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1. Introduction

The study of the oscillatory behavior of delays in differential equations has advanced significantly
during the last few decades; see [1–3]. It has been shown to be quite helpful in the engineering and
applied sciences fields to build a range of applied mathematical models that faithfully represent
real-world events, see [4–6]. DDEs of neutral type are involved in the delay system of second-order
equations issues; which were studied by some authors; see [7, 8].

The theory of oscillatory conditions generally appears from a large adequate instance of drug
organization, physics, engineering, the trash hold hypothesis in biology, and air ship control. Some
studies have studied the numerical aspects and computational methods of some types of
equations;see [2, 3]. Impulsive conditions play an important role in modeling phenomena, principally
in relating the dynamics of the population’s area under discussion to unexpected modification.

In this work, we focus our attention on the oscillation of the second-order nonlinear differential
equation with the form(

f (s) |y′ (s)|µ−1 y′ (s)
)′

+ q (s) |w (h (s))|µ−1 w (h (s)) = 0, s ≥ s0, (1.1)

y (s) = w (s) + δ1 (s) w (σ1 (s)) + δ2 (s) w (σ2 (s)) ,
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where δ1, δ2, q ∈ C ([s0,∞) , [0,∞)) , f ∈ C ([s0,∞) , (0,∞)) , and η (s0) =
∫ ∞

s0
f −1/µ (υ) dυ < ∞.

Moreover, µ is a quotient of odd positive integers, σ1, σ2, h ∈ C ([s0,∞) ,R) , σ1 (s) ≤ s, σ2 (s) ≥
s, h (s) ≤ s, lims→∞ σ1 (s) = lims→∞ σ2 (s) = lims→∞ h (s) = ∞ and q (s) is not identically zero for
large s.

By a solution of (1.1), we mean a nontrivial function w (s) ∈ C1 ([s0,∞) ,R), which has the
properties f (s) (y′ (s))µ ∈ C1 ([s0,∞) ,R), and w (s) satisfies (1.1) on [sw,∞), then y is a solution of
(1.1). In our study, we focus on the solutions that satisfy sup {|w (s)| : sw ≤ s < ∞} > 0, for every
sw ≥ s0. If the solution to (1.1) is neither positive in the end nor negative in the end, it is said to be
oscillatory. Otherwise, this solution is called non-oscillatory. Therefore, we say that this equation is
oscillatory if it has oscillatory solutions.

Exploring Laplace differential equations yields a multitude of essential utilities in mechanical
systems, electrical circuits, and the regulation of chemical processes. In addition, their utility extends
to ecological systems, epidemiology, and the modeling of population dynamics.

Investigations by some authors in [9–11] have yielded techniques and methodologies aimed at
enhancing the oscillatory behavior of solutions for differential equations. For a recent review of the
main results in the framework of asymptotic properties for differential equations of different order
with neutral term, we refer the reader to [12–14]. Furthermore, the work [15–18] has expanded this
inquiry to include differential equations of neutral variety. In recent years, there has also been a
significant exploration of oscillation behaviors in fourth-order delay differential equations, as
evidenced by studies such as [19–22]. Now, in some detail, Graef et al. [5] improved some results for
mixed-type equations.(

f (s) (w (s) + δ1 (s) w (σ1 (s)) + δ2 (s) w (σ2 (s)))′
)′

+ b (s) y′ (s) + q (s) w (h (s)) = 0,

where ∫ ∞

s0

1
f (s)

exp
(
−

∫ s

s0

b (υ)
f (υ)

dυ
)

ds = ∞.

Li et al. [20,23] introduced good conditions concerning solutions to second-order differential equations
featuring a mixed term in the canonical case.(

f (s) |y′ (s)|µ−1 y′ (s)
)′

+ q (s) |w (h (s))|µ−1 w (h (s)) = 0,

where

y (s) = w (s) +

m∑
i=1

bi (s) w (ai (s)) .

Thandapani et al. [21] and Thandapani and Rama [22] established new conditions to improve and
extend some of the results for the oscillation of the equation of second-order(

f (s)
(
y′ (s)

)µ)′
+ q1 (s) wδ (s − σ1) + q2 (s) wσ (s + σ2) = 0,

where y (s) = w (s) + δ1 (s) w (s − h1) + δ2 (s) w (s + h2) .
This manuscript aims to broaden the scope of inquiry by incorporating second-order differential

equations with mixed neutral terms under condition η (s0) < ∞, using some methods. In this context,
the paper introduces innovative criteria for analyzing oscillatory solutions of Eq (1.1). Three examples
are shown to illustrate the results that we obtained.
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The following notation will be used in the remaining sections of this work:

M (%, v) =

∫ v

%

f −1/µ (ξ) dξ,

x1 (s) := 1 − δ1 (s)
M (σ1 (s) ,∞)

M (s,∞)
− δ2 (s) ,

and
x2 (s) := 1 − δ1 (s) − δ2 (s)

M (s1, σ2 (s))
M (s1, s)

.

2. Main results

In this section, we first introduce some important lemmas and then discuss our main results about
(1.1).

Lemma 2.1. [23] The equation

η (υ∗) ≤ max
%∈R

η (υ) = QL +
µµ

(µ + 1)µ+1 Qµ+1N−µ,N > 0,

is holds, If η (υ) := Qυ − N (υ − L)(µ+1)/µ, where Q,N and L are real constants.

Lemma 2.2. Assume that w eventually is a positive solution of Eq (1.1). Then either(
y (s)

M (s,∞)

)′
≥ 0, (2.1)

or (
y (s)

M (s1, s)

)′
≤ 0, f or all s ≥ s1. (2.2)

Proof. Suppose that w eventually is a positive solution of Eq (1.1). Obviously, for all s ≥ s1, y (s) ≥
w (s) > 0 and f (s) (y′ (s))µ is decreasing. Since(

f (s)
(
y′ (s)

)µ)′
= −q (s) wµ (h (s)) ≤ 0.

Then, y′ is either eventually negative or eventually positive.
Assume first that y′ < 0 on [s,∞) . Since

y (s) ≥ −
∫ ∞

s
f −1/µ (υ) f 1/µ (υ) y′ (υ) dυ ≥ −M (s,∞) f 1/µ (s) y′ (s) , (2.3)

and so (
y (s)

M (s,∞)

)′
=

M (s,∞) y′ (s) + f −1/µ (s) y (s)
(M (s,∞))2 ≥ 0.

Assume now that y′ > 0 on [s1, s), we obtain

y (s) ≥
∫ s

s1

f −1/µ (υ) f 1/µ (υ) y′ (υ) dυ ≥ M (s1, s) f 1/µ (s) y′ (s) ,
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it follows that (
y (s)

M (s1, s)

)′
=

M (s1, s) y′ (s) − f −1/µ (s) y (s)
M2 (s1, s)

≤ 0.

Thus, the proof is complete. �

Theorem 2.1. Let x2 (s) ≥ x1 (s) > 0. If

lim sup
s→∞

∫ s

s1

1
f 1/µ (%)

(∫ %

s1

Mµ (υ,∞) q (υ) xµ1 (h (υ)) dυ
)1/µ

d% = ∞, (2.4)

then, (1.1) is oscillatory.

Proof. Given that w (s) constitutes the final positive solution of (1.1). Then w (σ1 (s)), w (σ2 (s)) and
w (h (s)) are positive. From (1.1) and y (s) = w (s) + δ1 (s) w (σ1 (s)) + δ2 (s) w (σ2 (s)), we see y (s) ≥
w (s) > 0 and f (s) (y′ (s))µ is nonincreasing. Therefore, y′ is either eventually negative or eventually
positive.

Suppose first that y′ (s) < 0 on [s1,∞). From Lemma 2.2, we have

y (σ1 (s)) ≤
M (σ1 (s) ,∞)

M (s,∞)
y (s) ,

based on the fact that σ1 (s) ≤ s. Therefore,

w (s) = y (s) − δ1 (s) w (σ1 (s)) − δ2 (s) w (σ2 (s))

≥ y (s) − δ1 (s) y (σ1 (s)) − δ2 (s) y (σ2 (s))

≥

(
1 − δ1 (s)

M (σ1 (s) ,∞)
M (s,∞)

− δ2 (s)
)

y (s)

= x1 (s) y (s) .

Hence, (1.1) becomes(
f (s)

(
y′ (s)

)µ)′
≤ −q (s) wµ (h (s)) ≤ −q (s) xµ1 (h (s)) yµ (h (s))

≤ −yµ (s) q (s) xµ1 (h (s)) . (2.5)

Since ( f (s) (y′ (s))µ)′ ≤ 0, we have

f (s)
(
y′ (s)

)µ
≤ f (s1)

(
y′ (s1)

)µ := −$ < 0, (2.6)

for all s ≥ s1, from (2.3) and (2.6), we have

yµ (s) ≥ $Mµ (s,∞) for all s ≥ s1. (2.7)

Combining (2.5) with (2.7) yields(
f (s)

(
y′ (s)

)µ)′
≤ −$Mµ (s,∞) q (s) xµ1 (h (s)) , (2.8)

for all s ≥ s1. Integrating (2.8) from s1 to s, we obtain

f (s)
(
y′ (s)

)µ
≤ f (s1)

(
y′ (s1)

)µ
−$

∫ s

s1

Mµ (υ,∞) q (υ) xµ1 (h (υ)) dυ
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≤ −$

∫ s

s1

Mµ (υ,∞) q (υ) xµ1 (h (υ)) dυ.

Integrating the last inequality from s1 to s, we get

y (s) ≤ y (s1) −$1/µ
∫ s

s1

1
f 1/µ (%)

(∫ %

s1

Mµ (υ,∞) q (υ) xµ1 (h (υ)) dυ
)1/µ

d%.

At s→ ∞, we arrive at a contradiction with (2.4).
Assume now that y′ (s) > 0 on [s1,∞) . From Lemma 2.2, we arrive at

y (σ2 (s)) ≤
M (s1, σ2 (s))

M (s1, s)
y (s) . (2.9)

From the definition of y, we obtain

w (s) = y (s) − δ1 (s) w (σ1 (s)) − δ2 (s) w (σ2 (s))

≥ y (s) − δ1 (s) y (σ1 (s)) − δ2 (s) y (σ2 (s)) . (2.10)

Using that (2.9) and y (σ1 (s)) ≤ y (s) where σ1 (s) < s in (2.10), we obtain

w (s) ≥ y (s)
(
1 − δ1 (s) − δ2 (s)

M (s1, σ2 (s))
M (s1, s)

)
≥ x2 (s) y (s) . (2.11)

Thus, (1.1) becomes(
f (s)

(
y′ (s)

)µ)′
≤ −q (s) wµ (h (s)) ≤ −q (s) xµ2 (h (s)) yµ (h (s))

≤ −yµ (h (s)) q (s) xµ2 (h (s)) . (2.12)

On the other hand, it is follows from (2.4) that
∫ s

s1
Mµ (υ,∞) q (υ) xµ1 (h (υ)) dυ must be unbounded.

Further, since M′ (s,∞) < 0, it is easy to see that∫ s

s1

q (υ) xµ1 (h (υ)) dυ→ ∞ as s→ ∞. (2.13)

Integrating (2.12) from s2 to s, we get

f (s)
(
y′ (s)

)µ
≤ f (s2)

(
y′ (s2)

)µ
−

∫ s

s2

yµ (h (υ)) q (υ) xµ2 (h (υ)) dυ

≤ f (s2)
(
y′ (s2)

)µ
− yµ (h (s2))

∫ s

s2

q (υ) xµ2 (h (υ)) dυ.

Since x2 (s) > x1 (s), we get

f (s)
(
y′ (s)

)µ
≤ f (s2)

(
y′ (s2)

)µ
− yµ (h (s2))

∫ s

s2

q (υ) xµ1 (h (υ)) dυ, (2.14)

we have shown that, according to Eq (2.13), the positivity of y′ (s) as s→ ∞ is contradicted. Therefore,
the proof is complete. �
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Theorem 2.2. Assume that x2 (s) ≥ x1 (s) > 0. If

lim sup
s→∞

Mµ (s,∞)
∫ s

s1

q (υ) xµ1 (h (υ)) dυ > 1. (2.15)

then every solutions of (1.1) are oscillatory.

Proof. The function w is identified as the ultimate positive solution to (1.1). Then there exists s1 ≥ s0

such that w (σ1 (s)) > 0, w (σ2 (s)) > 0 and w (h (s)) > 0 for all s ≥ s1. The same way we prove the
Theorem 2.1, the sign of y′ becomes consistently positive or negative eventually. First, let y′ < 0.
Integrating (2.5) from s1 to s, we see that

f (s)
(
y′ (s)

)µ
≤ f (s1)

(
y′ (s1)

)µ
−

∫ s

s1

yµ (υ) q (υ) xµ1 (h (υ)) dυ

≤ −yµ (s)
∫ s

s1

q (υ) xµ1 (h (υ)) dυ (2.16)

Using (2.3) in (2.16), we obtain

− f (s)
(
y′ (s)

)µ
≥ −Mµ (s,∞) f (s)

(
y′ (s)

)µ ∫ s

s1

q (υ) xµ1 (h (υ)) dυ. (2.17)

Divide both sides of inequality (2.17) by − f (s) (y′ (s))µ and taking the limsup, we get

lim sup
s→∞

Mµ (s,∞)
∫ s

s1

q (υ) xµ1 (h (υ)) dυ ≤ 1.

we arrive at a contradiction with (2.15).
Let y′ > 0 on [s1,∞) . From (2.15) and M (s,∞) < ∞, we have that (2.13) holds. We notice that this

part of the proof is exactly like the part of Theorem 2.1, so the proof is complete. �

Theorem 2.3. If x2 (s) > 0, x1 (s) > 0 and f ′ > 0 such that

lim sup
s→∞

Mµ (s,∞)
ξ (s)

∫ s

s

(
ξ (υ) q (υ) xµ1 (h (υ)) −

f (υ)
(µ + 1)µ+1

(ξ′ (υ))µ+1

(ξ (υ))µ

)
dυ > 1 (2.18)

and

lim sup
s→∞

∫ s

s

(
ς (υ) q (υ) xµ2 (h (υ)) −

1
(µ + 1)µ+1

f (υ) (ς′ (υ))µ+1

ςµ (υ) (h′ (υ))µ

)
dυ = ∞, (2.19)

where the functions ς, ξ ∈ C1 ([s0,∞) , (0,∞)) and s ∈ [s0,∞) .

Proof. Given that w (s) constitutes the final positive solution of (1.1) on [s0,∞). Then w (σ1 (s)) > 0,
w (σ2 (s)) > 0 and w (h (s)) > 0 for all s ≥ s1. From Theorem 2.1, yields that y′ is eventually takes
on a consistent sign, either remaining negative or remaining positive, beyond a certain point. First,
assuming that y′ < 0 on [s1,∞) . By following the approach used in the proof of the Theorem 2.1, we
can obtain that y is a solution of the inequality (2.5). We now define the Riccati function as follows:

E (s) = ξ (s)
(

f (s) (y′ (s))µ

yµ (s)
+

1
Mµ (s,∞)

)
on [s1,∞) . (2.20)

AIMS Mathematics Volume 9, Issue 12, 36191–36201.
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Due to (2.3), we can notice that E ≥ 0 on [s1,∞) . By Computing the derivative of (2.20), we can
conclude at

E′ (s) =
ξ′ (s)
ξ (s)

E (s) + ξ (s)
( f (s) (y′ (s))µ)′

yµ (s)
− µξ (s) f (s)

(
y′ (s)
y (s)

)µ+1

+
µξ (s)

f 1/µ (s) Mµ+1 (s,∞)

≤
ξ′ (s)
ξ (s)

E (s) + ξ (s)
( f (s) (y′ (s))µ)′

yµ (s)
−

µ

(ξ (s) f (s))1/µ

(
E (s) −

ξ (s)
Mµ (s,∞)

)(µ+1)/µ

+
µξ (s)

f 1/µ (s) Mµ+1 (s,∞)
. (2.21)

Combining (2.5) and (2.21), we have

E′ (s) ≤ −
µ

(ξ (s) f (s))1/µ

(
E (s) −

ξ (s)
Mµ (s,∞)

)(µ+1)/µ

− ξ (s) q (s) xµ1 (h (s))

+
µξ (s)

f 1/µ (s) Mµ+1 (s,∞)
+
ξ′ (s)
ξ (s)

E (s) . (2.22)

Using Lemma 2.1 with Q := ξ′ (s) /ξ (s) , N := µ (ξ (s) f (s))−1/µ , L := ξ (s) /Mµ (s,∞) and υ := E,
we get

ξ′ (s)
ξ (s)

E (s) −
µ

(ξ (s) f (s))1/µ

(
E (s) −

ξ (s)
Mµ (s,∞)

)(µ+1)/µ

≤
1

(µ + 1)µ+1 f (s)
(ξ′ (s))µ+1

(ξ (s))µ

+
ξ′ (s)

Mµ (s,∞)
,

which, in view of (2.22), we have

E′ (s) ≤
ξ′ (s)

Mµ (s,∞)
+

1
(µ + 1)µ+1 f (s)

(ξ′ (s))µ+1

(ξ (s))µ
− ξ (s) q (s) xµ1 (h (s))

+
µξ (s)

f 1/µ (s) Mµ+1 (s,∞)

≤ −ξ (s) q (s) xµ1 (h (s)) +

(
ξ (s)

Mµ (s,∞)

)′
+

f (s)
(µ + 1)µ+1

(ξ′ (s))µ+1

(ξ (s))µ
. (2.23)

Integrating (2.23) from s2 to s, we arrive at∫ s

s2

(
ξ (υ) q (υ) xµ1 (h (υ)) −

f (υ)
(µ + 1)µ+1

(ξ′ (υ))µ+1

(ξ (υ))µ

)
dυ ≤

(
ξ (s)

Mµ (s,∞)
− E (s)

)∣∣∣∣∣∣s
s2

≤ −

(
ξ (s)

f (s) (y′ (s))µ

yµ (s)

)∣∣∣∣∣∣s
s2

. (2.24)

From (2.3), we have

−
f 1/µ (s) y′ (s)

y (s)
≤

1
M (s,∞)

,
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which, in view of (2.24), implies

Mµ (s,∞)
ξ (s)

∫ s

s2

(
ξ (υ) q (υ) xµ1 (h (υ)) −

f (υ)
(µ + 1)µ+1

(ξ′ (υ))µ+1

(ξ (υ))µ

)
dυ ≤ 1.

Applying the limit superior to both sides, we are led to a contradiction with (2.18).
Now, let y′ (s) > 0 on [s1,∞) .Let the function

D (s) = ς (s)
f (s) (y′ (s))µ

yµ (h (s))
, on [s1,∞) , (2.25)

we see that E ≥ 0 on [s1,∞) . Differentiating (2.25), we arrive at

D′ (s) =
ς′ (s)
ς (s)

D (s) + ς (s)
( f (s) (y′ (s))µ)′

yµ (h (s))
− µς (s) f (s)

(y′ (s))µ y′ (h (s)) h′ (s)
yµ+1 (h (s))

. (2.26)

Combining (2.12) and (2.26), we have

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) xµ2 (h (s)) − µς (s) f (s)
(y′ (s))µ u′ (h (s)) h′ (s)

yµ+1 (h (s))
.

Since ( f (s) (y′ (s))µ)′ < 0 and h (s) ≤ s, we arrive at

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) xµ2 (h (s)) − µς (s) f (s) h′ (s)
(y′ (s))µ+1

yµ+1 (h (s))
,

from (2.25), we have

D′ (s) ≤
ς′ (s)
ς (s)

D (s) − ς (s) q (s) xµ2 (h (s)) −
µh′ (s)

ς1/µ (s) f 1/µ (s)
D(µ+1)/µ (s) .

Using the inequality

Fv −$v
(µ+1)/µ

≤
µµ

(µ + 1)µ+1

Fµ+1

$µ
, $ > 0, (2.27)

with F = ς′ (s) /ς (s) , $ = µh′ (s) /
(
ς1/µ (s) f 1/µ (s)

)
and v = D, we have

D′ (s) ≤ −ς (s) q (s) xµ2 (h (s)) +
1

(µ + 1)µ+1

f (s) (ς′ (s))µ+1

ςµ (s) (h′ (s))µ
. (2.28)

Integrating (2.28) from s2 to s, we arrive at∫ s

s2

(
ς (υ) q (υ) xµ2 (h (υ)) −

1
(µ + 1)µ+1

f (υ) (ς′ (υ))µ+1

ςµ (υ) (h′ (υ))µ

)
dυ ≤ D (s2) .

We are taking lim sup on both sides of this inequality, we find a contradiction with (2.19), and
therefore the proof is finished. �
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3. Numerical examples

Some examples are provided to demonstrate the significance of our results.

Example 3.1. Consider the neutral equation(
s2

(
w (s) +

1
3

w
( s
2

)
+

1
2

w (3s)
)′)′

+
t0

s
w

( s
3

)
= 0, s > 0, t0 > 1. (3.1)

Let µ = 1, f (s) = s2, δ1 (s) = 1/3, δ2 (s) = 1/2, σ1 (s) = s/2, σ2 (s) = 3s, h (s) = s/3, q (s) = t0/s
and

η (s) =

∫ ∞

s0

f −1/µ (υ) dυ =
1
s
.

Moreover, we find

lim sup
s→∞

∫ s

s1

1
f 1/µ (%)

(∫ %

s1

Mµ (υ,∞) q (υ) xµ1 (h (υ)) dυ
)1/µ

d%

= lim sup
s→∞

∫ s

s1

1
υ2

∫ %

s1

∫ ∞

s
κ−2

 t0

υ

1 −
∫ ∞

s/2
r−2dr

3
∫ ∞

s
υ−2dυ

−
1
2


 dκd%

 dυ = ∞,

From Theorem 2.1, Eq (3.1) oscillatory.

Example 3.2. Let the equation(
s2µ

[(
y (s) +

1
2

y
( s
3

)
+

1
3

y (σs)
)′]µ)′

+ ξsu
( s
2

)
= 0, (3.2)

where ξ > 1, s ≥ 1, µ ∈ (0, 1) and σ > 1. Let µ = 1, f (s) = s2, δ1 (s) = 1/3, δ2 (s) = 1/3, σ1 (s) =

s/3, σ2 (s) = σs, h (s) = s/2 and q (s) = ξs. So, we find

η (s) =

∫ ∞

s0

f −1/µ (υ) dυ = s−1.

If we set ς (υ) = 1, we obtain

lim sup
s→∞

∫ s

s

(
ς (υ) q (υ) xµ2 (h (υ)) −

1
(µ + 1)µ+1

f (υ) (ς′ (υ))µ+1

ςµ (υ) (h′ (υ))µ

)
dυ = ∞, µ < 1.

By Theorem 2.3, every solution of (3.2) is oscillatory.

4. Conclusions

The aim of this paper is to investigate the oscillatory characteristics inherent in second-order
differential equations featuring a mixed neutral term. This investigation is conducted through the
application of Riccati transformations and a comparison analysis with first-order equations, ultimately
leading to the derivation of oscillation criteria. The study culminates in the establishment of a central
theorem related to the oscillation behavior of (1.1). In addition, three examples of the effectiveness of
these criteria were discussed. As part of our future research, we will study some of the oscillatory
characteristics inherent in third-order DE with neutral terms, as well as to delve into fractional-order
equations. Progress is already underway in investigating these particular equation types.
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