Research article Special Issues

On The oscillatory behavior of solutions to a class of second-order nonlinear differential equations

  • Received: 14 October 2024 Revised: 18 November 2024 Accepted: 29 November 2024 Published: 27 December 2024
  • MSC : 34C10, 34K11

  • In this paper, we obtain some oscillatory properties for the noncanonical second-order differential equation with mixed neutral terms. We established our results first by transforming the equation into canonical type and then by using the Riccati technique to get new oscillatory properties for the considered equation. We obtained these results to extend and simplify existing criteria in the literature. We discussed some examples to illustrate the effectiveness of our main results.

    Citation: Maged Alkilayh. On The oscillatory behavior of solutions to a class of second-order nonlinear differential equations[J]. AIMS Mathematics, 2024, 9(12): 36191-36201. doi: 10.3934/math.20241718

    Related Papers:

  • In this paper, we obtain some oscillatory properties for the noncanonical second-order differential equation with mixed neutral terms. We established our results first by transforming the equation into canonical type and then by using the Riccati technique to get new oscillatory properties for the considered equation. We obtained these results to extend and simplify existing criteria in the literature. We discussed some examples to illustrate the effectiveness of our main results.



    加载中


    [1] T. Li, Y. V. Rogovchenko, Oscillation criteria for even-order neutral differential equations, Appl. Math. Lett., 61 (2019), 35–41. http://doi.org/10.1016/j.aml.2016.04.012 doi: 10.1016/j.aml.2016.04.012
    [2] M. Alkilayh, L. Reichel, Some numerical aspects of Arnoldi-Tikhonov regularization, Appl. Numer. Math., 185 (2023), 503–515. http://doi.org/10.1016/j.apnum.2022.12.009 doi: 10.1016/j.apnum.2022.12.009
    [3] M. Alkilayh, L. Reichel, Q. Ye, A method for computing a few eigenpairs of large generalized eigenvalue problems, Appl. Numer. Math., 183 (2023), 108–117. http://doi.org/10.1016/j.apnum.2022.08.018 doi: 10.1016/j.apnum.2022.08.018
    [4] T. Li, Y. V. Rogovchenko, On the asymptotic behavior of solutions to a class of third-order nonlinear neutral differential equations, Appl. Math. Lett., 105 (2020), 106293. http://doi.org/10.1016/j.aml.2020.106293 doi: 10.1016/j.aml.2020.106293
    [5] J. R. Graef, O. Özdemir, A. Kaymaz, E. Tunç, Oscillation of damped second-order linear mixed neutral differential equations, Monatsh. Math., 194 (2021), 85–104. http://doi.org/10.1007/s00605-020-01469-6 doi: 10.1007/s00605-020-01469-6
    [6] O. Moaaz, C. Park, A. Muhib, O. Bazighifan, Oscillation criteria for a class of even-order neutral delay differential equations, J. App. Math. Comput., 63 (2020), 607–617. http://doi.org/10.1007/s12190-020-01331-w doi: 10.1007/s12190-020-01331-w
    [7] R. Arul, V. S. Shobha, Oscillation of second order nonlinear neutral differential equations with mixed neutral term, J. Appl. Math. Phys., 3 (2015), 1080–1089. http://doi.org/10.4236/jamp.2015.39134 doi: 10.4236/jamp.2015.39134
    [8] T. S. Hassan, Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales, Appl. Math. Comput., 217 (2011), 5285–5297. http://doi.org/10.1016/j.amc.2010.11.052 doi: 10.1016/j.amc.2010.11.052
    [9] O. Bazighifan, An approach for studying asymptotic properties of solutions of neutral differential equations, Symmetry, 12 (2020), 555. http://doi.org/10.3390/sym12040555 doi: 10.3390/sym12040555
    [10] B. Almarri, A. H. Ali, A. M. Lopes, O. Bazighifan, Nonlinear Differential Equations with Distributed Delay: Some New Oscillatory Solutions, Mathematics, 10 (2022), 995. http://doi.org/10.3390/math10060995 doi: 10.3390/math10060995
    [11] A. M. Hassan, S. Affan, Oscillation criteria for second-order delay dynamic equations with a sub-linear neutral term on time scales, Filomat, 37 (2024), 7445–7454. http://doi.org/10.2298/FIL2322445H doi: 10.2298/FIL2322445H
    [12] O. Bazighifan, Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations, Adv. Differ. Eq., 2020 (2020), 201. http://doi.org/10.1186/s13662-020-02661-6 doi: 10.1186/s13662-020-02661-6
    [13] G. E. Chatzarakis, S. R. Grace, I. Jadlovská, T. Li, E. Tunç, Oscillation criteria for third-order Emden–Fowler differential equations with unbounded neutral coefficients, Complexity, 2019 (2019), 5691758. http://doi.org/10.1155/2019/5691758 doi: 10.1155/2019/5691758
    [14] O. Bazighifan, P. Kumam, Oscillation Theorems for Advanced Differential Equations with p-Laplacian Like Operators, Mathematics, 8 (2020), 821. http://doi.org/10.3390/math8050821 doi: 10.3390/math8050821
    [15] O. Bazighifan, M. A. Ragusa, Nonlinear equations of fouthr-order with p-Laplacian like operators: oscillation, methods and applications, Proc. Amer. Math. Soc., 150 (2022), 1009–1020. http://doi.org/10.1090/proc/15794 doi: 10.1090/proc/15794
    [16] T. Li, B. Baculíková, J. Džurina, Oscillation results for second-order neutral differential equations of mixed type, Tatra Mt. Math. Publ., 48 (2011), 101–116. http://doi.org/10.2478/v10127-011-0010-8 doi: 10.2478/v10127-011-0010-8
    [17] Y. Qi, J. Yu, Oscillation of second order nonlinear mixed neutral differential equations with distributed deviating arguments, Bull. Malays. Math. Sci. Soc., 38 (2015), 543–560.
    [18] C. Zhang, B. Baculíková, J. Džurina, T. Li, Oscillation results for second-order mixed neutral differential equations with distributed deviating arguments, Math. Slovaca, 66 (2016), 615–626. http://doi.org/10.1515/ms-2015-0165 doi: 10.1515/ms-2015-0165
    [19] O. Bazighifan, Kamenev and Philos-types oscillation criteria for fourth-order neutral differential equations, Adv. Differ. Equ., 2020 (2020), 201. http://doi.org/10.1186/s13662-020-02661-6 doi: 10.1186/s13662-020-02661-6
    [20] T. Li, M. T. Şenel, C. Zhang, Electron. J. Differ. Equ., 2013 (2013), 229.
    [21] E. Thandapani, S. Selvarangam, M. Vijaya, R. Rama, Oscillation results for second order nonlinear differential equation with delay and advanced arguments, Kyungpook Math. J., 56 (2016), 137–146. http://doi.org/10.5666/KMJ.2016.56.1.137 doi: 10.5666/KMJ.2016.56.1.137
    [22] E. Thandapani, R. Rama, Comparison and oscillation theorems for second order nonlinear neutral differential equations of mixed type, Serdica Math. J., 39 (2013), 1–16.
    [23] T. Li, Comparison theorems for second-order neutral differential equations of mixed type, EJDE, 2010 (2010), 167.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(224) PDF downloads(53) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog