This paper proposes a novel hybrid PRP-HS-LS-type conjugate gradient algorithm for solving constrained nonlinear systems of equations. The proposed algorithm presents several significant advancements and key features: (i) the conjugate parameter is constructed by utilizing the hybrid technique; (ii) the search direction, designed with the conjugate parameter, possesses sufficient descent and trust region properties without the need for a line search mechanism; (iii) the global convergence is rigorously established under general assumptions, notably without the requirement of the Lipschitz continuity condition; (vi) numerical experiments demonstrate the algorithm's efficiency, particularly in solving large-scale constrained nonlinear systems of equations and addressing the sparse signal restoration problem.
Citation: Xuejie Ma, Songhua Wang. A hybrid approach to conjugate gradient algorithms for nonlinear systems of equations with applications in signal restoration[J]. AIMS Mathematics, 2024, 9(12): 36167-36190. doi: 10.3934/math.20241717
This paper proposes a novel hybrid PRP-HS-LS-type conjugate gradient algorithm for solving constrained nonlinear systems of equations. The proposed algorithm presents several significant advancements and key features: (i) the conjugate parameter is constructed by utilizing the hybrid technique; (ii) the search direction, designed with the conjugate parameter, possesses sufficient descent and trust region properties without the need for a line search mechanism; (iii) the global convergence is rigorously established under general assumptions, notably without the requirement of the Lipschitz continuity condition; (vi) numerical experiments demonstrate the algorithm's efficiency, particularly in solving large-scale constrained nonlinear systems of equations and addressing the sparse signal restoration problem.
[1] | W. Xue, P. Wan, Q. Li, An online conjugate gradient algorithm for large-scale data analysis in machine learning, AIMS Mathematics, 6 (2021), 1515–1537. https://doi.org/10.3934/math.2021092 doi: 10.3934/math.2021092 |
[2] | J. Chorowsk, J. M. Zurada, Learning understandable neural networks with nonnegative weight constraints, IEEE Trans. Neural. Netw. Learn. Syst., 26 (2015), 62–69. https://doi.org/10.1109/TNNLS.2014.2310059 doi: 10.1109/TNNLS.2014.2310059 |
[3] | Y. H. Zheng, B. Jeon, D. H. Xu, Q. M. Wu, H. Zhang, Image segmentation by generalized hierarchical fuzzy C-means algorithm, J. Intell. Fuzzy Syst., 28 (2015), 961–973. https://doi.org/10.3233/IFS-141378 doi: 10.3233/IFS-141378 |
[4] | Y. Li, C. Li, W. Yang, A new conjugate gradient method with a restart direction and its application in image restoration, AIMS Mathematics, 12 (2023), 28791–28807. https://doi.org/10.3934/math.20231475 doi: 10.3934/math.20231475 |
[5] | S. Aji, P. Kumam, A. M. Awwal, An efficient DY-type spectral conjugate gradient method for system of nonlinear monotone equations with application in signal recovery, Aims Mathematics, 6 (2021), 8078–8106. https://doi.org/10.3934/math.2021469 doi: 10.3934/math.2021469 |
[6] | K. Ahmed, M. Y. Waziri, A. S. Halilu, Sparse signal reconstruction via Hager-Zhang-type schemes for constrained system of nonlinear equations, Optimization, 73 (2024), 1949–1980. https://doi.org/10.1080/02331934.2023.2187255 doi: 10.1080/02331934.2023.2187255 |
[7] | D. D. Li, S. H. Wang, Y. Li, J. Q. Wu, A projection-based hybrid PRP-DY type conjugate gradient algorithm for constrained nonlinear equations with applications, Appl. Numer. Math., 195 (2024), 105–125. https://doi.org/10.1016/j.apnum.2023.09.009 doi: 10.1016/j.apnum.2023.09.009 |
[8] | M. Dehghan, A. Shirilord, Three-step iterative methods for numerical solution of systems of nonlinear equations, Eng. Comput., 38 (2022), 1015–1028. https://doi.org/10.1007/s00366-020-01072-1 doi: 10.1007/s00366-020-01072-1 |
[9] | M. Dehghan, G. Karamali, A. Shirilord, An iterative scheme for a class of generalized Sylvester matrix equations, AUT J. Math. Comut., 5 (2024), 195–215. |
[10] | K. Meinijes, A. P. Morgan, A methodology for solving chemical equilibrium systems, Appl. Math. Comput., 22 (1987), 333–361. |
[11] | X. Tong, S. Zhou, A smoothing projected Newton-type method for semismooth equations with bound constraints, J. Ind. Manag. Optim., 1 (2005), 235–250. https://doi.org/10.3934/jimo.2005.1.235 doi: 10.3934/jimo.2005.1.235 |
[12] | M. Dehghan, M. Hajarian, Fourth-order variants of Newton's method without second derivatives for solving non-linear equations, Eng. Comput., 29 (2012), 356–365. https://doi.org/10.1108/02644401211227590 doi: 10.1108/02644401211227590 |
[13] | C. Wang, Y. Wang, C. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Meth. Oper. Res., 66 (2007), 33–46. https://doi.org/10.1007/s00186-006-0140-y doi: 10.1007/s00186-006-0140-y |
[14] | G. Yuan, Z. Wei, M. Zhang, An active-set projected trust region algorithm for box constrained optimization problems, J. Syst. Sci. Complex., 28 (2015), 1128–1147. https://doi.org/10.1007/s11424-014-2199-5 doi: 10.1007/s11424-014-2199-5 |
[15] | J. Fan, On the levenberg-marquardt methods for convex constrained nonlinear equations, J. Ind. Manag. Optim., 9 (2013), 227–241. https://doi.org/10.3934/jimo.2013.9.227 doi: 10.3934/jimo.2013.9.227 |
[16] | J. Yin, J. Jian, G. Ma, A modified inexact Levenberg-Marquardt method with the descent property for solving nonlinear equations, Comput. Optim. Appl., 87 (2024), 289–322. https://doi.org/10.1007/s10589-023-00513-z doi: 10.1007/s10589-023-00513-z |
[17] | Y. Ding, Y. Xiao, J. Li, A class of conjugate gradient methods for convex constrained monotone equations, Optimization, 66 (2017), 2309–2328. https://doi.org/10.1080/02331934.2017.1372438 doi: 10.1080/02331934.2017.1372438 |
[18] | M. Sun, J. Liu, New hybrid conjugate gradient projection method for the convex constrained equations, Calcolo, 53 (2016), 399–411. https://doi.org/10.1007/s10092-015-0154-z doi: 10.1007/s10092-015-0154-z |
[19] | H. Zheng, J. Li, P. Liu, An inertial Fletcher-Reeves-type conjugate gradient projection-based method and its spectral extension for constrained nonlinear equations, J. Appl. Math. Comput., 70 (2024), 2427–2452. https://doi.org/10.1007/s12190-024-02062-y doi: 10.1007/s12190-024-02062-y |
[20] | Z. Yu, J. Lin, J. Sun, Y. Xiao, L. Liu, Z. Li, Spectral gradient projection method for monotone nonlinear equations with convex constraints, Appl. Numer. Math., 59 (2009), 2416–2423. https://doi.org/10.1016/j.apnum.2009.04.004 doi: 10.1016/j.apnum.2009.04.004 |
[21] | M. Dehghan, R. Mohammadi-Arani, Generalized product-type methods based on bi-conjugate gradient (GPBiCG) for solving shifted linear systems, Comput. Appl. Math., 36 (2017), 1591–1606. https://doi.org/10.1007/s40314-016-0315-y doi: 10.1007/s40314-016-0315-y |
[22] | J. K. Liu, Y. M. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algor., 82 (2019), 245–262. https://doi.org/10.1007/s11075-018-0603-2 doi: 10.1007/s11075-018-0603-2 |
[23] | W. J. Hu, J. Z. Wu, G. L. Yuan, Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration, Appl. Numer. Math., 158 (2020), 360–376. https://doi.org/10.1016/j.apnum.2020.08.009 doi: 10.1016/j.apnum.2020.08.009 |
[24] | G. Ma, J. Jin, J. Jian, D. Han, A modified inertial three-term conjugate gradient projection method for constrained nonlinear equations with applications in compressed sensing, Numer. Algor., 92 (2023), 1621–1653. https://doi.org/10.1007/s11075-022-01356-1 doi: 10.1007/s11075-022-01356-1 |
[25] | J. H. Yin, J. B. Jian, X. Z. Jiang, M. X. Liu, L. Wang, A hybrid three-term conjugate gradient projection method for constrained nonlinear monotone equations with applications Numer. Algor., 88 (2021), 389–418. |
[26] | P. T. Gao, C. J. He, Y. Liu, An adaptive family of projection methods for constrained monotone nonlinear equations with applications, Appl. Math. Comput., 359 (2019), 1–16. https://doi.org/10.1016/j.amc.2019.03.064 doi: 10.1016/j.amc.2019.03.064 |
[27] | M. Li, A modified Hestense-Stiefel conjugate gradient method close to the memoryless BFGS quasi-Newton method, Optim. Methods Softw., 33 (2018), 336–353. https://doi.org/10.1080/10556788.2017.1325885 doi: 10.1080/10556788.2017.1325885 |
[28] | M. Li, A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method, J. Ind. Manag. Optim., 16 (2018), 245–260. |
[29] | A. B. Abubakar, P. Kumam, H. Mohammad, A note on the spectral gradient projection method for nonlinear monotone equations with applications, Comput. Appl. Math., 39 (2020), 129. https://doi.org/10.1007/s40314-020-01151-5 doi: 10.1007/s40314-020-01151-5 |
[30] | J. K. Liu, S. J. Li, A projection method for convex constrained monotone nonlinear equations with applications, Comput. Math. Appl., 70 (2015), 2442–2453. https://doi.org/10.1016/j.camwa.2015.09.014 doi: 10.1016/j.camwa.2015.09.014 |
[31] | E. D. Dolan, J. Jorge, Benchmarking optimization software with performance profiles, Math. Program., 91 (2001), 201–213. https://doi.org/10.1007/s101070100263 doi: 10.1007/s101070100263 |
[32] | D. D. Li, J. Q. Wu, Y. Li, S. H. Wang, A modified spectral gradient projection-based algorithm for large-scale constrained nonlinear equations with applications in compressive sensing, J. Comput. Appl. Math., 424 (2023), 115006. https://doi.org/10.1016/j.cam.2022.115006 doi: 10.1016/j.cam.2022.115006 |
[33] | M. A. T. Figueiredo, R. D. Nowak, S. J. Wright, Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems, IEEE J. Sel. Top. Signal Process., 1 (2007), 586–597. https://doi.org/10.1109/JSTSP.2007.910281 doi: 10.1109/JSTSP.2007.910281 |
[34] | Y. Xiao, Q. Wang, Q. Hu, Non-smooth equations based method for $\ell1$-norm problems with applications to compressed sensing, Nonlinear Anal. Theory Methods Appl., 74 (2011), 3570–3577. |