [64] established the convergence rate
for a Nadaraya-Watson-type estimator, we broaden the scope by deriving this rate not only for that
estimator but also for a wider class of kernel estimators. Both studies consider semi-metric spaces for
strongly mixing data; however, the approaches differ significantly: The researcher in [64] employed
the norm, whereas we utilize the inner product. This distinction enhances the adaptability of our
results, making them applicable to a broader range of scenarios, particularly in the single-index setting.
Additionally, [57] explored nonstationary functional time series within a semi-metric space defined by
a norm for mixing data, obtaining similar results. However, our use of an inner-product-based semi-
metric generalizes their findings, particularly as [57] did not address the single-index direction θ. Our
work further advances the field by providing detailed proofs of asymptotic normality, expanding upon
the methodology in [64], and reinforcing the theoretical foundations of our approach. Our primary aim
of this paper is to establish a comprehensive framework for the single-index model in a nonparametric
setting, with a focus on regression involving functional covariates and the challenges posed by the
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potential nonstationarity of functional time series. We conduct a rigorous theoretical analysis to
address the complexities of this setting, including the unbounded nature of the functional space, which
necessitates intricate and extensive proofs. Finally, the theoretical results are supported by a simulation
study, demonstrating the finite-sample performance of our proposed method and underscoring its
practical relevance and robustness.

1.2. Paper organization

The structure of the paper is as follows: In Section 2, we introduce the concept of local
stationarity for functional time series, which take values in a semi-metric space equipped with the
semi-metric dθ(·, ·), where θ is a single index from a Hilbert space H . The novelty of this work
lies in the incorporation of a single-index θ ∈ H , which serves as a filter and effectively represents
the explanatory variables Xt,T that influence the response variable Yt,T . This section also covers the
dependence structure of the functional time series considered in the study.

In Section 3, we present the derivation of uniform convergence rates for general kernel estimators,
along with results on uniform convergence and asymptotic normality for the Nadaraya-Watson
estimator of the regression function. In particular, we observe that the general kernel estimator

converges uniformly to its mean at the rate
√

log T
Thφθ(h)

. For the Nadaraya-Watson estimator, we

establish a convergence rate with two distinct components: One addressing the stochastic part and
the other addressing the bias part. Following a decomposition similar to [64] and [57], we obtain
our convergence result based on the proof structure of Theorem 3.1. However, we incorporate the
impact of the single-index θ, reflected in the dependence structure in the second part of the proof of
Proposition 3.1, which is essential for proving Theorem 3.1. The small-ball probability φθ(h) provides
insight into the concentration of random variables as governed by the semi-metric dθ(·, ·), highlighting
the contribution of this work. This section concludes with the derivation of asymptotic normality
for the Nadaraya-Watson estimator. The proof begins by showing that the bias term converges
to zero, followed by establishing the asymptotic normality of the variance term. The argument is
completed using Bernstein’s blocking technique, along with key tools such as Davydov’s Lemma, the
Volkonski-Rosanov inequality, and the Lindeberg-Feller theorem for finite normality, supplemented
by appropriate truncation arguments. In Section 4, we present comprehensive simulation results to
evaluate the finite-sample properties of the proposed approach. Concluding remarks and discussions
on potential future research are provided in Section 5. For clarity and coherence, all proofs are collected
in Appendix-A, with relevant technical results included in the Appendix-B.

1.3. Notations

Let {an} and {bn} be arbitrary sequences of positive numbers. Throughout this paper, we adopt the
notation an . bn to signify that there exists a constant C > 0, independent of n, such that an ≤ Cbn

for all n. When an . bn and bn . an hold simultaneously, we write an ∼ bn, indicating that the two
sequences are asymptotically comparable. In cases where an

bn
→ 0 as n → ∞, we use the notation

an � bn. For any real numbers a and b, the expressions a ∨ b and a ∧ b denote the maximum and
minimum of a and b, respectively, i.e., a ∨ b = max{a, b} and a ∧ b = min{a, b}. Furthermore, we

denote convergence in distribution by
d
→. Finally, for any real number x, bxc represents the integer part
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of x, also known as the floor function.

2. Settings

In this section, we present an advanced framework for analyzing locally stationary functional time
series, incorporating the concept of a semi-metric dθ(·, ·) that depends on a single-index parameter
θ ∈ H , where H denotes a Hilbert space. This approach broadens the original notion of local
stationarity as introduced by [35] while extending the developments on locally stationary functional
series by [17, 19, 27, 57]. In this expanded framework, we examine not only the structural properties
of local stationarity but also delve into the dependence structures inherent in the functional time series,
providing a comprehensive view of the interplay between stationarity and dependence within this
context.

2.1. Model

The semi-metric dθ(·, ·) associated to the single-index θ ∈H , a Hilbert space, defined by:

dθ(u, v) := |〈θ, u − v〉|, ∀u, v ∈H .

Let {Yt,T , Xt,T }
T
t=1 be random variables where Yt,T is real-valued and Xt,T takes values in some semi-

metric space H with a semi-metric dθ(·, ·). In this study, we consider the following model:

Yt,T = m
( t
T
, 〈θ, Xt,T 〉

)
+ σ

( t
T
, 〈θ, Xt,T 〉

)
εt, t = 1, . . . ,T, (2.1)

where {εt}t∈Z is a sequence of independent and identically distributed random variables that is
independent of {Xt,T }

T
t=1, m(·, ·) is the regression function allowed to change smoothly over time and

σ(·, ·) is the variance function. For notational convenience, we use εt,T to denote σ
(

t
T , 〈θ, Xt,T 〉

)
εt.

For the identifiability issue, we assume that the regression function is differentiable and 〈θ, e1〉 = 1,
where e1 is the first element of the orthonormal basis of H . Observe that m

(
t
T , 〈θ1, x〉

)
= m

(
t
T , 〈θ2, x〉

)
implies that θ1 ≡ θ2. We also assume that {Xt,T } is a locally stationary functional time series, and the
regression function m is allowed to change smoothly over time.

2.2. Local stationarity

A functional time series {Xt,T }
T
t=1, where T → ∞, is intuitively regarded as locally stationary if it

exhibits approximate stationarity within localized time intervals. This concept implies that while the
series may display non-stationary characteristics over its entirety, within any sufficiently small time
window, its behavior can be approximated as stationary. For an in-depth discussion on the theoretical
framework and broader applications of locally stationary time series, we refer to the works of [37]
and [38]. Furthermore, investigations into the concept of local stationarity for time series in a Hilbert
space setting are available in [82] and [8]. Local stationarity at each normalized time point u can be
characterized by stochastically approximating the original process {Xt,T } with a stationary functional
time series {X(u)

t }. The following formal definition captures this idea rigorously.

Definition 2.1. [82] The H -valued stochastic process {Xt,T }
T
t=1 is locally stationary if for each rescaled

time point u ∈ [0, 1], there exists an associated H -valued process {X(u)
t }t∈Z with the following

properties:
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(i) {X(u)
t }t∈Z is strictly stationary.

(ii) It holds that

dθ
(
Xt,T , X

(u)
t

)
≤

(∣∣∣∣∣ t
T
− u

∣∣∣∣∣ +
1
T

)
U (u)

t,T a.s., (2.2)

for all 1 ≤ t ≤ T , where {U (u)
t,T } is a process of positive variables satisfying E[(U (u)

t,T )ρ] < C for some
ρ > 0 and C < ∞ that are independent of u, t, and T .

We extend the concept of local stationarity for real-valued time series introduced by [35] and for
local functional time series studied by [57] by introducing a new semi-metric dθ(·, ·) associated with a
single index θ in a Hilbert space H (see Definition 2.1). This semi-metric dθ(·, ·) is defined similarly
to that in [63], where θ ∈ ΘH and ΘH is a compact subset of H . In their work, they applied the
semi-metric to data exhibiting arithmetic strong mixing with identical distributions. Furthermore, our
Definition 2.1 corresponds to Definition 2.1 of [57], where they used the semi-metric d(u, v) = ‖u − v‖
in a Banach or Hilbert space H with norm ‖ · ‖. Moreover, when H is the Hilbert space L2

R([0, 1])
of all real-valued, square-integrable functions on the unit interval [0, 1], our definition aligns with
Definition 2.1 of [82]. In their study, they used the L2-norm for f , g ∈ L2

R([0, 1]), defined as

‖ f ‖2 =
√
〈 f , f 〉, 〈 f , g〉 =

∫ 1

0
f (t)g(t) dt.

Observe that if we choose θ ∈ L2
R([0, 1]) defined by

θ(t) =
f (t)g(t)

f (t) − g(t)
,

assuming f (t) − g(t) > 0 almost everywhere, then

〈θ, f − g〉 =

∫ 1

0

f (t)g(t)
f (t) − g(t)

[ f (t) − g(t)] dt

=

∫ 1

0
f (t)g(t) dt = 〈 f , g〉.

Therefore,
dθ( f , g) = |〈θ, f − g〉| = |〈 f , g〉|.

This demonstrates that, in this particular case, the semi-metric dθ(·, ·) reduces to the absolute value of
the inner product of f and g, thereby generalizing the L2-norm.

Remark 2.1. [82] generalizes the definition of local stationary processes, initially proposed by [34],
to the functional setting in the frequency domain. This extension is made under the following
assumptions:

(A1) (i) {εi}i∈Z is a weakly stationary white noise process taking values in H with a spectral
representation given by

ε j =

∫ π

−π

eiω jdZω,

where Zω is a 2π-periodic orthogonal increment process taking values inHC = L2
C([0, 1]);
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(ii) the functional process Xi,n with i = 1, . . . , n and n ∈ N is given by

X j,n =

∫ π

−π

eiω jA
(n)
j,ωdZω a.e. inH ,

with the transfer operatorA(n)
j,ω ∈ Bp and an orthogonal increment process Zω.

(A2) There exists A : [0, 1] × [−π, π] → S p (HC) with Au,· ∈ Bp and Au,ω being continuous in u such
that for all n ∈ N

sup
ω,t

∥∥∥A(n)
t,ω −A t

n ,ω

∥∥∥
p

= O
(
1
n

)
.

They have proved in [82, Proposition 2.2] that:

Proposition 2.1. Suppose that Assumptions (A1) and (A2) hold. Then,
{
Xi,n

}
is a locally stationary

process in H .

2.3. Mixing condition

Let (Ω,F ,P) be a probability space, and letA and B be subfields of F . Define

α(A,B) = sup
A∈A,B∈B

|P[A ∩ B] − P[A]P[B]|.

Moreover, for an array {Zt,T : 1 ≤ t ≤ T }, define the coefficients

α(k) = sup
t,T :1≤t≤T−k

α(σ(Zs,T : 1 ≤ s ≤ t), σ(Zs,T : t + k ≤ s ≤ T )),

where σ(Z) is the σ-field generated by Z. The array {Zt,T } is said to be α-mixing (or strongly mixing)
if α(k)→ 0 as k → ∞.

Among the various mixing conditions explored in the literature, α-mixing is a relatively weak but
widely applicable property, satisfied by a broad range of stochastic processes, including numerous
time series models. The researchers in [49] and [84] established the conditions required for a
linear process to exhibit α-mixing. Under minimal assumptions, the linear autoregressive and more
general bilinear time series models demonstrate strong mixing properties with exponentially decaying
mixing coefficients. Furthermore, the researchers in [9] provided valuable insights into the role of α-
mixing (including geometric ergodicity) in identifying nonlinear time series models (see also [20–22]).
Similarly, the researchers in [32] showed that functional autoregressive processes attain geometric
ergodicity under specific conditions. Additionally, [65, 66] demonstrated that, with mild assumptions,
both autoregressive conditional heteroscedastic processes and nonlinear additive autoregressive models
with exogenous variables are stationary and α-mixing.

3. Main results

We provide the main results of this paper in this section by first considering general kernel
estimators as represented in Section 3.1. Correspondingly, we derived the uniform convergence rate
as seen in Proposition 3.1. Furthermore, some results on uniform convergence rate and asymptotic
normality of the Nadaraya-Watson estimator for the regression function in Model (2.1) are provided in
the succeeding subsections (see Theorems 3.1 and 3.2, respectively).
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3.1. Kernel estimation for regression functions

As mentioned, we consider the following kernel estimator for m
(
u, 〈θ, x〉

)
= mθ(u, x) in Model (2.1):

m̂θ(u, x) =

T∑
t=1

K1,h

(
u −

t
T

)
K2,h(dθ(x, Xt,T ))Yt,T

T∑
t=1

K1,h

(
u −

t
T

)
K2,h(dθ(x, Xt,T ))

, (3.1)

where K1(·) and K2(·) denote one-dimensional kernel functions. Here, for j = 1, 2, we used the
notations K j,h(v) = K j(v/h). Moreover, h = hT is a bandwidth satisfying h → 0 as T → ∞. The
estimator defined in (3.1) differs from the traditional NW estimator, typically used in strictly stationary
settings, by incorporating an additional kernel along the time dimension. Consequently, smoothing is
applied not only in the direction of the covariates Xt,T but also across time, accounting for variations in
the regression function over time.

Remark 3.1. In the finite-dimensional framework, the researcher in [83] provided a detailed study of
the following model:

Yt,T = m
( t
T
, Xt,T

)
+ εt,T , for t = 1, . . . ,T, (3.2)

where Yt,T and Xt,T are random variables of dimensions 1 and d, respectively, and the noise satisfies
E

[
εt,T | Xt,T

]
= 0. The NW estimator for the regression function in model (3.2) is expressed as:

m̂(u, x) =

T∑
t=1

Kh (u − t/T )
d∏

j=1

Kh

(
x j − X j

t,T

)
Yt,T

T∑
t=1

Kh (u − t/T )
d∏

j=1

Kh

(
x j − X j

t,T

) .

Furthermore, the researchers in [83] explored structured models where the regression function
decomposes into time-varying additive components. In [83], it is demonstrated that a locally stationary
sequence can be effectively approximated by decomposing it into a stationary time series component
and a time-varying trend function. Specifically, this representation is expressed as:

Yt,T = Y∗t + ϑ1

( t
T

)
, Xt,T = X∗t + ϑ2

( t
T

)
,

where ϑ1

(
t
T

)
, ϑ2

(
t
T

)
, are unknown time-varying functions and (X∗t ,Y

∗
t ) are assumed to be strictly

stationary. In contrast, the present paper focuses on a different framework: The functional single-
index model. This setting introduces new challenges and requires distinct conditions to derive the
asymptotic properties.

We first enumerate the model and kernel assumptions which are important in deriving our main
results. Mentioned assumptions are made for Model (2.1) and the kernel functions therein. These
assumptions are standard, and similar assumptions are made among others by [57, 63, 64, 82].
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Assumption 3.1. (Model assumptions)

(M1) The process {Xt,T } is locally stationary, that is, {Xt,T } satisfies Definition 2.1.

(M2) Let Bθ(x, h) = {y ∈ H : dθ(x, y) ≤ h} denote the ball of radius h centered in x ∈ H . We assume
that there exist positive constants cd, and Cd where cd < Cd, such that for all u ∈ [0, 1], all x ∈H ,
and all h > 0,

0 < cdφθ(h) f1(x) ≤ P(X(u)
t ∈ Bθ(x, h)) =: Fu(h; x, θ) ≤ Cdφθ(h) f1(x),

where φθ,x(h) = P
(
X(u)

t ∈ Bθ(x, h)
)
> 0, φθ(h)→ 0 as h→ 0, and f1(x) is a nonnegative functional

in x ∈H . Moreover, there exist constants Cφ > 0 and ε0 > 0 such that for any 0 < ε < ε0,∫ ε

0
φθ(u)du > Cφεφθ(ε). (3.3)

(M3) sup
s,t,T

sup
s,t

P((Xs,T , Xt,T ) ∈ Bθ(x, h) × Bθ(x, h)) ≤ ψθ(h) f2(x), where ψθ(h) → 0 as h → 0, and f2(x) is

a nonnegative functional in x ∈H . We assume that the ratio ψθ(h)/φ2
θ(h) is bounded.

(M4) mθ(u, x) is twice continuously partially differentiable with respect to u. We also assume that

sup
u∈[0,1]

|mθ(u1, x) − mθ(u2, y)| ≤ cm

(
dθ(x, y)β + |u1 − u2|

β
)
,

for all x, y ∈H for some cm > 0 and β > 0.

Assumption 3.1 formalizes the local stationarity property of the process {Xt,T } as seen in condition
(M1), while the distributional behavior of the rescaled random variable X(u)

t is described in the second
condition (M2). Also, condition (M2) ensures that through the function φθ(h), the behavior of the
small-ball probability is controlled around zero. Furthermore, condition (M2) is consistent with the
ones made by [64] and [46]. The former used this assumption for strongly mixing processes while
the latter in the context of density estimation for functional data. For strongly mixing processes in the
locally functional time series setting, one may see [57].

Observe that similar to what [64] employed in their paper, we can satisfy the Condition (3.3) for
fractal-type processes by defining φθ(ε) ∼ ετ as ε→ 0 for some τ > 0, with some change of notation but
of similar meaning. Considering a separable Hilbert space H , it can be expected that as h → 0, φθ(h)
diminishes to 0 as in [46]. Since φθ(h) is defined similarly as φ(h) by previously mentioned authors
and more specifically by [64], we exemplify its form by φθ(ε) = εδ exp(−C/εa) with δ, a ≥ 0. The case
when φθ(ε) = exp(−C/ε2) refers to the Ornstein-Uhlenbeck and general diffusion processes. Also,
φθ(ε) = εδ exp(−C) with δ > 0 corresponds to the fractal processes. Excellent references detailing
fractal-type processes and on concepts relating to the small ball probability Fu(h; x) include those
of [13] and [43]. Extending condition (M2) gives us (dθ(Xs,T , x), dθ(Xt,T , x)) that describes the behavior
of the joint distribution near the origin. Thus, condition (M3). Consistent with the assumptions made
by [43, 57, 64], we have included (M3) and (M4) in this study. To deal with the regression function
mθ(u, x) with respect to u and x, we have condition (M4) to handle the smoothness and continuity
properties, respectively.

We impose the following conditions on σ (Assumption 3.2) and for kernel functions
(Assumption 3.3). These conditions are similar to those made and assumed by [19, 43, 57, 63, 64, 83].
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Assumption 3.2. (Conditions on σ)

(Σ1) σ : [0, 1] ×H → R is bounded by some constant Cσ < ∞ from above and by some constant
cσ > 0 from below, that is, 0 < cσ ≤ σ

(
u, 〈θ, x〉

)
≤ Cσ < ∞ for all u and x.

(Σ2) σ is Lipschitz continuous with respect to u.

(Σ3) sup
u∈[0,1]

sup
y:dθ(x,y)≤h

∣∣∣σ(
u, 〈θ, x〉

)
− σ

(
u, 〈θ, y〉

)∣∣∣ = o(1) as h→ 0.

Assumption 3.3. (Kernel assumptions)

(KB1) The kernel K1(·) is symmetric around zero, bounded, and has a compact support, that is, K1(v) = 0
for all |v| > C1 for some C1 < ∞. Moreover,

∫
K1(z)dz = 1 and K1(·) is Lipschitz continuous, that

is, |K1(v1) − K1(v2)| ≤ C2|v1 − v2| for some C2 < ∞ and all v1, v2 ∈ R.

(KB2) The kernel K2(·) is nonnegative, bounded, and has support in [0, 1] such that 0 < K2(0) and
K2(1) = 0. Moreover, K′2(v) = dK2(v)/dv exists on [0, 1] and satisfies C′1 ≤ K′2(v) ≤ C′2 for
two real constants −∞ < C′1 < C′2 < 0. Moreover, suppose that K2(·) is a Lipschitz continuous
function.

In line with the assumptions made by [57, 83], we define conditions (Σ1) and (Σ2). Along with the
notational convention σ(u, 〈θ, x〉), we employ condition (Σ3) to investigate the asymptotic properties
of the variance of m̂(u, x) and establish its asymptotic normality. Evaluating Thφθ(h) Var

(
ĝ(1)
θ (u, x)

)
in

Eq (A.9) is essential to demonstrate the existence of the variance Vθ(u, x) > 0.
Moreover, the assumptions on the kernel functions K1(·) and K2(·) are standard in the literature and

are satisfied by popular kernels such as the (asymmetric) triangle and quadratic kernels. Condition
(KB1) ensures that K1(·) is bounded and has compact support. Additionally, its symmetry property
implies that K1(·) can be any symmetric kernel, such as the box, triangle, quadratic, or Gaussian
kernel. Condition (KB2) indicates that K2(·) is a Type II kernel function as defined in [43]. For a
comprehensive introduction and detailed discussion of these assumptions, please refer to [43]. In our
study, Assumption 3.3 aids in determining the upper bounds of the kernel functions, as demonstrated
in the initial steps of the proof of Proposition 3.1 and in certain parts of the proof of Theorem 3.2.

3.2. Uniform convergence rates for kernel estimators

Our goal here is to establish the asymptotic properties of the estimator given in (3.1). We first
investigate the mentioned properties for the general kernel estimator provided below. For an array of
one-dimensional random variables {Wt,T }, we define

ψ̂θ(u, x) =
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
Wt,T . (3.4)

Several representations of (3.4) can be made using kernel estimators including the Nadaraya-Watson
(NW) estimator. For the purposes of this study, we use the results with Wt,T = 1 and Wt,T = εt,T .

To show the desired claim, we will derive the uniform convergence rate of ψ̂θ(u, x) − E[ψ̂θ(u, x)].
We assume the following (Assumptions 3.4 and 3.5) for the components of ψ̂θ(u, x) in Eq (3.4).
Assumption 3.4 relates to the mixing assumptions attributed to the array of random variables {Xt,T ,Wt,T }

while Assumption 3.5 concerns the regularity conditions on h and φθ(h).
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Assumption 3.4. (Mixing assumptions)

(E1) It holds that sup
t,T

sup
x∈H

E[|Wt,T |
ζ |Xt,T = x] ≤ C for some ζ > 2 and C < ∞.

(E2) The α-mixing coefficients of the array {Xt,T ,Wt,T } satisfy α(k) ≤ Ak−γ for some A > 0 and γ > 3.
We also assume that δ + 1 < γ(1 − 2

ν
) for some ν > 2 and δ > 1 − 2

ν
, and

h2(1∧β)−1

φθ(h)λT +

∞∑
k=λT

kδ(α(k))1− 2
ν

→ 0, (3.5)

as T → ∞, where λT = [(φθ(h))−(1− 2
ν )/δ].

To prove Theorem 3.2, which establishes the asymptotic normality of m̂θ(u, x), we need to apply
condition (3.5) specified in (E2) of Assumption 3.4. This condition also aids in demonstrating the
asymptotic negligibility of the bias of m̂θ(u, x). Similar assumptions for conditions (E1) and (E2)
were made by [57]; however, we employ a slightly different version of condition (E2) in our work.
Comparable conditions to Assumption 3.4 have also been utilized in other studies, such as [64, 83].

In the following section, we present the regularity conditions concerning h and φθ(h), specified in
Assumption 3.5.

Assumption 3.5. (Regularity assumptions)
As T → ∞,

(R1)
(

log T
) γ−1

2 +ζ0(γ+1)

T
γ−1

2 −1− γ+1
ζ h

γ−1
2 +1

(
φθ(h)

) γ−1
2
→ 0 for some ζ0 > 0, and

(R2) Th3,Thφθ(h)→ ∞,

where ζ and γ are positive constants that appear in Assumption 3.4.

To obtain the convergence rate of the general estimator ψ̂θ(u, x), we use an exponential inequality
for α-mixing sequence in Lemma B.3, and impose the regularity assumption (R1). Consequently, the
same is done for the Nadaraya-Watson estimator m̂θ(u, x). Considering the same values for γ and ζ in

Assumption 3.4, condition (R1) holds since γ >
2 + 3ζ
ζ − 2

and that the lim
ζ→∞

2 + 3ζ
ζ − 2

= 3. Moreover, we use

the second regularity condition (R2) in dealing with the bias and in computing the convergence rate of
the general estimator. Also, it can be noted that (R2) holds by considering h ≤ CT−ζ (see [83]), and
φθ(h) ∼ hτ, τ > 0.

The succeeding result (Proposition 3.1) suggests a generalization of the work of [83] on the
uniform convergence results to a functional time series. Comparably, we provide a more general result
than those obtained by [63], wherein the convergence is obtained for identically distributed random
variables, and extended the work of [57] that uses the measure d(u, v) = ‖u − v‖. As a recall, we use
the measure dθ(u, v) = |〈θ, u − v〉|.

Proposition 3.1. Assume that Assumptions 3.1 (M1), (M2), 3.3, 3.4, and 3.5 are satisfied. Then, the
following result holds for any x ∈H :

sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

|ψ̂θ(u, x) − E[ψ̂θ(u, x)]| = OP


√

log T
Thφθ(h)

 .
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Using Proposition 3.1, we established that our general estimator ψ̂θ(u, x) achieves a uniform

convergence rate of
√

log T
Thφθ(h)

. This result is comparable to the convergence rates for general

estimators in nonstationary functional data settings reported by [57] (see Proposition 3.1 therein). The
key distinction in our approach is the use of φθ(h) instead of φ(h), which enables us to incorporate the
single index θ into the semi-metric dθ(·, ·) utilized in our study.

Moreover, in the context of strictly stationary functional time series, [43] derived a pointwise
convergence rate for the nonparametric regression function that aligns with the rate we obtained in
Proposition 3.1.

Building on these results, we will now determine the uniform convergence rate of the kernel
estimator m̂θ(u, x) using Theorem 3.1 below.

Theorem 3.1. Suppose that Assumptions 3.1–3.3, and 3.5 are satisfied and that Assumption 3.4 is
satisfied with W1,T = 1 and Wt,T = εt,T . Then, the following result holds for any x ∈H :

sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

|m̂θ(u, x) − mθ(u, x)| = OP


√

log T
Thφθ(h)

+ h2∧β

 .
In our proof, the stochastic component is of order OP

(√
log T

Thφθ(h)

)
, which relies heavily on the

results obtained in Proposition 3.1. The bias component is shown to be of order OP

(
h2∧β

)
. Similar

to the convergence results obtained by [57], and in contrast to [83] (see Theorem 4.2 therein), we do
not encounter a bias term arising from the approximation error of Xt,T by X(u)

t . Under our assumptions,
this approximation error is O

(
T−1h(1∧β)−1φ−1

θ (h)
)
, which is negligible compared to h2∧β. Furthermore,

by introducing a single-index θ in our framework, we generalized the pointwise convergence results
from [43] and extended the findings for strictly stationary functional time series in [64]. This
generalization is achieved through Theorem 3.1 presented above. To illustrate our result, refer to

Remark 3.2 below. While [57] derived a convergence rate of order OP

( log T
T

) β
2β+τ+1

 for fractal-type

processes {X(u)
t } with β ≤ 2, we have obtained a comparable convergence rate in our setting. According

to [43] (see page 208), the bandwidth selection scheme corresponding to regression estimation is

h ∼
(
log T

T

) 1
2β+τ

. This observation leads to the following remark.

Remark 3.2. For a fractal-type process {X(u)
t }, the right-hand side of (3.1) with β ≤ 2 is optimized by

choosing h ∼
(

log T
T

) 1
2β+τ , and the optimized rate is

sup
x∈S H

sup
θ∈ΘH

sup
u∈[C1h,1−C1h]

|m̂θ(u, x) − mθ(u, x)| = OP

( log T
T

) β
2β+τ

 .
3.3. Asymptotic normality for kernel estimators

We provide the central limit theorem for our Nadaraya-Watson estimator m̂θ(u, x) in this section.
We need Assumption 3.6 to establish the asymptotic normality of the NW estimator m̂θ(u, x). We are
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aided by the Bernstein’s big-block and small-block procedure to accomplish the proof of Theorem 3.2
along with the assumptions considered therein. To simplify the proof, we set K2(·) as the asymmetrical
triangle kernel. That is, K2(x) = (1 − x)1(x∈[0,1]).

Assumption 3.6. There exists a sequence of positive integers {vT } satisfying vT → ∞, vT =

o
( √

Thφθ(h)
)

and
√

T
hφθ(h)α(vT )→ 0 as T → ∞.

Observe that

m̂θ(u, x) − mθ(u, x) =
1

m̂(1)
θ (u, x)

(
ĝ(1)
θ (u, x) + ĝ(2)

θ (u, x) − mθ(u, x)m̂(1)
θ (u, x)

)
=

1

m̂(1)
θ (u, x)

(
ĝ(1)
θ (u, x) + ĝB

θ (u, x)
)
,

where

m̂(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
,

ĝ(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T ,

ĝ(2)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
mθ

( t
T
, Xt,T

)
.

Under the same assumption in Theorem 3.1, we can show that

Var(ĝB
θ (u, x)) = o

(
1

Thφθ(h)

)
, and

1

m̂(1)
θ (u, x)

= OP(1).

See the proof of Theorem 3.2 for details. Then, we have

m̂θ(u, x) − mθ(u, x) =
ĝ(1)
θ (u, x)

m̂(1)
θ (u, x)

+ BT,θ(u, x) + oP


√

1
Thφθ(h)

 ,
where BT,θ(u, x) =

E[ĝB
θ (u, x)]

E[m̂(1)
θ (u, x)]

is the “bias” term and
ĝ(1)
θ (u, x)

m̂(1)
θ (u, x)

is the “variance” term.

Theorem 3.2. Assume that Assumptions 3.1–3.3, 3.5, and 3.6 are satisfied and that Assumption 3.4 is
satisfied for both W1,T = 1 and Wt,T = εt,T . Then as T → ∞, the following result holds for any x ∈H :√

Thφθ(h)(m̂θ(u, x) − mθ(u, x) − BT,θ(u, x))
d
→ N(0,Vθ(u, x)),

where BT,θ(u, x) = O
(
h2∧β

)
and

Vθ(u, x) = lim
T→∞

Thφθ(h)
Var

(
ĝ(1)
θ (u, x)

)
E[m̂(1)

θ (u, x)]
> 0.
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Remark 3.3. Theorem 3.2 is an extension of the results in [64, 83], and [57] to a locally stationary
functional time series with a semi metric dθ(·, ·) associated with a single index θ from a Hilbert space
H . It is noteworthy that we use a decomposition containing the expressions BT,θ(u, x) and Vθ(u, x) that
are very similar to those in [57]. Moreover, we use a similar proof procedure to that of [64] and of [57]
and obtain very similar results. It is important to note that the asymptotic negligibility of the bias part
is achieved by requiring

Th1+2(2∧β)φθ(h)→ 0 as T → ∞.

This is satisfied whenever we have h = T−ξ and φθ(h) = hc for

0 < c < 1 −
1
ξ

and
1

(1 + c) + 2 (2 ∧ β)
< ξ <

1
1 − c

.

Remark 3.4. The single functional index θ ∈ H is typically unknown and must be estimated
in practical applications. This challenge has been addressed in the literature on single functional
regression models, where estimation approaches using cross-validation or maximum-likelihood
methods have been explored, as in [1] and references therein. An alternative approach, adopted
in this section, involves selecting θ(t) among the eigenfunctions of the covariance operator
E

[
(X′ − E (X′)) 〈X′, ·〉H

]
, where X(t) is a diffusion-type process on a real interval [a, b] and

X′(t) denotes its first derivative (see [5, 7, 40], for example). Given a training sample L, the
covariance operator can be estimated using its empirical version (1/|L|)

∑
i∈L

(
X′i − EX′

)t (
X′i − EX′

)
.

Subsequently, a discretized version of the eigenfunctions θi(t) can be obtained via principal component
analysis.

3.4. The bandwidth selection criterion

Several methods have been established in the literature for bandwidth selection criteria. For
instance, [78] lists various approaches for choosing the smoothing parameter h, which is crucially
important in kernel density estimation for both univariate and multivariate data. In the univariate case,
a natural method is the researcher’s subjective choice, involving the plotting of multiple curves and
selecting an estimate that aligns with prior beliefs about the density. Other methods involve referencing
a particular standard distribution. Specifically, when using a Gaussian kernel, the optimal bandwidth
is given by hopt = 1.06σ n−1/5, where σ can be the sample standard deviation or a more robust
estimator. To avoid oversmoothing in multimodal populations, one may use the interquartile range
R and set hopt = 0.79 R n−1/5. Corresponding suggested optimal values of the smoothing parameter
for multivariate data can also be found in Chapter 4 of [78]. Additionally, we refer to [51, 53, 73] for
bandwidth selection rules concerning nonparametric kernel estimators, including the Nadaraya-Watson
regression estimators. A suitable selection of the smoothing parameter h that works for both finite and
infinite-dimensional cases must be chosen. We define our local cross-validation criterion as follows:

CVθ,x(hT ) =
1
T

T∑
s=1

[
Ys,T − m̂[s]

θ

( s
T
, Xs,T

)]2
W̃ (Xs,T ), (3.6)

where m̂[s]
θ (·) represents the leave-one-out estimator of m̂θ(·), based on the sample(

X1,T ,Y1,T
)
, . . . ,

(
XT,T ,YT,T

)
excluding the pair

(
Xs,T ,Ys,T

)
. Our goal is to minimize the criterion (3.6)

by selecting a bandwidth ĥT ∈ [aT , bT ] among h ∈ [aT , bT ].
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Following the idea introduced by [10] and used by [16], we replace the global weights W̃ (Xs,T ) with
local weights W(x, Xs,T ), which are independent of T . Thus, CVθ,x(hT ) in (3.6) becomes

CVθ,x(hT ) =
1
T

T∑
s=1

[
Ys,T − m̂[s]

θ

( s
T
, Xs,T

)]2
W(x, Xs,T ).

In practice, for i ∈ {1, . . . ,T }, one may utilize uniform global weights W̃ (Xi,T ) = 1 and define the local
weights as

W(x, Xi,T ) =


1 if dθ

(
x, Xi,T

)
≤ h,

0 otherwise.

4. Numerical experiment

In this section, we present the results of a numerical simulation study designed to illustrate the
finite-sample behavior of the proposed estimator within the context of a single-index regression model
for functional time series. The estimator for mθ(u, x) is defined as

m̂θ(u, x) =

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
Yt,T

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

) ,

where K1,h(·) and K2,h(·) are kernel functions with bandwidth h, and dθ(·, ·) is the semi-metric associated
with the single index θ. We consider the Hilbert space F of square-integrable functions on [0, 1]:

F =

{
f : [0, 1]→ R

∣∣∣∣∣ ∫ 1

0
f 2(t) dt < ∞

}
,

equipped with the inner product

〈 f , g〉 =

∫ 1

0
f (t)g(t) dt,

for all f , g ∈ F , and the associated L2-norm

‖ f ‖ =

(∫ 1

0
f 2(t) dt

)1/2

.

Let L : F → F be a linear operator. An operator L is said to be compact if it maps bounded sets
to relatively compact sets. Since F is a separable Hilbert space, any compact operator L admits a
singular value decomposition with a sequence of nonnegative singular values {sn(L)}n∈N decreasing to
zero. The operator L can thus be represented as

L f =

∞∑
n=1

sn(L)〈 f , ψn〉φn, for all f ∈ F ,
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where {φn} and {ψn} are orthonormal sequences in F . For p ∈ [1,∞], the Schatten p-class S p(F )
consists of compact operators L for which the Schatten p-norm ‖L‖p is finite:

‖L‖p =



 ∞∑
n=1

sn(L)p

1/p

, if 1 ≤ p < ∞,

sup
‖x‖≤1
‖Lx‖, if p = ∞.

(4.1)

Simulation steps:

Step 1: Generating the functional sample Xt,T . We generate the functional time series Xt,T as a
functional autoregressive process of order 1 (FAR(1)), following the method outlined in [82]:

Xt,T (τ) = Bt/T
(
Xt−1,T

)
(τ) + εt(τ), τ ∈ [0, 1], t = 1, . . . ,T, (4.2)

where Bt/T is a time-varying linear operator, and εt(τ) are innovation functions. The innovations εt

are constructed using Fourier basis functions {ψ j} j∈N, specifically sine and cosine functions, with
coefficients 〈εt, ψ j〉 that are independent Gaussian random variables with mean zero and variance
σ2

j = [π( j − 1.5)]−2:

εt =

∞∑
j=1

〈εt, ψ j〉ψ j, with 〈εt, ψ j〉 ∼ N
(
0, σ2

j

)
.

In practice, we truncate the infinite series at a finite number J to obtain an approximate representation:

Xt,T =

J∑
j=1

〈Xt,T , ψ j〉ψ j.

Substituting into Eq (4.2) and exploiting the linearity of Bt/T , we derive the finite-dimensional
recursion:

X(T )
t = Bt/T X(T )

t−1 + εt, t = 1, . . . ,T,

where X(T )
t =

(
〈Xt,T , ψ1〉, . . . , 〈Xt,T , ψJ〉

)>, εt = (〈εt, ψ1〉, . . . , 〈εt, ψJ〉)>, and Bt/T is a J × J matrix with
entries bi j = 〈Bt/Tψi, ψ j〉. To construct Bt/T , we generate a J × J matrix Au with entries ai j being
independent Gaussian random variables with variance

σ2
i j = ui−2c + (1 − u)e−i− j,

where u = t/T , c = 3, and i, j = 1, . . . , J. The operator Bt/T is then represented by normalizing Au

using the operator norm:

Bt/T =
ηAu

‖Au‖∞
,

where η = 0.4. In this step, we have adopted the parameter values for η and c as proposed by [82].
The parameter c plays a crucial role in modulating the decay rate of the variance for the entries ai j,
thereby significantly influencing the overall structure of the functional data, as illustrated in Figure 1.
Moreover, the parameter η primarily affects the scale of Xt,T , allowing us to adjust the influence of Bt,T
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on the updates to Xt,T at each time step. By tuning η, we can regulate the extent of each update to
Xt,T , with smaller values of η serving to mitigate potential over-amplification in these updates. For our
simulations, we have adopted these parameter values, not only to align with the cited work, but also
to enhance computational efficiency. Readers interested in further analysis might consider examining
how variations in η and c impact the dynamics of the model. Additionally, we utilize the following
Fourier basis functions for the terms Xt,T (τ) and εt(τ) for each t = 1, . . . ,T and τ ∈ [0, 1]:

ψk(τ) =
√

2 sin(πkτ), for odd k ≤ J,

ψk(τ) =
√

2 cos(πkτ), for even k ≤ J.

These basis functions help define the structural form of each functional term, enhancing the
representational fidelity of the model.

Step 2: Generating the single index θ(τ). We generate the single index function θ(τ) as a linear
combination of basis functions, following [63]:

θ(τ) =
1
√

3
φ1(τ) +

1
√

3
φ2(τ) +

1
√

6
φ3(τ) +

1
√

6
φ4(τ), τ ∈ [0, 1],

where the basis functions are defined as

φ1(τ) =
√

2 sin(πτ),

φ2(τ) =
√

2 cos(πτ),

φ3(τ) =
√

2 sin(3πτ),

φ4(τ) =
√

2 cos(3πτ).

Step 3: Generating the scalar response variable Yt,T . We generate the scalar response variable Yt,T

according to the model

Yt,T = m
( t
T
, 〈θ, Xt,T 〉

)
+ εt,T , t = 1, . . . ,T,

where εt,T are independent standard normal random variables. The regression function mθ(u, x) is
specified as

mθ(u, x) = m (u, 〈θ, x〉) = 2.5 sin(2πu) · cos (π〈θ, x〉) .

Step 4: Selecting the Bandwidth h. We select the bandwidth h using the cross-validation criterion,
minimizing the cross-validation score

CVθ,x(h) =
1
T

T∑
s=1

[
Ys,T − m̂[s]

θ

( s
T
, Xs,T

)]2
,

where m̂[s]
θ (·) is the leave-one-out estimator of m̂θ(·), computed without the s-th observation.
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Visualization. Figure 1 displays samples of 100 curves Xt,T over the interval [0, 1] for different
numbers of basis functions J = 5, 15, 25, and 45. Each panel illustrates realizations of the time-varying
functional process Xt,T for t = 1, . . . , 100.

Figure 1. Realizations of the curves Xt,100(τ), τ ∈ (0, 1) and t = 1, . . . , 100 for FAR(1).

4.1. Point-wise mean square convergence

To demonstrate the pointwise convergence of the estimator m̂θ(u, x) to the true regression function
mθ(u, x), we conducted simulations with T = 1000 observations and evaluated the estimator at various
rescaled time points u = 0.25, 0.50, and 0.95. We selected x = X3,T as the covariate point of interest.
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Recall that the Nadaraya-Watson estimator is defined as

m̂θ(u, x) =

T∑
t=1

K1

(
u − t

T

h

)
K2

(
dθ(x, Xt,T )

h

)
Yt,T

T∑
t=1

K1

(
u − t

T

h

)
K2

(
dθ(x, Xt,T )

h

) ,

where h > 0 is the bandwidth parameter, dθ(·, ·) is the semi-metric associated with the single index θ,
and K1(·) and K2(·) are kernel functions. In our simulations, we employed the uniform kernel for K1(·)
and the Gaussian kernel for K2(·). Specifically, the uniform kernel K1(·) is defined as

K1(w) =


1, if |w| ≤ 1,

0, otherwise,

which provides equal weighting to observations within the bandwidth and zero weight outside. The
Gaussian kernel K2(·) is given by

K2(w) =
1
√

2π
exp

(
−

w2

2

)
,

as described in [43]. Notably, we utilized an asymmetric version of K2(·) by considering only non-
negative values of w, reflecting the non-negativity of the semi-metric dθ(x, Xt,T ). It is worth noting that
while our simulation study employed the uniform and gaussian kernels for K1(·) and K2(·), respectively,
one may also explore utilizing other kernel functions satisfying Assumption 3.3. A comparison with
regards to the estimator’s mean squared errors (MSEs) across various choices of kernel functions may
be investigated. The MSE values computed from the simulations using the uniform and gaussian
kernels are summarized in Table 1, illustrating the estimator’s performance at the specified time points.
These results confirm the theoretical convergence properties of m̂θ(u, x) as established in our asymptotic
analysis.

Table 1. Mean squared error of the regression estimator m̂θ(u, x) where Xt,T is simulated
using the FAR(1) model across values of J and u (figures in parentheses indicate the
computed best value of the bandwidth h using the cross-validation criterion).

Number of basis functions J
J = 5 J = 15 J = 25 J = 45

u = 0.25 3.252051 (0.434172) 3.072263 (0.485943) 3.133377 (0.456048) 3.345938 (0.428430)
u = 0.50 0.003168 (0.426549) 0.003110 (0.427440) 0.003141 (0.462879) 0.003114 (0.416057)
u = 0.95 0.309052 (0.454069) 0.303020 (0.426549) 0.273662 (0.464067) 0.283947 (0.477826)

The analysis explores the impact of varying the number of basis functions, J = 5, 15, 25, and 45,
along with the various rescaled time points. For each of the results obtained (for both the MSEs and
the optimal bandwidths), we set T = 1000, 100 replications, and 100 candidate optimal bandwidths
to choose from, ranging between 0.01 to 0.99. The MSE values observed at each rescaled time u
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display minimal variation across the different values of J, suggesting that the choice of basis functions
within this range has negligible influence on the results. The table further suggests that for the
rescaled time points u = 0.25, and u = 0.95, we obtain relatively higher MSEs compared to that
at u = 0.50. These findings suggest that for the subsequent analysis of the estimator m̂θ(u, x)’s
performance as T increases, we focus on u = 0.50, using a bandwidth of h = 0.426549 and J = 5 basis
functions. We have demonstrated the performance of the mentioned estimator at varying values of
T = 100, 500, 1000, and 1500. Although not displayed in Figure 2, we have computed the mean values
of the MSEs which are 0.0260923, 0.00506145, 0.00264353, and 0.00182452 for T = 100, 500, 1000,
and 1500, respectively. Hence, our assertion concerning decreasing approximation errors induced by
our estimator as T increases. As is common in inferential contexts, larger sample sizes generally yield
better performance. Simple inspection of the results in Figure 2 shows that larger sample sizes T
lead to smaller MSEs. More precisely, Figure 2 shows a steady decrease in approximation error as T
grows, supporting the inference that as T becomes larger and larger, the MSE values become smaller
and smaller. These empirical findings are thus in alignment with the theoretical results outlined in
Theorem 3.1.

Figure 2. Mean squared error for the regression estimator m̂θ(u, x) where Xt,T is simulated
using the FAR(1) model.

4.2. Asymptotic normality

As imposed in the previous subsection, we also consider the rescaled time point u = 0.50, with
a bandwidth of h = 0.426549, T = 1500, and J = 5 basis functions to illustrate the asymptotic
normality of our estimator. In this setting, we employ a quadratic kernel for K1(·) and an asymptotic
uniform kernel for K2(·). The uniform kernel is defined analogously to that introduced in the previous
subsection, but with support on the interval [0, 1]. The quadratic kernel is defined as 3

4 (1− u2)1[−1,1](u)
(see [43]). While selecting a bandwidth h tailored to these kernels would be preferable, for the purpose
of our simulations—specifically, to illustrate asymptotic normality—we consider an approximate
optimal bandwidth of h = 0.426549. Our results suggest that this choice yields similar conclusions,
provided that the assumptions on K1(·) and K2(·) stated in Assumption 3.3 hold. Therefore, our primary
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aim here is to demonstrate that the theoretical results remain valid irrespective of the particular choices
of K1(·) and K2(·), as long as they satisfy Assumption 3.3 and the other required conditions. Thus, we
proceed with the simulation by first recalling the following quantities m̂θ(u, x), mθ(u, x), BT,θ(u, x), and
ĝB
θ (u, x) in Assumption 3.6 and suppose that

S θ(u, x) =:
√

Thφθ(h)
(
m̂(u, x) − mθ(u, x) − BT,θ(u, x)

)
,

where

BT,θ(u, x) =
E
[
ĝB
θ (u, x)

]
E
[
m̂(1)
θ (u, x)

] .
Here, with BT,θ(u, x) = O

(
h2∧β

)
as per results obtained, we will demonstrate that S θ(u, x) can be

approximated by the normal distribution. That is,

S θ(u, x)
d
→ N(0,Vθ(u, x)),

where

Vθ(u, x) = lim
T→∞

Thφθ(h)
Var

(
ĝ(1)
θ (u, x)

)
E[m̂(1)

θ (u, x)]
> 0.

To estimate Var
(
ĝ(1)
θ (u, x)

)
and φθ(h) by σ̂(u, x) and φ̂θ(h), respectively, please see [63]. That is, we

have

φ̂θ(h) =
1
T

T∑
t=1

1{|〈θ,x−Xt,T 〉|<h}(Xt,T ),

and σ̂(u, x) =

T∑
t=1

Y2
t,T K1

(
u − t

T

h

)
K2

(
dθ(x, Xt,T )

h

)
T∑

t=1

K1

(
u − t

T

h

)
K2

(
dθ(x, Xt,T )

h

) −
(
m̂θ(u, x)

)2
.

We confirm our theoretical results by taking 100 copies of the random variable S θ(u, x) and creating
the corresponding histogram and Q-Q plot. See Figure 3 for an illustration. The histogram illustrates
that our data can be approximated by a normal distribution (the distribution we theorized) with its
shape forming like a bell. The presented Q-Q plot supports our claim since the points closely align
with the diagonal line. This indicates that our simulated statistics approximate a normal distribution.
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Figure 3. Histogram and Q-Q plot of S θ(u, x) when the explanatory variable is the FAR(1)
model.

5. Concluding remarks

In this paper, we develop an asymptotic theory for single-index nonparametric regression models
applied to locally stationary functional time series under α-mixing dependent observations. We begin
by defining a semi-metric dθ(·, ·) associated with a single index θ in a Hilbert space H , where
dθ(u, v) := |〈θ, u − v〉| for all u, v ∈H . We consider and investigate the model

Yt,T = m
( t
T
, 〈θ, Xt,T 〉

)
+ σ

( t
T
, 〈θ, Xt,T 〉

)
εt, t = 1, . . . ,T,

where {Yt,T , Xt,T }
T
t=1 are random variables, Yt,T is real-valued, and Xt,T takes values in the semi-

metric space H equipped with the semi-metric dθ(·, ·). Moreover, we construct an estimator for the
nonparametric regression operator within this model and derive its asymptotic properties under mild
conditions. Specifically, we obtain uniform convergence rates for both the general kernel estimator and
the NW estimator of the regression function. Our results demonstrate that, under sufficient conditions,
the general kernel estimator ψ̂θ(u, x) converges to its mean E[ψ̂θ(u, x)] at the rate

OP


√

log T
Thφθ(h)

 ,
and the NW estimator m̂θ(u, x) converges to mθ(u, x) at the rate

OP


√

log T
Thφθ(h)

+ h2∧β

 .
The convergence rate of the NW estimator comprises two components: The first term relates to
the variability of the estimate and depends on the concentration of the random variables Xt,T as
characterized by the small-ball probability φθ(h), while the second term pertains to the bias of
the estimate, which is influenced by the smoothness condition imposed on the operator mθ(u, x).
Specifically, the bias term depends on the parameter β and results from the application of the Lipschitz
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assumption. To achieve a more efficient estimator for mθ(u, x), it is crucial to minimize the dispersion
of the functional data, thereby increasing the concentration of the random variables and maximizing
the small-ball probability φθ(h). A higher value of φθ(h) leads to a faster convergence rate.

Consistent with the approaches of [57] and [83], one may explore the uniform convergence rate of
m̂θ(u, x) over the domain (1−C1h, 1]×{x} for forecasting purposes. This can be achieved by employing
boundary-corrected kernels or one-sided kernels, assuming they are compactly supported and Lipschitz
continuous to satisfy the present theoretical framework. It is important to note that achieving a
high concentration value φθ(h) is directly linked to the structure of the underlying space, which can
be optimized by defining an appropriate semi-metric, such as the dθ(·, ·) introduced above. This
optimization is further enhanced by selecting k(θ) = arg mink∈{1,2,...,Nθ,T } ‖θ − θk‖ for θ, as demonstrated
in the proof of Proposition 3.1. Consequently, the choice of θ plays a pivotal role in controlling φθ(h).
Additionally, employing an estimator θ(t) ∈ H may provide more effective estimates and yield more
reliable forecasting results. A pertinent reference for such an estimator is found in [63] (page 672).

Finally, we refer to Section 4 to illustrate the finite-sample behavior of the estimator. Our simulation
study supports the pointwise convergence of m̂θ(u, x) to mθ(u, x), as demonstrated using a first-order
functional autoregressive process Xt,T . The asymptotic tightness of the estimator is evidenced by
Figure 2, where the box plots shrink as T increases, indicating that the mean squared error (MSE)
becomes asymptotically negligible for large T , which is consistent with our theoretical findings.
Additionally, Figure 3 corroborates Theorem 3.2 by demonstrating the asymptotic normality of the
estimator. To provide methodological recommendations for using the proposed estimators, it would
be beneficial to conduct extensive Monte Carlo experiments comparing our procedures with other
alternatives in the literature. However, this is beyond the scope of the present paper.

Author contributions

Breix Michael Agua and Salim Bouzebda: Conceptualization, methodology, investigation, writing–
original draft, writing–review & editing. All authors of this article have been contributed equally. All
authors have read and approved the final version of the manuscript for publication.

Use of Generative-AI tools declaration

The author(s) declare(s) that they have not used Artificial Intelligence (AI) tools in the creation of
this article.

Acknowledgments

Mr. Agua’s research is supported by the Department of Science and Technology - Science Education
Institute (DOST-SEI) of the Philippine Government in partnership with Campus France through the
PhilFrance-DOST Scholarship grant, which are greatly acknowledged. The authors extend their
sincere gratitude to the Editor-in-Chief, the Associate Editor, and the three referees for their invaluable
feedback. Their insightful comments have greatly refined and focused the original work, resulting in a
markedly improved presentation.

AIMS Mathematics Volume 9, Issue 12, 36202–36258.



36225

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper. Salim Bouzebda is the Guest
Editor of special issue “Advances in Statistical Inference and Stochastic Processes: Theory and
Applications” for AIMS Mathematics. Salim Bouzebda was not involved in the editorial review and
the decision to publish this article.

References

1. A. Ait-Saı̈di, F. Ferraty, R. Kassa, P. Vieu, Cross-validated estimations in the single-functional
index model, Statistics, 42 (2008), 475–494. https://doi.org/10.1080/02331880801980377

2. I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of
expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281.
https://doi.org/10.1080/10485252.2022.2027412

3. G. Aneiros, P. Vieu, Partial linear modelling with multi-functional covariates, Comput. Stat., 30
(2015), 647–671. https://doi.org/10.1007/s00180-015-0568-8
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A. Appendix-A

In this section, we present detailed proofs of the conjectures under investigation. We begin by
proving Proposition 3.1. The proof starts by decomposing ψ̂θ(u, x) into two terms: ψ̂(1)

θ (u, x) and
ψ̂(2)
θ (u, x).

Proof of Proposition 3.1. We first define B = [0, 1], αT =

√
log T

Thφθ(h) , and τT = ρT T 1/ζ with ρT =

(log T )ζo for some ζo > 0. Now, define

ψ̂(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
Wt,T 1(|Wt,T |≤τT ),

ψ̂(2)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
Wt,T 1(|Wt,T |>τT ).

Clearly,
ψ̂θ(u, x) =

(
ψ̂(1)
θ (u, x) − E

[
ψ̂(1)
θ (u, x)

])
+

(
ψ̂(2)
θ (u, x) − E

[
ψ̂(2)
θ (u, x)

])
.

From this, we outline the proof of Proposition 3.1 into two steps as follows:

(i) sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(2)
θ (u, x) − E

[
ψ̂(2)
θ (u, x)

] ∣∣∣∣ = OP(αT ), and

(ii) sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(1)
θ (u, x) − E

[
ψ̂(1)
θ (u, x)

] ∣∣∣∣ = OP(αT ).
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Step (i): We first tackle ψ̂(2)
θ (u, x) − E

[
ψ̂(2)
θ (u, x)

]
. Observe that

P

(
sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(2)
θ (u, x)

∣∣∣∣ > αT

)
=P

( {
sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(2)
θ (u, x)

∣∣∣∣ > αT

}
⋃ sup

θ∈ΘH

sup
x∈S H

T⋃
t=1

|Wt,T | > τT

⋂
 sup
θ∈ΘH

sup
x∈S H

T⋃
t=1

|Wt,T | > τT


c

)

≤P

( {
sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(2)
θ (u, x)

∣∣∣∣ > αT

}⋂ sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

T⋃
t=1

|Wt,T | > τT


)

+ P

( {
sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(2)
θ (u, x)

∣∣∣∣ > αT

}⋂
 sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

T⋃
t=1

|Wt,T | > τT


c

)
≤P

(
sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣Wt,T

∣∣∣∣ > τT

)
+ P(∅) for some t = 1, 2, . . . ,T

≤τ
−ζ
T

T∑
t=1

E

[
sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

|Wt,T |
ζ

]
≤ τ

−ζ
T T = ρ

−ζ
T → 0 as T → ∞.

Now, using Assumptions 3.1 (M1) and (M4), and Assumption 3.3 (KB2), we obtain

K2,h
(
dθ(x, Xt,T )

)
= K2,h

(
dθ(x, Xt,T )

)
+

(
K2,h

(
dθ

(
x, X(t/T )

t,T
))
− K2,h

(
dθ

(
x, X(t/T )

t,T
)))

≤
∣∣∣K2,h

(
dθ(x, Xt,T )

)
− K2,h

(
dθ

(
x, X(t/T )

t,T
))∣∣∣ + K2,h

(
dθ

(
x, X(t/T )

t,T
))

≤ h−1
∣∣∣dθ(x, Xt,T ) − dθ

(
x, X(t/T )

t,T
)∣∣∣ + K2,h

(
dθ

(
x, X(t/T )

t,T
))

≤ h−1
∣∣∣dθ(Xt,T , X

(t/T )
t,T

)∣∣∣ + K2,h
(
dθ

(
x, X(t/T )

t,T
))

≤ (Th)−1U (t/T )
t,T + K2,h

(
dθ

(
x, X(t/T )

t,T
))
, (A.1)

where by using the elementary properties of summations and by the definition of dθ(·, ·), we get

dθ
(
x, Xt,T ) − dθ

(
x, X(t/T )

t,T

)
=

∣∣∣〈θ, x − Xt,T 〉
∣∣∣ − ∣∣∣〈θ, x − X(t/T )

t,T 〉
∣∣∣

=

∣∣∣∣∣∣
∫ b

a
θ(s)

(
x − Xt,T

)
(s)ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ b

a
θ(s)

(
x − X(t/T )

t,T

)
(s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ b

a
θ(s)

(
x(s) − Xt,T (s)

)
ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ b

a
θ(s)

(
x(s) − X(t/T )

t,T (s)
)
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ b

a
θ(s)x(s)ds −

∫ b

a
θ(s)Xt,T (s)ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ b

a
θ(s)x(s)ds −

∫ b

a
θ(s)X(t/T )

t,T (s)ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ b

a
θ(s)x(s)ds

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ b

a
θ(s)Xt,T (s)ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ b

a
θ(s)x(s)ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ b

a
θ(s)X(t/T )

t,T (s)ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ b

a
θ(s)Xt,T (s)ds

∣∣∣∣∣∣ −
∣∣∣∣∣∣
∫ b

a
θ(s)X(t/T )

t,T (s)ds

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
∫ b

a

(
θ(s)Xt,T (s)ds − θ(s)X(t/T )

t,T (s)
)
ds

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ b

a
θ(s)

(
Xt,T − X(t/T )

t,T (s)
)
ds

∣∣∣∣∣∣
=

∣∣∣〈θ, Xt,T − X(t/T )
t,T 〉

∣∣∣
= dθ

(
Xt,T , X

(t/T )
t,T

)
.

Hence, combining the above results, we have

E
[
K2,h

(
dθ(x, Xt,T )

)
|Wt,T |1(|Wt,T |>τT )

]
. τ

−(ζ−1)
T E

[
K2,h

(
dθ(x, Xt,T )

)
|Wt,T |

ζ]
. τ

−(ζ−1)
T E

[
K2,h

(
dθ(x, Xt,T )

)]
. τ

−(ζ−1)
T E

[
(Th)−1U (t/T )

t,T + K2,h
(
dθ

(
x, X(t/T )

t,T
))]

.
1

Thτζ−1
T

E
[
U (t/T )

t,T

]
+

1

τ
ζ−1
T

E
[
K2,h

(
dθ

(
x, X(t/T )

t,T
))]

.
1

Thτζ−1
T

+
1

τ
ζ−1
T

E
[
1(

dθ
(

x,X(t/T )
t,T

)
≤h
)]

.
1

Thτζ−1
T

+
1

τ
ζ−1
T

Ft/T (h; x, θ)

.
1

τ
ζ−1
T

φθ(h).

Consequently, we obtain

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
E

[
K2,h

(
dθ(x, Xt,T )

)
|Wt,T |1(|Wt,T |>τT )

]
.

1

τ
ζ−1
T

φθ(h) ×
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
=

1

τ
ζ−1
T

 1
Th

T∑
t=1

K1,h

(
u −

t
T

) .
By Lemma B.2, we have

E
[∣∣∣ψ̂(2)

θ (u, x)
∣∣∣] . 1

τ
ζ−1
T

×

(
O

(
1

Th2

)
+ o(h)

)
.

1

τ
ζ−1
T

. αT .

Inferring from the last result, we get

sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ψ̂(2)
θ (u, x) − E

[
ψ̂(2)
θ (u, x)

] ∣∣∣∣ = OP(αT ).

Step (ii): We are left to show that

sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣ψ̂(1)
θ (u, x) − E

[
ψ̂(1)
θ (u, x)

]∣∣∣ = OP(αT ).
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To achieve the desired result, assume that S H and ΘH are compact subsets of H . Suppose also that
NS ,T , and Nθ,T are the minimal number of balls in H with radius h necessary to cover S H and ΘH

with centers x1, . . . , xNS ,T , and θ1, . . . , θNθ,T , respectively such that NS ,T · Nθ,T ≤ C · 1
αT

balls

Bθ(x, h) = {y ∈H : dθ(x, y) ≤ h}.

More discussion on the covering numbers may be found in [11]. We further suppose that with NBi,T ≤

C 1
hαT

balls Bi,T , B is covered. Here,

Bi,T = {u ∈ R : |u − ui| ≤ αT h},

where ui is the midpoint of Bi,T . Now, assume that for (w, v) ∈ R2,

K∗(w, v) = C1(|w|≤2C1)K2(v).

With a sufficiently large T and for u ∈ Bi,T , we obtain∣∣∣∣∣K1,h
(
u −

t
T

)
− K1,h

(
ui −

t
T

)∣∣∣∣∣ K2,h
(
dθ(x, Xt,T )

)
≤ C1

∣∣∣∣∣(u − t
T

)
−

(
ui −

t
T

)∣∣∣∣∣ K2,h
(
dθ(x, Xt,T )

)
≤ C1

∣∣∣∣∣(ui −
t
T

)
+

(
ui −

t
T

)∣∣∣∣∣ K2,h
(
dθ(x, Xt,T )

)
≤ 2C1

∣∣∣∣∣ui −
t
T

∣∣∣∣∣ K2,h
(
dθ(x, Xt,T )

)
≤ C1(∣∣∣ui−

t
T

∣∣∣≤2C1

)K2,h
(
dθ(x, Xt,T )

)
≤ αT K∗h

(
ui −

t
T
, dθ(x, Xt,T )

)
,

where K∗h(v) = K∗(v/h). We now define ψ̄(1)
θ (ui, x) as

ψ̄(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K∗h
(
u −

t
T
, dθ(x, Xt,T )

)
|Wt,T |1(|Wt,T |≤τT

).
Now, we write t(x) = arg mint∈{1,2,...,NS ,T } ‖x− xt‖, and k(θ) = arg mink∈{1,2,...,Nθ,T } ‖θ−θk‖, and use a similar
decomposition in [63] which is given as follows

sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣ψ̂(1)
θ (u, x) − E

[
ψ̂(1)
θ (u, x)

]∣∣∣ ≤ sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣ψ̂(1)
θ (u, x) − ψ̂(1)

θ (u, xt(x))
∣∣∣

+ sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
θ (u, xt(x)) − ψ̂

(1)
k(θ)(u, xt(x))

∣∣∣∣
+ sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)

k(θ)(u, xt(x))
]∣∣∣∣

+ sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)
θ (u, xt(x))

]∣∣∣∣
+ sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
θ (u, xt(x)) − E

[
ψ̂(1)
θ (u, x)

]∣∣∣∣
=:Q1,θ + Q2,θ + Q3,θ + Q4,θ + Q5,θ.
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We first deal with the term Q3,θ. Since for sufficiently large M, and

E
[
|ψ̄(1)
θ (u, x)|

]
≤ M < ∞,

for any x ∈H , we get

sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)

k(θ)(u, xt(x))
]∣∣∣∣

≤ sup
θ∈ΘH

sup
x∈S H

∣∣∣∣ψ̂(1)
k(θ)(ui, xt(x)) − E

[
ψ̂(1)

k(θ)(ui, x(t(x)))
]∣∣∣∣

+ sup
θ∈ΘH

sup
x∈S H

αT

(∣∣∣∣ψ̄(1)
k(θ)(ui, xt(x))

∣∣∣∣ + E
[∣∣∣∣ψ̄(1)

k(θ)(ui, xt(x))
∣∣∣∣])

≤ sup
θ∈ΘH

sup
x∈S H

∣∣∣∣ψ̂(1)
k(θ)(ui, xt(x)) − E

[
ψ̂(1)

k(θ)(ui, xt(x))
]∣∣∣∣

+ sup
θ∈ΘH

sup
x∈S H

∣∣∣∣ψ̄(1)
k(θ)(ui, xt(x)) − E

[
ψ̄(1)

k(θ)(ui, xt(x))
]∣∣∣∣ + 2MαT .

Thus, we have

P

 sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)

k(θ)(u, xt(x))
]∣∣∣∣ > 4MαT


≤ P

(
NS ,T Nθ,T NBi,T max

k(θ)∈{1,2,...,Nθ,T }
max

t(x)∈{1,2,...,NS ,T }

max
1≤i≤NBi,T

∣∣∣∣ψ̂(1)
k(θ)(ui, xt(x)) − E

[
ψ̂(1)

k(θ)(ui, xt(x))
]∣∣∣∣ > 4MαT

)
≤ NS ,T Nθ,T NBi,T max

1≤i≤NBi,T

P
(∣∣∣∣ψ̂(1)

k(θ)(ui, xt(x)) − E
[
ψ̂(1)

k(θ)(ui, xt(x))
]∣∣∣∣ > 4MαT

)
≤ Q3,1,T,θ + Q3,2,T,θ,

where
Q3,1,T,θ = NS ,T Nθ,T NBi,T max

1≤i≤NBi,T

P
(∣∣∣∣ψ̂(1)

k(θ)(ui, xt(x)) − E
[
ψ̂(1)

k(θ)(ui, xt(x))
]∣∣∣∣ > MαT

)
,

and
Q3,2,T,θ = NS ,T Nθ,T NBi,T max

1≤i≤NBi,T

P
(∣∣∣∣ψ̄(1)

k(θ)(ui, xt(x)) − E
[
ψ̄(1)

k(θ)(ui, xt(x))
]∣∣∣∣ > MαT

)
.

Before proceeding with the further parts of the proof, we first lay down some important notations. For
t = 1, 2, . . . ,T, and 1A(·) is an indicator function of a set A, we write

∆t(u, x; θ) = K1,h

(
u −

t
T

)
K2,h

(
dθ(x, xt)

)
,

∇t =
1

φθ(h)
1{Bθ(x,h)

⋃
Bθ(xt(x),h)}(xt), and

Γt =
1

φθ(h)
1{Bθ(xt(x),h)

⋃
Bk(θ)(xt(x),h)}(xt).
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We now go back to showing the bound of Q3,1,T,θ, and Q3,2,T,θ. Observe that they can be analyzed in an
almost similar manner. Thus, we focus our attention to Q3,1,T,θ. Now, for t = 1, . . . ,T,

∆t(ui, xt(x); k(θ))Wt,T 1(|Wt,T |≤τT ) − E
[
∆t(ui, xt(x); k(θ))Wt,T 1(|Wt,T |≤τT )

]
=K1,h

(
ui −

t
T

)
K2,h

(
dk(θ)(xt(x), xt)

)
Wt,T 1(|Wt,T |≤τT )

− E
[
K1,h

(
ui −

t
T

)
K2,h

(
dk(θ)(xt(x), xt)

)
Wt,T 1(|Wt,T |≤τT )

]
=K1,h

(
ui −

t
T

){
K2,h

(
dk(θ)(xt(x), xt))

)
Wt,T 1(|Wt,T |≤τT )

− E
[
K2,h

(
dk(θ)(xt(x), xt)

)
Wt,T 1(|Wt,T |≤τT )

] }
=:Zt,T,1,θ(ui, xt(x)).

Note that for each (u, xt(x)), the array {Zt,T,1,θ(ui, xt(x))} is α-mixing with mixing coefficients αZ,T,k(θ)(k)
satisfying

αZ,T,k(θ)(k) ≤ α(k).

We set ε = MαT Thφθ(h), bT = CτT for a sufficiently large constant C > 0, and S T =
1

αTτT
, and apply

Lemma B.3. Moreover, with a constant C′ independent of (u, x), Theorem 2 of [64] can be extended to
show that

σ2
S T ,T ≤ C′S T hφθ(h).

Therefore, for any (u, xt(x)) and sufficiently large T , we obtain

P


∣∣∣∣∣∣∣

T∑
t=1

Zt,T,1,k(θ)(ui, xt(x))

∣∣∣∣∣∣∣ ≥ ε
 ≤4 exp

− ε2

64σ2
S T ,T

T
S T

+ 8
3εbT S T

 + 4
T
S T

α(S T )

≤4 exp

− M2α2
T T 2h2φ2

θ(h)

64C′S T hφθ(h) T
S T

+ 8
3 MαT Thφθ(h)bT S T

 + 4
T
S T

α(S T )

≤4 exp
−Thφθ(h)

(
M2α2

T Thφθ(h)
)

Thφθ(h)
(
64C′

+ 8
3CM

)  + 4
T
S T

α(S T )

≤4 exp

−
M

(√
log T

Thφθ(h)

)2
Thφθ(h)

64C′

M + 8
3C

 + 4
T
S T

α(S T )

. exp

log T

− M

64C′

M + 8
3C

 + TS −γ−1
T

=T
− M

64 C′
M + 8

3 C + Tαγ+1
T τ

γ+1
T

≤T
− M

64+ 8
3 C + Tαγ+1

T τ
γ+1
T .

The last inequality holds by picking a very large M > C
′

. We can then show that

Q3,1,T,θ = R(1)
3,1,T,θ + R(2)

3,1,T,θ → 0.
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That is,

R(1)
3,1,T,θ = NS ,T · Nθ,T · NBi,T · T

− M
64+ 8

3 C

=
C
αT
·

1
hαT
· T
− M

64+ 8
3 C

.
1

hα2
T

· T
− M

64+ 8
3 C

=
1

h
(√

log T
Thφθ(h)

)2 · T
− M

64+ 8
3 C

=
Tφθ(h)
log(T )

· T
− M

64+ 8
3 C

=
φθ(h)

log(T )
· T
− M

64+ 8
3 C

+1

= o(1),

for sufficiently large M > 0
(
i.e., M > 64 + 8

3C
)
, and the fact that φθ(h)→ 0 as h→ 0, and log(T )→ ∞

as T → ∞. On the other hand, we have

R(2)
3,1,T,θ = NS ,T · Nθ,T · NBi,T · Tα

γ+1
T τ

γ+1
T

=
C
αT
·

1
hαT
· Tαγ+1

T τ
γ+1
T

.
1
h

Tαγ+1−2
T τ

γ+1
T

=
1
h


√

log T
Thφθ(h)


γ−1

ρ
γ+1
T T · T

γ+1
ζ

=
1
h


√

log T
Thφθ(h)


γ−1 ((

log T
)ζ0

)γ+1
T · T

γ+1
ζ

=
1
h
·

(
log T

) γ−1
2

T
γ−1

2 h
γ−1

2
(
φθ(h)

) γ−1
2

(
log T

)ζ0(γ+1)T
γ+1
ζ +1

=

(
log T

) γ−1
2 +ζ0(γ+1)

T
γ−1

2 −
γ+1
ζ −1h

γ−1
2 +1(φθ(h)

) γ−1
2

= o(1),

using the first regularity condition (R1) in Assumption 3.5. The desired result is achieved by imposing

γ − 1
2

>
γ + 1
ζ
− 1.

That is, γ > 3 just as Assumption 3.5 requires. This means that

sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)

k(θ)(u, xt(x))
]∣∣∣∣→ 0.
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We now treat the term Q1,θ. Let
i(u) = arg min

i∈{1,2,...,NBi,T }
|u − ui|.

We observe that asymptotically

E(ψ̂(1)
θ (u, x) − ψ̂(1)

θ (u, xt(x))) = 0.

Observe that

Q1,θ = sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣ψ̂(1)
θ (u, x)ψ̂(1)

θ (u, xt(x)) − E(ψ̂(1)
θ (u, x) − ψ̂(1)

θ (u, xt(x)))
∣∣∣

≤ sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

1
Thφθ(h)

×

∣∣∣∣∣∣∣
T∑

t=1

Wt,T 1(|Wt,T |≤τT )
{
∆t(u, x; θ) − ∆t(u, xt(x); θ)

}
− E(ψ̂(1)

θ (u, x) − ψ̂(1)
θ (u, xt(x)))

∣∣∣∣∣∣∣
≤ sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

C
Th

×

∣∣∣∣∣∣∣
T∑

t=1

K1,h

(
u −

t
T

)
·
{
Wt,T 1(|Wt,T |≤τT ) · ∇t − E

[
Wt,T 1(|Wt,T |≤τT ) · ∇t

]}∣∣∣∣∣∣∣
= IQ1,θ .

We now deal IQ1,θ . Then, we infer that

P

 sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣∣∣∣
T∑

t=1

Zt,T,1,θ

∣∣∣∣∣∣∣ > ε


≤ P

NS ,T Nθ,T NBi,T max
k(θ)∈{1,2,...,Nθ,T }

max
t(x)∈{1,2,...,NS ,T }

max
1≤i≤NBi,T

∣∣∣∣∣∣∣
T∑

t=1

Zt,T,1,θ

∣∣∣∣∣∣∣ > ε


≤ NS ,T Nθ,T NBi,T max
1≤i≤NBi,T

·P


∣∣∣∣∣∣∣

T∑
t=1

Zt,T,1,θ

∣∣∣∣∣∣∣ > ε
 ,

where
Zt,T,1,θ = K1,h

(
u −

t
T

)
Wt,T 1(|Wt,T |≤τT ) · ∇t − E

[
K1,h

(
u −

t
T

)
Wt,T 1(|Wt,T |≤τT ) · ∇t

]
.

Observe that Zt,T,1,θ is an alpha-mixing sequence. Therefore, by selecting the same parameter values for
ε, bT , S T , and σ2

S T ,T as those used for Zt,T,1,k(θ), and utilizing the corresponding constants C,C′, and M
defined therein, we can apply a similar proof strategy as employed for Q3,θ. Specifically, by invoking
Lemma B.3, we have

sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣ψ̂(1)
θ (u, x) − ψ̂(1)

θ (u, xt(x))
∣∣∣→ 0.

It can also be shown that

sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
θ (u, xt(x)) − ψ̂

(1)
k(θ)(u, xt(x))

∣∣∣∣→ 0,

AIMS Mathematics Volume 9, Issue 12, 36202–36258.



36238

by employing proof techniques analogous to those used for Q1,θ and Q3,θ, we obtain the desired result
for the α-mixing variable

Zt,T,2,θ = K1,h

(
u −

t
T

)
Wt,T 1{|Wt,T |≤τT } · Γt − E

[
K1,h

(
u −

t
T

)
Wt,T 1(|Wt,T |≤τT ) · Γt

]
.

The parameters are chosen as ε = MαT Thφθ(h) (for a sufficiently large M > C′), bT = CτT (with
C > 0 sufficiently large), and

S T =
1

αTτT
.

Here, C′ is a constant independent of (u, x), and the variance satisfies

σ2
S T ,T ≤ C′S T hφθ(h).

It remains to establish the convergence of Q4,θ and Q5,θ. Note that Q4,θ can be addressed similarly to
Q2,θ since

E[Q2,θ] ≥ sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

E
[∣∣∣∣ψ̂(1)

θ (u, xt(x)) − ψ̂
(1)
k(θ)(u, xt(x))

∣∣∣∣]
≥ sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣E [
ψ̂(1)
θ (u, xt(x))

]
− E

[
ψ̂(1)

k(θ(u, xt(x))
]∣∣∣∣

= sup
θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣∣∣{E [
ψ̂(1)

k(θ)(u, xt(x))
]
− ψ̂(1)

k(θ)(u, xt(x))
}

+
{
ψ̂(1)

k(θ)(u, xt(x)) − E
[
ψ̂(1)
θ (u, xt(x))

]} ∣∣∣∣∣∣
≥ sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)
θ (u, xt(x))

]∣∣∣∣ = Q4,θ.

Thus, we have
Q4,θ = sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
k(θ)(u, xt(x)) − E

[
ψ̂(1)
θ (u, xt(x))

]∣∣∣∣→ 0.

Finally,
Q5,θ = sup

θ∈ΘH

sup
x∈S H

sup
u∈Bi,T

∣∣∣∣ψ̂(1)
θ (u, xt(x)) − E

[
ψ̂(1)
θ (u, x)

]∣∣∣∣→ 0,

since Q5,θ ≤ E[Q1,θ] by proving in a similar fashion as Q4,θ. The preceding results together with the
result in step (i) complete the proof of Proposition 3.1. �

Proof of Theorem 3.1. To prove Theorem 3.1, we use a similar decomposition used by [57]. That is,
we have

m̂θ(u, x) − mθ(u, x) =
1

m̂(1)
θ (u, x)

(
ĝ(1)
θ (u, x) + ĝ(2)

θ (u, x) − mθ(u, x)m̂(1)
θ (u, x)

)
,

where

m̂(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
,

ĝ(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
εt,T ,
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and ĝ(2)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
mθ

( t
T
, Xt,T

)
.

The proof is completed by showing the following four results:

(i) sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣ĝ(1)
θ (u, x)

∣∣∣ = OP


√

log T
Thφθ(h)

 ,
(ii) with ĝB

θ (u, x) = ĝ(2)
θ (u, x) − mθ(u, x)m̂(1)

θ (u, x),

sup
θ∈ΘH

sup
x∈S H

sup
u∈[0,1]

∣∣∣∣ĝB
θ (u, x) − E

[
ĝB
θ (u, x)

]∣∣∣∣ = OP


√

log T
Thφθ(h)

 ,
(iii) using ĝB

θ (u, x) in (ii),

sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

∣∣∣∣E [
ĝB
θ (u, x)

]∣∣∣∣ = sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

∣∣∣∣E [
ĝ(2)
θ (u, x) − mθ(u, x)m̂(1)

θ (u, x)
]∣∣∣∣

=O(h2) + O(hβ),

(iv) and 1
inf

θ∈ΘH

inf
x∈S H

inf
u∈[C1h,1−C1h]

m̂(1)
θ (u, x)

= OP(1).

Using Proposition 3.1, the first two can be shown by picking εt,T , and mθ

(
t
T , Xt,T

)
− mθ(u, x) for Wt,T ,

respectively. We now prove (iv). Thus, we have

m̂(1)
θ (u, x) =

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
=

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

) {
K2,h

(
dθ(x, Xt,T )

)
− K2,h

(
dθ

(
x, X(t/T )

t

))}
+

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, X(t/T )

t

))
=:m̄(1)

θ (u, x) + m̃(1)
θ (u, x). (A.2)

Putting Wt,T = 1, we get

sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

∣∣∣m̂(1)
θ (u, x) − E

[
m̂(1)
θ (u, x)

]∣∣∣ = oP(1),

uniformly in u using Proposition 3.1. Furthermore, since K2(·) is Lipschitz, and by using Definition 2.1
and Lemma B.2, we have

E
[∣∣∣m̄(1)

θ (u, x)
∣∣∣] = E

 1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

) {
K2,h

(
dθ(x, Xt,T )

)
− K2,h

(
dθ

(
x, X(t/T )

t

))}
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.
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

) 1
Th

E
[
U (t/T )

t,T

]
.

1
T 2h2φθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
=

1
Thφθ(h)

·
1

Th

T∑
t=1

K1,h

(
u −

t
T

)
= o(1),

where, by the regularity assumption (R2) in Assumption 3.5, we have 1
Thφθ(h) → 0 as T → ∞.

Consequently, using (A.2), we have

m̂(1)
θ (u, x) = m̂(1)

θ (u, x) +
{
E
[
m̂(1)
θ (u, x)

]
− E

[
m̂(1)
θ (u, x)

]}
=

{
m̂(1)
θ (u, x) − E

[
m̂(1)
θ (u, x)

]}
+

{
E
[
m̃(1)
θ (u, x)

]
+ E

[
m̄(1)
θ (u, x)

]}
= oP(1) + E

[
m̃(1)
θ (u, x)

]
+ o(1), (A.3)

uniformly in u. Now, using Assumption 3.1,

E
[
m̃(1)
θ (u, x)

]
=

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
E

[
K2,h

(
dθ

(
x, X(t/T )

t
))]

=
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

) ∫ h

0
K2,h(y)dFt/T (y; x, θ)

&
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
φθ(h) f1(x) ∼ f1(x) > 0,

uniformly in u. Therefore,

1

inf
x∈S H

inf
θ∈ΘH

inf
u∈[C1h,1−C1h]

m̂(1)
θ (u, x)

=
1

inf
x∈S H

inf
θ∈ΘH

inf
u∈[C1h,1−C1h]

{
OP(1) + E

[
m̃(1)
θ (u, x)

]
+ o(1)

}
=OP(1).

Hence, the assertion. For the proof of (iii), with support [0, q] for some q > 1, we suppose that
K0 : [0, 1]→ R is a Lipschitz continuous function such that K0(x) = 1 for all x ∈ [0, 1]. Notice that

E
[
ĝ(2)
θ (u, x) − mθ(u, x)m̂(1)

θ (u, x)
]

=

4∑
i=1

Pi,θ(u, x),

where

Pi,θ(u, x) =
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
pi,θ(u, x),
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such that

p1,θ(u, x) = E

[
K0,h

(
dθ(x, Xt,T )

) {
K2

(
dθ

(
x, Xt,T

))
− K2,h

(
dθ

(
x, X(t/T )

t

))}
×

{
mθ

( t
T
, Xt,T

)
− mθ(u, x)

} ]
,

p2,θ(u, x) = E

[
K0,h

(
dθ(x, Xt,T )

)
K2,h

(
dθ

(
x, X(t/T )

t
)) {

mθ

( t
T
, Xt,T

)
− mθ

( t
T
, X(t/T )

t

)} ]
,

p3,θ(u, x) = E

[ {
K0,h

(
dθ(x, Xt,T )

)
− K0,h

(
dθ

(
x, X(t/T )

t
))}

K2,h

(
dθ

(
x, X(t/T )

t
))

×

{
mθ

( t
T
, X(t/T )

t

)
− mθ(u, x)

} ]
,

and p4,θ(u, x) = E

[
K2,h

(
dθ

(
x, X(t/T )

t
)) {

mθ

( t
T
, X(t/T )

t

)
− mθ(u, x)

} ]
.

Now, observe that

P1,θ(u, x) =
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
E
[
K0,h

(
dθ(x, Xt,T )

)
×

{
K2,h

(
dθ

(
x, Xt,T

))
− K2,h

(
dθ

(
x, X(t/T )

t

))} {
mθ

( t
T
, Xt,T

)
− mθ(u, x)

} ]
≤

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
E

[∣∣∣∣K2,h
(
dθ

(
x, Xt,T

))
− K2,h

(
dθ

(
x, X(t/T )

t

)) ∣∣∣∣
×K0,h

(
dθ(x, Xt,T )

) ∣∣∣∣mθ

( t
T
, Xt,T

)
− mθ(u, x)

∣∣∣∣].
Now, we obtain the bound h1∧β using Assumption 3.1. That is,

K0,h
(
dθ(x, Xt,T )

) ∣∣∣∣mθ

( t
T
, Xt,T

)
− mθ(u, x)

∣∣∣∣ .K0,h
(
dθ(x, Xt,T )

) (
dθ

(
x, Xt,T

)
+

∣∣∣∣ t
T
− u

∣∣∣∣)β
.h1∧β.

Furthermore, since K2(·) is Lipschitz continuous from Assumption 3.3 and that

dθ
(
Xt,T , X

(t/T )
t

)
≤

1
T

U (t/T )
t,T ,

as previously shown, we have

P1,θ(u, x) .
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
E

[∣∣∣∣∣∣K2,h
(
dθ

(
x, Xt,T

))
− K2,h

(
dθ

(
x, X(t/T )

t

)) ∣∣∣∣∣∣
]
×h1∧β

.
1

Th1−(1∧β)φθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
E

[∣∣∣∣ 1
Th

U (t/T )
t,T

∣∣∣∣]
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.
1

Th1−(1∧β)φθ(h)
,

uniformly in u. The cases for P2,θ(u, x) and P3,θ(u, x) can be proved in a similar fashion as P1,θ(u, x).
Hence, we have

sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

|P2,θ(u, x)| .
1

Th1−(1∧β)φθ(h)
,

and

sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

|P3,θ(u, x)| .
1

Th1−(1∧β)φθ(h)
.

Finally, leveraging Assumption 3.1 and Lemma B.1, we derive

|P4,θ(u, x)| =
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
× E

[
K2,h

(
dθ

(
x, X(t/T )

t
)) {

mθ

( t
T
, Xt,T

)
− mθ(u, x)

} ]

≤
1

Thφθ(h)

T∑
t=1

∣∣∣∣∣K1,h

(
u −

t
T

)∣∣∣∣∣ × E
[∣∣∣∣K2,h

(
dθ

(
x, X(t/T )

t
)) ∣∣∣∣] ∣∣∣∣∣mθ

( t
T
, X(t/T )

t

)
− mθ(u, x)

∣∣∣∣∣
.

1
Thφθ(h)

T∑
t=1

∣∣∣∣∣K1,h

(
u −

t
T

)∣∣∣∣∣ × E
[∣∣∣∣K2,h

(
dθ

(
x, X(t/T )

t
)) ∣∣∣∣] (dθ(x, X(t/T )

t

)
+

∣∣∣∣∣ t
T
− u

∣∣∣∣∣)β
.

1
Thφθ(h)

T∑
t=1

∣∣∣∣∣∣K1,h

(
u −

t
T

)
−

∫ 1

0

1
h

K1,h (u − v) dv

∣∣∣∣∣∣ × E
[∣∣∣∣K2,h

(
dθ

(
x, X(t/T )

t
)) ∣∣∣∣]

×hβ +
1

Thφθ(h)
·

T∑
t=1

∫ 1

0

1
h

K1,h (u − v) dv × E
[∣∣∣∣K2,h

(
dθ

(
x, X(t/T )

t
)) ∣∣∣∣] × hβ

. O
(

1
Th2

)
· hβ + hβ.

However, we have

1
Th2 · h

β ≤
1
T
· hβ−2 . φθ(h) · h2 � h2.

We then infer that
sup

x∈S H

sup
θ∈ΘH

sup
u∈[C1h,1−C1h]

|Q4,θ(u, x)| � h2 + hβ.

Hence, we obtain
sup
θ∈ΘH

sup
x∈S H

sup
u∈[C1h,1−C1h]

∣∣∣∣E [
ĝB
θ (u, x)

]∣∣∣∣ = O(h2) + O(hβ). (A.4)

Finally, given our assumptions, our proof is complete with an approximation error of

O
(

1
Th1−(1∧β)φθ(h)

)
� h2∧β.

Hence the proof is complete. �
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Proof of Theorem 3.2. We begin our proof for this theorem by showing

ĝB
θ (u, x) − E

[
ĝB
θ (u, x)

]
= oP


√

1
Thφθ(h)

 ,
that is, from

m̂θ(u, x) − mθ(u, x) =
1

m̂(1)
θ (u, x)

(
ĝ(1)
θ (u, x) + ĝ(2)

θ (u, x) − mθ(u, x)m̂(1)
θ (u, x)

)
,

we define
ĝB
θ (u, x) = ĝ(2)

θ (u, x) − mθ(u, x)m̂(1)
θ (u, x).

Now, we infer

ĝB
θ (u, x) = ĝ(2)

θ (u, x) − mθ(u, x)m̂(1)
θ (u, x)

=
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
mθ

( t
T
, Xt,T

)
−

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
mθ (u, x)

=
1

Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

)) {
mθ

( t
T
, Xt,T

)
− mθ (u, x)

}
=

1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
Λt,T,θ(u, x),

where
Λt,T,θ(u, x) = K2,h

(
dθ

(
x, Xt,T

)) {
mθ

( t
T
, Xt,T

)
− mθ (u, x)

}
.

Then, we readily obtain

Var
(
ĝB
θ (u, x)

)
= Var

 1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
Λt,T,θ(u, x)


=

1(
Thφθ(h)

)2 Var

 T∑
t=1

K1,h

(
u −

t
T

)
Λt,T,θ(u, x)


=

1(
Thφθ(h)

)2

T∑
t=1

K2
1,h

(
u −

t
T

)
· Var

(
Λt,T,θ(u, x)

)
+

1(
Thφθ(h)

)2

T∑
t1,t2=1

t1,t2

K2
1,h

(
u −

t1

T

)
K2

1,h

(
u −

t2

T

)
Cov

(
Λt1,T,θ(u, x),Λt2,T,θ(u, x)

)
=:VB

1,T,θ + VB
2,T,θ.
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We now discuss VB
1,T,θ by first noting that

E
[
K2

2,h

(
dθ

(
x, X(t/T )

t,T
))]

=

∫ h

0
K2

2,h(y)P(dy)

= −
2
h

∫ h

0
K2,h(y)K

′

2,h(y)Ft/T (y; x, θ)dy

∼ −
2
h

∫ h

0
K2,h(y)K

′

2,h(y)φθ(y)dy

=
2
h

∫ h

0

(
1 −

y
h

)
φθ(y)dy

=
2
h2

∫ h

0

(∫ y

0
φθ(ε)dε

)
dy

∼
2
h2

∫ h

0
yφθ(y)dy ∼ φθ(h), (A.5)

using integration by parts, change of variables, and the model and kernel assumptions in
Assumptions 3.1 and 3.3, respectively, and using the fact that K2,h(x) = (1−x)1x∈[0,1] is an asymmetrical
triangle kernel. On the other hand, since K2(·) is Lipschitz and by Definition 2.2, we have

E
[
K2

2,h
(
dθ

(
x, Xt,T

))
− K2

2,h

(
dθ

(
x, X(t/T )

t,T
))]
.E

[
K2,h

(
dθ

(
x, Xt,T

))
− K2,h

(
dθ

(
x, X(t/T )

t,T
))]

≤
C
h

E
∣∣∣∣dθ(x, Xt,T

)
− dθ

(
x, X(t/T )

t,T
)∣∣∣∣

.
1

Th
E

[
U (t/T )

t,T

]
.

1
Th

. (A.6)

Moreover, by the smoothness of mθ in Assumption 3.1, we get∣∣∣∣∣mθ

( t
T
, Xt,T

)
− mθ (u, x)

∣∣∣∣∣2 . h2β.

Therefore, it follows that

∣∣∣VB
1,T,θ

∣∣∣ =
1(

Thφθ(h)
)2

T∑
t=1

K2
1,h

(
u −

t
T

)
· Var

(
Λt,T,θ(u, x)

)
=

1(
Thφθ(h)

)2

T∑
t=1

K2
1,h

(
u −

t
T

)
·

{
E

[(
Λ2

t,T,θ(u, x)
)]
−

(
E

[
Λt,T,θ(u, x)

] )2
}

≤
1(

Thφθ(h)
)2

T∑
t=1

K2
1,h

(
u −

t
T

)
· E

[(
Λ2

t,T,θ(u, x)
)]

≤
1(

Thφθ(h)
)2

T∑
t=1

K2
1,h

(
u −

t
T

)
× E

[
K2

2,h
(
dθ

(
x, Xt,T

))
·

(
mθ

( t
T
, Xt,T

)
− mθ (u, x)

)2
]

.
h2β(

Thφθ(h)
)2

T∑
t=1

K2
1,h

(
u −

t
T

)
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×

{
E

[
K2

2,h
(
dθ

(
x, Xt,T

))
− K2

2,h

(
dθ

(
x, X(t/T )

t,T
))]

+ E
[
K2

2,h

(
dθ

(
x, X(t/T )

t,T
))] }

.
h2β(

Thφθ(h)
)2

T∑
t=1

K2
1,h

(
u −

t
T

)
·

(
1

Th
+ φθ(h)

)

.
h2βφθ(h)(
Thφθ(h)

)2

T∑
t=1

K2
1,h

(
u −

t
T

)
�

1
Thφθ(h)

. (A.7)

We now consider VB
2,T,θ and write

VB
2,T,θ = VB

2,1,T,θ + VB
2,2,T,θ, (A.8)

where

VB
2,1,T,θ =

1(
Thφθ(h)

)2

T∑
t1 ,t2=1

1≤|t1−t2 |≤λT

K1,h

(
u −

t1

T

)
K1,h

(
u −

t2

T

)
× Cov

(
Λt1,T,θ(u, x),Λt2,T,θ(u, x)

)
,

and VB
2,2,T,θ =

1(
Thφθ(h)

)2

T∑
t1 ,t2=1

1≤|t1−t2 |>λT

K1,h

(
u −

t1

T

)
K1,h

(
u −

t2

T

)
× Cov

(
Λt1,T,θ(u, x),Λt2,T,θ(u, x)

)
.

Observe that from our previous calculations, we can deduce

E
[
Λt1,T,θ(u, x)

]
· E

[
Λt2,T,θ(u, x)

]
= E

[
K2,h

(
dθ

(
x, Xt1,T

)) {
mθ

( t
T
, Xt1,T

)
− mθ (u, x)

}]
× E

[
K2,h

(
dθ

(
x, Xt2,T

)) {
mθ

( t
T
, Xt2,T

)
− mθ (u, x)

}]
. h2β · φ2

θ(h),

and that by Assumption 3.1,

E
[
Λt1,T,θ(u, x) · Λt2,T,θ(u, x)

]
≤ ψθ(h) f2(x).

Therefore, VB
2,1,T,θ becomes

∣∣∣VB
2,1,T,θ

∣∣∣ ≤ 1(
Thφθ(h)

)2

T∑
t1 ,t2=1

1≤|t1−t2 |≤λT

K1,h

(
u −

t1

T

)
K1,h

(
u −

t2

T

)
×
{
E
[
Λt1,T,θ(u, x) · Λt2,T,θ(u, x)

]
+ E

[
Λt1,T,θ(u, x)

]
· E

[
Λt2,T,θ(u, x)

]}
.

h2(1∧β)(
Thφθ(h)

)2

T∑
t1 ,t2=1

1≤|t1−t2 |≤λT

K1,h

(
u −

t1

T

)
K1,h

(
u −

t2

T

) {
ψθ(h) + φ2

θ(h)
}

.
h2(1∧β)(

Thφθ(h)
)2 · TλT ·

(
ψθ(h) + φ2

θ(h)
)
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=

(
h2(1∧β)−1λT

Th
·
ψθ(h)
φ2
θ(h)

)
+

(
h2(1∧β)−1λT

Th

)
.

1
Thφθ(h)

· h2(1∧β)−1φθ(h)λT ,

where by Assumption 3.1, ψθ(h)
φ2
θ (h) < ∞, and

h2(1∧β)−1λT ·
1

Th
= h2(1∧β)−1λT ·

1
Th
·

h2

h2

= h2(1∧β)+1λT ·
1

Th3 → 0,

since Th3 → ∞ by Assumption 3.5. Here, the goal is to pick λT such that
∣∣∣VB

2,1,T,θ

∣∣∣ → 0 as T → ∞.
Thus, using Lemma B.4, and the fact that K2(·) is bounded as in Assumption 3.1, we have

Cov
(
Λt1,T,θ(u, x),Λt2,T,θ(u, x)

)
≤ E

[
Λt1,T,θ(u, x) · Λt2,T,θ(u, x)

]
− E

[
Λt1,T,θ(u, x)

]
· E

[
Λt2,T,θ(u, x)

]
.

∥∥∥Λt1,T,θ(u, x)
∥∥∥

v
·
∥∥∥Λt2,T,θ(u, x)

∥∥∥
v
· α (|t1 − t2|)1− 1

v−
1
v

= E
[ (

Λt1,T,θ(u, x)
)v

] 1
v E

[ (
Λt2,T,θ(u, x)

)v
] 1

v
· α (|t1 − t2|)1− 2

v

= E
[{

K2,h
(
dθ

(
x, Xt1,T

))
·

(
mθ

( t1

T
, Xt1,T

)
− mθ (u, x)

)}v] 1
v

×E
[{

K2,h
(
dθ

(
x, Xt2,T

))
·

(
mθ

( t2

T
, Xt,T

)
− mθ (u, x)

)}v] 1
v

· α (|t1 − t2|)1− 2
v

. h2(1∧β) · E
[
K2,h

(
dθ

(
x, Xt1,T

))v
] 1

v E
[
K2,h

(
dθ

(
x, Xt2,T

))v
] 1

v
· α (|t1 − t2|)1− 2

v

≤ h2(1∧β) · E
[
K2,h

(
dθ

(
x, Xt1,T

))2
] 1

v E
[
K2,h

(
dθ

(
x, Xt2,T

))2
] 1

v
· α (|t1 − t2|)1− 2

v

. h2(1∧β) · (φθ(h))
2
v · (α(k))1− 2

v .

For VB
2,2,T,θ, we use the preceding calculations and obtain

VB
2,2,T,θ =

1(
Thφθ(h)

)2

T∑
t1 ,t2=1

1≤|t1−t2 |>λT

K1,h

(
u −

t1

T

)
K1,h

(
u −

t2

T

)
× Cov

(
Λt1,T,θ(u, x),Λt2,T,θ(u, x)

)

.
1(

Thφθ(h)
)2 · h

2(1∧β) (φθ(h))
2
v


T∑

t1 ,t2=1
1≤|t1−t2 |>λT

α (|t1 − t2|)1− 2
v


≤

1
Thφθ(h)

·
h2(1∧β)−1

(φθ(h))1− 2
v


T∑

t1 ,t2=1
1≤|t1−t2 |>λT

α (|t1 − t2|)1− 2
v


≤

1
Thφθ(h)

·
h2(1∧β)−1

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v
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≤
1

Thφθ(h)
·

h2(1∧β)−1

(φθ(h))1− 2
v


T∑

t1 ,t2=1
1≤|t1−t2 |>λT

α (|t1 − t2|)1− 2
v


≤

1
Thφθ(h)

·
h2(1∧β)−1

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v

 .
As previously mentioned, we pick λT that makes our expression approach to zero. That happens if we
choose

λT =

⌊(
φθ(h)

)− 1−(2/v)
δ

⌋
,

and hence the use of Assumption 3.4. Therefore, the results from (A.7) and (A.8) suggest that

Var
(
ĝB
θ (u, x)

)
<

∣∣∣VB
1,T,θ

∣∣∣ +
∣∣∣VB

2,T,θ

∣∣∣ = o
(

1
Thφθ(h)

)
.

Consequently,

ĝB
θ (u, x) − E

[
ĝB
θ (u, x)

]
= oP


√

1
Thφθh

 ,
as we desired. Thus, the above results together with (A.3), (A.4), and the fact that lim

T→∞
E

[
m̂(1)
θ (u, x)

]
> 0

give us

m̂θ(u, x) − mθ(u, x) =
ĝ(1)
θ (u, x)

m̂(1)
θ (u, x)

+ BT,θ(u, x) + oP


√

1
Thφθ(h)

 .
We now work with Thφθ(h) Var

(
ĝ(1)
θ (u, x)

)
which concerns the first part of the previous equation. In

this part of the proof, we will show that

Thφθ(h) Var
(
ĝ(1)
θ (u, x)

)
∼

E[ε2
t ]σ2(u, 〈θ, x〉)

Th

∫
K2

1(w)dw. (A.9)

Here, we utilize the Assumption 3.2, and the result in (A.5). Also, consider a sequence of independent
random variables {εt}t∈Z, independent of {Xt,T }

T
t=1. Thus, we have

Thφθ(h) Var
(
ĝ(1)
θ (u, x)

)
= Thφθ(h) Var

 1
Thφθ(h)

T∑
t=1

K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
εt,T


=

1
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[{
K2,h

(
dθ(x, Xt,T )

)
εt,T

}2
]

=
1

Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, Xt,T )

)
ε2

t,T

]
=

1
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, Xt,T )

)
· σ2

( t
T
, 〈θ, Xt,T 〉

)
ε2

t

]
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=
E[ε2

t ]
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, Xt,T )

)
· σ2

( t
T
, 〈θ, Xt,T 〉

)]
=

E[ε2
t ]

Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, Xt,T )

)]
·
{
σ2(u, 〈θ, x〉) + o(1)

}
=

E[ε2
t ]

Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, Xt,T )

)
− K2

2,h

(
dθ(x, X(t/T )

t,T )
)]

×
{
σ2(u, 〈θ, x〉) + o(1)

}
+

E[ε2
t ]

Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
×E

[
K2

2,h

(
dθ(x, X(t/T )

t,T )
)]
·
{
σ2(u, 〈θ, x〉) + o(1)

}
=

E[ε2
t ]

Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
· o (φθ(h)) ·

{
σ2(u, 〈θ, x〉) + o(1)

}
+

E[ε2
t ]

Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, X(t/T )

t,T )
)]
·
{
σ2(u, 〈θ, x〉) + o(1)

}
=

E[ε2
t ]o (φθ(h))

(
σ2(u, 〈θ, x〉) + o(1)

)
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
+

E[ε2
t ]
(
σ2(u, 〈θ, x〉) + o(1)

)
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, X(t/T )

t,T )
)]

=
E[ε2

t ]
(
σ2(u, 〈θ, x〉) + o(1)

)
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
E

[
K2

2,h

(
dθ(x, X(t/T )

t,T )
)]

+ o(1)

∼
E[ε2

t ]φθ(h)
(
σ2(u, 〈θ, x〉) + o(1)

)
Thφθ(h)

T∑
t=1

K2
1,h

(
u −

t
T

)
+ o(1)

∼
E[ε2

t ]σ2(u, 〈θ, x〉)
Th

T∑
t=1

K2
1,h

(
u −

t
T

)
∼

E[ε2
t ]σ2(u, 〈θ, x〉)

Th

∫
K2

1(w)dw.

The final part of the proof covers the asymptotic normality of g̃(1)
θ (u, x) which is derived from

Thφθ(h)ĝ(1)
θ (u, x) =

√
Thφθ(h)g̃(1)

θ (u, x),

where
g̃(1)
θ (u, x) =

√
Thφθ(h)ĝ(1)

θ (u, x).

That is, we want to show that

g̃(1)
θ (u, x)

d
→ N(0,Vθ(u, x)) as T → ∞.
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To demonstrate the distributional convergence of g̃(1)
θ (u, x), we will employ Bernstein’s big-block and

small-block method. We begin by partitioning the index set {1, . . . ,T } into 2kT + 1 subsets, consisting
of large blocks of size aT and small blocks of size vT , such that

kT :=
⌊

T
aT + vT

⌋
,

vT

aT
→ 0,

aT

T
→ 0, and

T
aT
α(vT )→ 0. (A.10)

Using Assumption 3.6, there exists a sequence of positive integers {qT }, qT → ∞, such that

qT vT = o
( √

Thφθ(h)
)
, qT

√
T

hφθ(h)
α(vT )→ 0 as T → ∞.

Consequently, setting aT =

⌊ √
Thφθ(h)

qT

⌋
, we have

aT√
Thφθ(h)

→ 0,
T
aT
α(vT )→ 0 as T → ∞.

Thus, the decomposition of g̃(1)
θ (u, x) would be

g̃(1)
θ (u, x) =

1√
Thφθ(h)

kT∑
j=1

η j(u, x; θ) +
1√

Thφθ(h)

kT∑
j=1

ξ j(u, x; θ) + ζ(u, x; θ)

=: g̃(11)
θ (u, x) + g̃(12)

θ (u, x) + g̃(13)
θ (u, x), (A.11)

where

η j(u, x; θ) =

jaT +( j−1)vT∑
t=( j−1)(aT +vT )+1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T ,

ξ j(u, x; θ) =

j(aT +vT )∑
t= jaT +( j−1)vT +1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T ,

and ζ(u, x; θ) =

T∑
t=kT (aT +vT )+1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T .

First, we show that the summation over the small-blocks
(
g̃(12)
θ (u, x)

)
, and over the remainder-blocks(

g̃(13)
θ (u, x)

)
are asymptotically negligible. That is, as T → ∞,

E
[
g̃(12)
θ (u, x)

]2
→ 0, and E

[
g̃(13)
θ (u, x)

]2
→ 0.

We first prove
E

[
g̃(12)
θ (u, x)

]2
→ 0.

We have

E
[
g̃(12)
θ (u, x)

]2
= Var

 1√
Thφθ(h)

kT∑
j=1

ξ j(u, x; θ)
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=
1

Thφθ(h)
Var

 kT∑
j=1

ξ j(u, x; θ)


=

1
Thφθ(h)

kT∑
j=1

Var
(
ξ j(u, x; θ)

)
+

1
Thφθ(h)

kT∑
i, j=1
i, j

Cov
(
ξi(u, x; θ), ξ j(u, x; θ)

)
=: F1 + F2.

Dealing F1, we have

Var
(
ξ j(u, x; θ)

)
= Var

 j(aT +vT )∑
t= jaT +( j−1)vT +1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T


=

j(aT +vT )∑
t= jaT +( j−1)vT +1

K2
1,h

(
u −

t
T

)
Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
. vT

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
.

We have

F1 =
1

Thφθ(h)

kT∑
j=1

Var
(
ξ j(u, x; θ)

)
.

1
Thφθ(h)

kT∑
j=1

vT

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
.

1
Thφθ(h)

kT vT

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
∼ kT vT ·

{
E[ε2

t ]σ2(u, x)
Th

(∫
[0,h]

K2
1(w)dw

)}
∼

T
aT + vT

· vT ∼
TvT

aT

= op(T ),

using the results in (A.9) and (A.10). We next handle F2. That is, with ∆
′

t(u, x; θ) = K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
,

Cov
(
ξi(u, x; θ), ξ j(u, x; θ)

)
=

i(aT +vT )∑
k=iaT +(i−1)vT +1

j(aT +vT )∑
k′= jaT +( j−1)vT +1

Cov
(
∆
′

k(u, x; θ)εk,T ,∆
′

k′(u, x; θ)εk′,T

)
=

vT∑
l1=1

vT∑
l2=1

Cov
(
∆
′

λk+l1(u, x; θ)ελk+l1,T ,∆
′

λk′+l2(u, x; θ)ελk′+l2,T

)
,

where λk = jaT + ( j − 1)vT . Since i , j, |λi − λ j + l1 − l2| ≥ vT , we have

|F2| =
1

Thφθ(h)

kT∑
i, j=1
i, j

Cov
(
ξi(u, x; θ), ξ j(u, x; θ)

)

AIMS Mathematics Volume 9, Issue 12, 36202–36258.



36251

≤
1

Thφθ(h)

kT∑
i, j=1
|i− j|≥vT

Cov
(
∆
′

i(u, x; θ)εi,T ,∆
′

j(u, x; θ)ε j,T

)
.

Using Davydov’s lemma (see Lemma B.4), Assumption 3.3, and the results in (A.5) and (A.6), we get

Cov
(
∆
′

i(u, x; θ)εi,T ,∆
′

j(u, x; θ)ε j,T

)
= E

[(
∆
′

i(u, x; θ)εi,T
)
·
(
∆
′

j(u, x; θ)ε j,T
)]
− E

[
∆
′

i(u, x; θ)εi,T

]
E
[
∆
′

j(u, x; θ)ε j,T

]
≤ 8

∥∥∥∥∆′i(u, x; θ)εi,T

∥∥∥∥
v

∥∥∥∥∆′j(u, x; θ)ε j,T

∥∥∥∥
v
·
(
α(|i − j|)

)1− 1
v−

1
v

= 8
(
E
∣∣∣∣∆′i(u, x; θ)εi,T

∣∣∣∣v) 1
v
(
E
∣∣∣∣∆′j(u, x; θ)ε j,T

∣∣∣∣v) 1
v
·
(
α(|i − j|)

)1− 2
v

.

(
E

∣∣∣∣∣K1,h

(
u −

i
T

)
K2,h

(
dθ(x, Xi,T )

)∣∣∣∣∣v) 1
v

E
[
|εi,T |

v] 1
v

×

(
E

∣∣∣∣∣K1,h

(
u −

j
T

)
K2,h

(
dθ(x, X j,T )

)∣∣∣∣∣v) 1
v

E
[
|ε j,T |

v] 1
v ·

(
α(|i − j|)

)1− 2
v

≤

(
E

∣∣∣∣∣K1,h

(
u −

i
T

)
K2,h

(
dθ(x, Xi,T )

)∣∣∣∣∣2)
1
v

E
[
|εi,T |

2] 1
v

×

(
E

∣∣∣∣∣K1,h

(
u −

j
T

)
K2,h

(
dθ(x, X j,T )

)∣∣∣∣∣2)
1
v

E
[
|ε j,T |

2] 1
v ·

(
α(|i − j|)

)1− 2
v

≤

(
E

∣∣∣∣∣K1,h

(
u −

i
T

)∣∣∣∣∣2)
1
v (

E
∣∣∣∣K2,h

(
dθ(x, Xi,T )

)∣∣∣∣2) 1
v

E
[
|εi,T |

2] 1
v

×

(
E

∣∣∣∣∣K1,h

(
u −

j
T

)∣∣∣∣∣2)
1
v (

E
∣∣∣∣K2,h

(
dθ(x, X j,T )

)∣∣∣∣2) 1
v

E
[
|ε j,T |

2] 1
v ·

(
α(|i − j|)

)1− 2
v

. φ2
θ(h) ·

(
α(|i − j|)

)1− 2
v .

Therefore, with

λT =
⌊(
φθ(h)

)− 1−(2/v)
δ

⌋
,

and using Assumption 3.4, we obtain

|F2| .
1

Thφθ(h)

kT∑
i, j=1
|i− j|≥vT

φ2
θ(h) ·

(
α(|i − j|)

)1− 2
v

.
1

Thφθ(h)
· φ2

θ(h)
kT∑

i, j=1
|i− j|≥vT

(
α(|i − j|)

)1− 2
v

≤
1

Thφθ(h)
· φθ(h) ·

1

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v
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∼
1

Thφθ(h)
·

h2(1∧β)−1

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v


= o

(
1

Thφθ(h)

)
.

Hence,
E

[
g̃(12)
θ (u, x)

]2
→ 0.

We next show that
E

[
g̃(13)
θ (u, x)

]2
→ 0.

We again use ∆
′

t(u, x; θ) for simplicity of notations to denote K1,h

(
u − t

T

)
K2,h

(
dθ(x, Xt,T )

)
. Thus,

E
[
g̃(13)
θ (u, x)

]2
= Var

(
ζ(u, x; θ)

)
= Var

 T∑
t=kT (aT +vT )+1

∆
′

t(u, x; θ)εt,T


=

T∑
i=kT (aT +vT )+1

Var
(
∆
′

i(u, x; θ)εi,T

)
+

T∑
i=kT (aT +vT )+1

i, j

T∑
j=kT (aT +vT )+1

Cov
(
∆
′

i(u, x; θ)εi,T ,∆
′

j(u, x; θ)ε j,T

)
=: G1 + G2.

Note that

G1 =

T∑
i=kT (aT +vT )+1

Var
(
K1,h

(
u −

i
T

)
K2,h

(
dθ(x, Xi,T )

)
εi,T

)
=

T∑
i=kT (aT +vT )+1

K2
1,h

(
u −

i
T

)
Var

(
K2,h

(
dθ(x, Xi,T )

)
εi,T

)
.

(
T − kT (aT + vT )

) (∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
∼

(
T − kT (aT + vT )

)
·

{
E[ε2

t ]σ2(u, 〈θ, x〉)
Th

(∫
[0,h]

K2
1(w)dw

)}
,

implies that

1
T

G1 .
1
T

(
T − kT (aT + vT )

)
·

{
E[ε2

t ]σ2(u, 〈θ, x〉)
Th

(∫
[0,h]

K2
1(w)dw

)}
→ 0 as T → ∞.

We are left to show the bound of G2. Now, setting λi = kT (aT + vT ), we have

G2 =

T∑
i=kT (aT +vT )+1

i, j

T∑
j=kT (aT +vT )+1

Cov
(
∆
′

i(u, x; θ)εi,T ,∆
′

j(u, x; θ)ε j,T

)
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=

T∑
l1 ,l2=1
l1,l2

Cov
(
∆
′

λi+l1(u, x; θ)ελi+l1,T ,∆
′

λ j+l2(u, x; θ)ελ j+l2,T

)

=

T∑
i, j=1
|i− j|>0

Cov
(
∆
′

i(u, x; θ)εi,T ,∆
′

j(u, x; θ)ε j,T

)

.
T∑

i, j=1
|i− j|>0

φ2
θ(h) ·

(
α(|i − j|)

)1− 2
v

≤
φθ(h)

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v


∼

h2(1∧β)−1

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v

→ 0 as T → ∞.

The third equality follows from the fact that since i , j,

|λi − λ j + l1 − l2| > 0.

Moreover, the preceding proof procedure follows similarly as that in |F2| making use of Davydov’s
lemma, Assumptions 3.3 and 3.4, the results in (A.5) and (A.6), and picking again

λT =
⌊(
φθ(h)

)− 1−(2/v)
δ

⌋
.

We then infer that
E

[
g̃(13)
θ (u, x)

]2
→ 0,

as T → ∞. Finally, we will prove the last part of the decomposition (A.11). First, we will show that
the summation in g̃(11)

θ (u, x) are asymptotically independent. This ensures us the use of the conditions
of Lindeberg-Feller for finite normality. To establish this, we first note that the processes (Yt,T , Xt,T )
are strongly mixing and apply the Volkonskii and Rosanov inequality in Lemma B.5. Then, for a
F ja

ia
−measurable ηa where

ia = ( j − 1)(aT + vT ) + 1, and ja = jaT + ( j − 1)vT ,

we have ∣∣∣∣∣∣∣E [
exp

(
itT−

1
2 g̃(11)

θ (u, x)
)]
−

kT∏
j=1

E
[
exp

(
itT−

1
2η j(u, x; θ)

)]∣∣∣∣∣∣∣ ≤ 16kTα(vT )

∼ 16
T
aT
α(vT ),

which tends to zero using (A.10) implying that the asymptotic independence is achieved. We now find
the variance of g̃(11)

θ (u, x). We obtain

Var
(
g̃(11)
θ (u, x)

)
= Var

 1√
Thφθ(h)

kT∑
j=1

η j(u, x; θ)
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= Var

 1√
Thφθ(h)

kT∑
j=1

η j(u, x; θ)


≤

1
Thφθ(h)

kT∑
j=1

Var
(
η j(u, x; θ)

)
+

1
Thφθ(h)

kT∑
i, j=1
i, j

Cov
(
ηi(u, x; θ), η j(u, x; θ)

)
.

Now, we can see that

Var
(
η j(u, x; θ)

)
= Var

 jaT +( j−1)vT∑
t=( j−1)(aT +vT )+1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T


=

jaT +( j−1)vT∑
t=( j−1)(aT +vT )+1

K2
1,h

(
u −

t
T

)
Var

(
K2,h

(
dθ

(
x, Xt,T

))
εt,T

)
. aT

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
.

This means that

1
Thφθ(h)

kT∑
j=1

Var
(
η j(u, x; θ)

)
.

1
hφθ(h)

·
kT aT

T

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
→

1
hφθ(h)

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
,

since kT aT
T → 1.On the other hand, similar to our previous calculations, we can deduce with ∆

′

t(u, x; θ) =

K1,h

(
u − t

T

)
K2,h

(
dθ(x, Xt,T )

)
that

1
Thφθ(h)

kT∑
i, j=1
i, j

Cov
(
ηi(u, x; θ), η j(u, x; θ)

)

=
1

Thφθ(h)

kT∑
i, j=1
i, j

Cov

 jaT +( j−1)vT∑
t=( j−1)(aT +vT )+1

∆
′

t(u, x; θ)εt,T ,

jaT +( j−1)vT∑
t′=( j−1)(aT +vT )+1

∆
′

t′(u, x; θ)εt′,T


.

1
Thφθ(h)

kT∑
i, j=1
i, j

φ2
θ(h) ·

(
α(|i − j|)

)1− 2
v

∼
h2(1∧β)−1

λδT (φθ(h))1− 2
v

 ∞∑
k=λT +1

kδα(k)1− 2
v

→ 0 as T → ∞,

where λT is as defined in Assumption 3.4. Therefore, we conclude that

Var
(
g̃(11)
θ (u, x)

)
.

1
hφθ(h)

(∫
[0,h]

K2
1(w)dw

)
· Var

(
K2,h

(
dθ(x, Xt,T )

)
εt,T

)
:= Vθ(u, x).
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To complete the proof for the finite-dimensional convergence, we need to show that for sufficiently
large T,

1
T

kT∑
j=1

E

[
η2

j(u, x; θ)1{∣∣∣η j(u,x;θ)
∣∣∣>εVθ(u,x)

√
T
}]→ 0. (A.12)

Observe that using A.10,

max
1≤ j≤kT

|η j(u, x; θ)|
√

T
=

1
√

T
max

1≤ j≤kT

∣∣∣∣∣∣∣
jaT +( j−1)vT∑

t=( j−1)(aT +vT )+1

K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T

∣∣∣∣∣∣∣
≤

1
√

T
max

1≤ j≤kT

jaT +( j−1)vT∑
t=( j−1)(aT +vT )+1

∣∣∣∣∣K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T

∣∣∣∣∣
=

aT
√

T
max

1≤ j≤kT

∣∣∣∣∣K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

))
εt,T

∣∣∣∣∣→ 0.

Hence, when T is large enough, the set{∣∣∣η j(u, x; θ)
∣∣∣ > εVθ(u, x)

√
T
}

is empty proving (A.12). This further implies that

1
T

S T → N
(
0,Vθ(u, x)

)
,

where

S T =

T∑
t=1

((
Yt,T − E

[
Yt,T

])
K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

)))
.

To prove the general case, we employ a truncation argument since the response variable Yt,T is not
necessarily bounded. With L being the truncation point, we set

κL(y) = y1{|y|≤L}, and mθ,L(u, x) = E
[
κL(Yt,T )|Xt,T = x

]
.

Recall that
∆
′

t(u, x; θ) = K1,h

(
u −

t
T

)
K2,h

(
dθ(x, Xt,T )

)
,

and define
ZL

t,T :=
(
κL(Yt,T ) − mθ,L(u, x)

)
∆
′

t(u, x; θ) − µL
T , (A.13)

where µL
T is the mean of the first term on the right side, and

Z̃L
t,T :=

1
hφθ(h)

ZL
t,T

√
hφθ(h),

so that for each L > 0,
Var

(
Z̃L

t,T

)
→ VL

θ (u, x).
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We have

Var
(
Z̃L

t,T

)
= Var

ZL
t,T

√
hφθ(h)

hφθ(h)


=

hφθ(h)(
hφθ(h)

)2 Var
(
ZL

t,T

)
=

1
hφθ(h)

Var
((
κL(Yt,T ) − mθ,L(u, x)

)
∆
′

t(u, x; θ) − µL
T

)
=

1
hφθ(h)

Var
( (

Yt,T 1{|Yt,T |≤L} − E
[
Yt,T 1{|Yt,T |≤L}|Xt,T = x

])
×K1,h

(
u −

t
T

)
K2,h

(
dθ

(
x, Xt,T

)))
=

1
hφθ(h)

K2
1,h

(
u −

t
T

)
Var

(
K2,h

(
dθ

(
x, Xt,T

))
×

(
Yt,T 1{|Yt,T |≤L} − E

[
Yt,T 1{|Yt,T |≤L}|Xt,T = x

]) )
=

1
hφθ(h)

(∫
[0,h]

K2
1(w)dw

)
Var

(
K2,h

(
dθ

(
x, Xt,T

))
×

(
Yt,T 1{|Yt,T |≤L} − E

[
Yt,T 1{|Yt,T |≤L}|Xt,T = x

]) )
:= VL

θ (u, x)→ Vθ(u, x), as T → ∞. (A.14)

We also define

S L
T :=

T∑
t=1

Z̃L
t,T , and S̄ L

T :=
T∑

t=1

(
Z̃t,T − Z̃L

t,T

)
.

Now, we can infer by (A.13), setting ηL
j (u, x; θ) as defined in (A.11), and the fact that ∆

′

t(u, x; θ) is
bounded, we have by replacing Z̃t,T by Z̃L

t,T ,

max
1≤ j≤kT

|ηL
j (u, x; θ)|
√

T
→ 0, implying

{∣∣∣ηL
j (u, x; θ)

∣∣∣ > εVL
θ (u, x)

√
T
}

= ∅.

This means that
1
T

S L
T

L
→ N

(
0,VL

θ (u, x)
)
. (A.15)

The final part of the proof intends to show that

1
T

Var
(
S̄ L

T

)
→ 0 as first T → ∞, and then L→ ∞. (A.16)

We have ∣∣∣∣∣∣E
[
exp

(
itS T
√

T

)]
− exp

(
−

t2Vθ(u, x)
2

)∣∣∣∣∣∣
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=

∣∣∣∣∣∣E
[
exp

(
itS L

T
√

T

)]
− exp

(
−

t2VL
θ (u, x)
2

)
+ exp

(
−

t2VL
θ (u, x)
2

)
− exp

(
−

t2Vθ(u, x)
2

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣E
[
exp

(
itS L

T
√

T

)]
− exp

(
−

t2VL
θ (u, x)
2

)∣∣∣∣∣∣
+

∣∣∣∣∣∣E
[
exp

(
itS̄ L

T
√

T

)]
− 1

∣∣∣∣∣∣ +

∣∣∣∣∣∣exp
(
−

t2VL
θ (u, x)
2

)
− exp

(
−

t2Vθ(u, x)
2

)∣∣∣∣∣∣
:= I + II + III.

Note that by (A.15), I → 0 as T → ∞ for every L > 0. Also, by (A.16), II → 0 as first T → ∞ and
then L→ ∞. Last, since as L→ ∞,

VL
θ (u, x)→ Vθ(u, x),

we have III → 0 using (A.14). Hence, we are left to prove (A.16). Observe that S̄ L
T has the same

structure as S T by replacing Yt with Yt1{|Yt |>L}. We can use similar proof procedure as in (A.14), and
obtain

lim
T→∞

1
T

Var
(
S̄ L

T

)
= lim

T→∞

1
T
·

1
hφθ(h)

(∫
[0,h]

K2
1(w)dw

)
Var

(
K2,h

(
dθ

(
x, Xt,T

))
×

(
Yt,T 1{|Yt,T |>L} − E

[
Yt,T 1{|Yt,T |>L}|Xt,T = x

]) )
,

which converges to 0. By dominated convergence, the right side converges to 0 as L tends to infinity.
This completes the proof for Theorem 3.2. �

B. Appendix-B

This section provides a detailed overview of the essential lemmas underpinning the primary results
of this study. Lemmas B.1 and B.2, both found in [57], play a crucial role in deriving the convergence
results outlined in Proposition 3.1. Specifically, [60] established Lemma B.3, which introduces an
exponential inequality for strongly mixing sequences, detailed in Theorem 2.1 of his paper. This
lemma is instrumental in demonstrating the convergence of the second term in the decomposition
of the general kernel estimator. Further, Lemma B.4, attributed to [39] (with the proof presented in
Corollary A.2 of [52]), is central to proving the asymptotic negligibility of covariance terms within
the decomposition of ĝ(1)

θ (u, x), as specified in Eq (A.11). Last, Lemma B.5 is pivotal in establishing
the asymptotic independence of the term g̃(11)

θ (u, x), which represents the first term in Eq (A.11). For a
comprehensive introduction, refer to Proposition 2.6 in [41].

Lemma B.1. Suppose that the kernel K1(·) satisfies Assumption 3.3 (KB1). Then, for k = 0, 1, 2,

sup
u∈Ih

∣∣∣∣∣∣∣ 1
Th

T∑
t=1

K1,h

(
u −

t
T

) (u − t
T

h

)k

−

∫ 1

0

1
h

K1,h(u − v)
(u − v

h

)k
dv

∣∣∣∣∣∣∣ = O
(

1
Th2

)
.

Lemma B.2. Suppose that the kernel K1(·) satisfies Assumption 3.3 (KB1) and let g : [0, 1] ×H → R
such that (u, x) 7→ g(u, x) be continuously differentiable with respect to u. Then,

sup
u∈Ih

∣∣∣∣∣∣∣ 1
Th

T∑
t=1

K1,h

(
u −

t
T

)
g
( t
T
, x

)
− g(u, x)

∣∣∣∣∣∣∣ = O
(

1
Th2

)
+ o(h).
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Lemma B.3. Let Zt,T be a zero-mean triangular array such that |Zt,T | ≤ bT with α−mixing coefficient
α(k). Then, for any ε > 0 and S T ≤ T with ε > 4S T bT ,

P


∣∣∣∣∣∣∣

T∑
t=1

Zt,T

∣∣∣∣∣∣∣ ≥ ε
 ≤ 4 exp

− ε2

64σ2
S T ,T

T
S T

+ 8
3εbT S T

 + 4
T
S T

α(S T ),

where

σ2
S T ,T = sup

0≤ j≤T−1
E


( j+S T )∧T∑

t= j+1

Zt,T


2 .

Lemma B.4. (Corollary 2 in [52]) Suppose that X and Y are random variables which are G− and
H −measurable, respectively, and that E|X|p < ∞,E|Y |q < ∞, where p, q > 1, 1

p + 1
q < 1. Then

E[XY] − E[X]E[Y] ≤ 8‖X‖p‖Y‖q[α(G ,H )]1− 1
p−

1
q .

Lemma B.5. (Proposition 2.6 in [41]) Suppose that {Xt : t = 0,±1,±2, . . .} Let F j
i denote the

σ−algebra generated by {Xt : i ≤ t ≤ j} and

α(n) = sup
A∈F 0

−∞,B∈F
∞
n

|P(A)P(B) − P(AB)|.

Let ξ1, . . . , ξk be complex-valued random variables measurable with respect to the σ−algebras
F j1

i1
, . . . ,F jk

ik
, respectively. Suppose that il+1 − jl ≥ n for l = 1, . . . , k − 1 and jl ≥ il and P(|ξl| ≤ 1) = 1

for l = 1, . . . , k. Then ∣∣∣E(ξ1 · · · ξk) − E(ξ1) · · ·E(ξk)
∣∣∣ ≤ 16(k − 1)α(n).
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