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Abstract: This paper proposes a novel hybrid PRP-HS-LS-type conjugate gradient algorithm
for solving constrained nonlinear systems of equations. The proposed algorithm presents several
significant advancements and key features: (i) the conjugate parameter is constructed by utilizing the
hybrid technique; (ii) the search direction, designed with the conjugate parameter, possesses sufficient
descent and trust region properties without the need for a line search mechanism; (iii) the global
convergence is rigorously established under general assumptions, notably without the requirement of
the Lipschitz continuity condition; (vi) numerical experiments demonstrate the algorithm’s efficiency,
particularly in solving large-scale constrained nonlinear systems of equations and addressing the sparse
signal restoration problem.
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1. Introduction

1.1. Background overview

In numerous practical applications, such as neural network optimization [1, 2], image
segmentation [3], signal processing [4–7], matrix equations [8, 9], and chemical equilibrium
analysis [10], nonlinear systems of equations with convex constraints play an essential role. These
applications often involve solving problems where the goal is to find solutions satisfying the convex
constraints. Therefore, the research into efficient numerical methods for solving nonlinear systems of
equations with convex constraints is not only of significant theoretical interest but also holds profound
implications for practical applications. In this paper, we focus on the study of nonlinear systems of
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equations with convex constraints, which can be formulated as follows:

h(x) = 0, x ∈ H, (1.1)

where H ⊆ Rnis a non-empty closed convex subset, and h : Rn → Rn is a continuous monotone
mapping that may not necessarily be smooth. Throughout this paper, we denote ‖ · ‖ by the Euclidean
vector norm.

At present, numerical iterative methods for solving nonlinear systems of equations can be broadly
categorized into two major types. The first type includes methods that rely on the Jacobian matrix
or its approximations, such as Newton’s methods [11, 12], quasi-Newton methods [13], trust-region
methods [14], and Levenberg–Marquardt methods [15, 16]. These methods are known for their ability
to exhibit rapid local convergence, especially when an appropriate initial point is selected. However,
the effectiveness of these methods depends on the computation and storage of the Jacobian matrix or
its approximation value. This dependency can lead to algorithm failure or inefficiency, particularly in
cases where the Jacobian matrix is difficult to obtain or when nonlinear systems of equations exhibits
non-smooth characteristics. The second type includes methods that do not rely on the Jacobian matrix
or its approximations, such as conjugate gradient (CG) methods [17–19], spectral gradient methods
[20], and other derived first-order gradient-based methods [21]. These methods are known for being
structurally simple and requiring only first-order derivative information and no matrix storage, which
makes them particularly well-suited for solving large-scale nonlinear systems of equations. Due to
their simplicity and scalability, these methods have gained popularity among researchers, especially in
applications where computational resources are limited or where nonlinear systems of equations are
too large for traditional Jacobian-based methods to be practical.

In recent years, the CG method has garnered significant attention from researchers in the field of
optimization, becoming a focal point of study. As an efficient iterative method for solving linear
systems of equations and unconstrained optimization problems, the CG method has demonstrated
notable advantages, particularly in handling large-scale problems. The versatility of the CG method
has been further enhanced through its combination with projection techniques, leading to the
development of CG projection methods. For example, Liu et al. [22] proposed a new derivative-free
spectral Dai–Yuan (DY) type projection method aimed at solving the problem (1.1). Their study,
under reasonable assumptions, not only established the global convergence of the proposed method
but also demonstrated its linear convergence rate. Besides, Hu et al. [23] developed a modified
Hestenes–Stiefel (HS) type CG projection method. This method integrated the steepest descent
approach with the traditional CG method and was applied to solve image restoration problems. Ma et
al. [24] designed a modified inertial three-term CG projection method for solving the problem (1.1).
This method integrated the inertial extrapolation step into the search direction, and was implemented
for the sparse signal and image restoration problems.

The CG projection method updates its search direction using the most recent gradient information
and the previous search direction. While this method generally performs well, it can encounter
challenges such as slow convergence or unstable convergence performance in certain situations. To
address these issues, the three-term CG projection method introduces a new approach for updating the
search direction. This approach incorporates not only the current gradient information but also the
gradient information from the previous two iterations. The key idea is to leverage a richer set of
historical gradient information to enhance the search direction, with the aim of accelerating
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convergence and improving solution accuracy. Without loss of generality, the iterative formula for the
three-term CG projection method is given by xk+1 = xk + αkdk, where αk is the step size determined by
a line search mechanism. The search direction dk is defined as:

dk =

{
−h0, k = 0,
−hk + βkdk−1 + θkyk−1, k ≥ 1,

where βk is a conjugate parameter, θk is a scalar parameter, hk , h(xk), and yk−1 = hk − hk−1. The
parameters βk and θk play a critical role in the performance of the CG projection method, influencing
the algorithm’s convergence behavior. Traditional CG methods such as Polak–Ribière–Polyak (PRP),
Hestenes–Stiefel (HS), and Liu–Storey (LS) are well-known in the field, with the conjugate parameter
expressions given by:

βPRP
k =

hT
k yk−1

‖hk−1‖
2 , βHS

k =
hT

k yk−1

dT
k yk−1

, βLS
k =

hT
k yk−1

−hT
k−1dk−1

. (1.2)

Given the outstanding numerical performance of the PRP and HS CG methods, Yin et al. [25]
introduced a hybrid three-term CG projection method for solving the problem (1.1), with a particular
focus on compressed sensing problems. Additionally, Gao et al. [26] designed an adaptive three-
term CG search direction and validated the effectiveness of the proposed method through extensive
numerical experiments. Their results demonstrated that the adaptive approach is highly competitive,
particularly in solving sparse signal problems.

1.2. Formulation of search direction

To provide a smoother and more coherent introduction to the ideas and algorithms presented in this
paper, we begin by reviewing the relevant contributions of the works [27, 28]. Existing three-term CG
methods, specifically developed to address unconstrained optimization problems, have successfully
demonstrated their remarkable efficiency and wide-ranging applicability in this field. From the well-
established HS CG method, Li et al. [27] presented an innovative three-term HS-type CG method,
which was designed for solving unconstrained optimization problems. Their conjugate and scalar
parameters are defined as follows:

βTHS
k =

hT
k yk−1

dT
k−1yk−1

−
‖yk−1‖

2hT
k dk−1

(dT
k−1yk−1)2

, θTHS
k = tk

hT
k dk−1

dT
k−1yk−1

, (1.3)

where tk = min
{
t̂,max

{
0, yT

k−1(yk−1 − sk−1)/‖yk−1‖
2
}}

, sk−1 = xk − xk−1, and 0 < t̂ < 1. In addition, Li et
al. [28] proposed a three-term PRP-type CG method, also aimed at unconstrained optimization
problems. In their approach, the corresponding conjugate and scalar parameters are modified by
substituting ‖hk−1‖

2 with dT
k−1yk−1, yielding the following parameters:

βTPRP
k =

hT
k yk−1

‖hk−1‖
2 −
‖yk−1‖

2hT
k dk−1

‖hk−1‖
4 , θTPRP

k = tk
hT

k dk−1

‖hk−1‖
2 . (1.4)

By analyzing the denominators in (1.2), (1.3), and (1.4), we introduce a new notation
δk = µ‖dk−1‖‖yk−1‖ + max

{
‖hk−1‖

2, dT
k−1yk−1,−hT

k−1dk−1

}
with µ > 0. Together with the construction
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forms of (1.3) and (1.4), we design a hybrid modified PRP-HS-LS-type search direction as follows:

dk =

{
−h0, k = 0,
−hk + βMPHL

k dk−1 + θMPHL
k yk−1, k ≥ 1,

(1.5)

where βMPHL
k = hT

k yk−1/δk − ‖yk−1‖
2hT

k dk−1/δ
2
k and θMPL

k = tkhT
k dk−1/δk. This hybrid method is carefully

constructed to ensure that the conjugate parameter maintains the desirable properties of the PRP, HS,
and LS parameters. Additionally, it is designed to maintain sufficient descent and trust region properties
without the need for a line search mechanism.

2. Description of the proposed algorithm

In this section, we will elaborate on the line search mechanism, the projection operator, and the
detailed procedure of the proposed algorithm.

First, the line search mechanism [7, 29] is employed to identify a suitable step size that ensures
convergence towards the optimal solution. Specifically, the trial point zk = xk + αkdk is evaluated,
where the step size αk = βρik . Here, β is a predetermined scaling factor that initializes the search,
and ρ is a contraction factor that helps refine the step size iteratively. The integer ik is the smallest
nonnegative integer i such that the following condition holds:

− h(xk + βρidk)Tdk ≥ σβρ
i‖h(xk + βρidk)‖‖dk‖

2, (2.1)

where the parameter σ is typically chosen between 0 and 1, and it determines the strength of the
sufficient decrease condition.

Second, the projection operator [7, 24] is a fundamental tool in the design and theoretical analysis
of various algorithms, particularly those addressing convex constrained optimization problems. The
projection operator PH[·], which maps a point from the space Rn onto its non-empty closed convex
subset H, is defined as:

PH[x] = arg min
y
{‖x − y‖, y ∈ H} , x ∈ Rn.

This operator plays a critical role in maintaining feasibility within the constraint set H. Moreover,
PH[·] possesses the non-expansive property, i.e., ‖PH(x) − PH(y)‖ ≤ ‖x − y‖ for all x, y ∈ Rn.

Finally, based on the concepts discussed above, we propose a hybrid modified PRP-HS-LS-type CG
projection algorithm (Abbr. Algorithm MPHL). The step-by-step procedure of the proposed algorithm
for solving the problem (1.1) is outlined below.
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Algorithm MPHL

1: Input: An initial guess x0 ∈ R
n and parameters β > 0, 0 < ρ < 1, σ, t̂, µ, ε > 0, with k := 0.

2: while ||hk|| > ε do
3: Compute βMPHL

k and θMPHL
k , and determine the search direction dk by (1.5).

4: Compute the step size αk by (2.1) and calculate the trail point zk.
5: if zk ∈ H and ||h(zk)|| < ε then
6: Set xk := zk, and break.
7: else
8: Update the next iteration by

xk+1 = PH
[
xk − γχkh(zk)

]
, χk =

h(zk)T(xk − zk)
||h(zk)||2

, γ ∈ (0, 2). (2.2)

9: end if
10: Increment k := k + 1.
11: end while
12: Output: Solution xk.

3. Analysis of algorithmic properties

3.1. Properties of search direction

The following lemma demonstrates that the search direction dk satisfies two key properties:
sufficient descent and trust region characteristics.

Lemma 1. If Algorithm MPHL generates a sequence {dk}, then the search direction dk satisfies the
following conditions:

hT
k dk ≤ −a1‖hk‖

2, (3.1)

a1‖hk‖ ≤ ‖dk‖ ≤ a2‖hk‖, (3.2)

where a1 = 1 − (1 + t̂)2/4 and a2 = 1 + 1/µ + 1/µ2 + t̂/µ.

Proof. For k = 0, (1.5) yields that (3.1) and (3.2) are obviously satisfied. For k ≥ 1 , multiplying both
sides of (1.5) by hT

k , we obtain:

hT
k dk = −‖hk‖

2 + βMPHL
k hT

k dk−1 + θMPHL
k hT

k yk−1

= −‖hk‖
2 +

(1+tk)hT
k yk−1hT

k dk−1

δk
−
‖yk−1‖

2(hT
k dk−1)2

δ2
k

= −‖hk‖
2 + 2

(
1+tk

2 hT
k

) yk−1hT
k dk−1

δk
−
‖yk−1‖

2(hT
k dk−1)2

δ2
k

≤ −‖hk‖
2 +

(1+tk)2‖hk‖
2

4 +
‖yk−1‖

2(hT
k dk−1)2

δ2
k

−
‖yk−1‖

2(hT
k dk−1)2

δ2
k

= −a1‖hk‖
2,

where the inequality holds with the relationship 2aTb ≤ ‖a‖2 + ‖b‖2. This shows that (3.1) holds.
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Next, using the Cauchy-Schwarz inequality, (3.1) can be simplified to obtain ‖dk‖ ≥ a1‖hk‖. From
the definition of βMPHL

k , we have:

∣∣∣βMPHL
k

∣∣∣ ≤ ‖hk‖‖yk−1‖

δk
+
‖yk−1‖

2‖hk‖‖dk−1‖

δ2
k

≤
‖hk‖‖yk−1‖

µ‖dk−1‖‖yk−1‖
+
‖yk−1‖

2‖hk‖‖dk−1‖

(µ‖dk−1‖‖yk−1‖)2 =

(
1
µ

+
1
µ2

)
‖hk‖

‖dk−1‖
.

Besides, from the definition of θMPHL
k , we have:

∣∣∣θMPHL
k

∣∣∣ ≤ t̂‖hk‖‖dk−1‖

µ‖dk−1‖‖yk−1‖
=

t̂‖hk‖

µ‖yk−1‖
.

Together with the above inequalities, (1.5) yields:

‖dk‖ =
∥∥∥−hk + βMPHL

k dk−1 + θTPRP
k yk−1

∥∥∥
≤ ‖hk‖ +

∣∣∣βMPHL
k

∣∣∣ ‖dk−1‖ +
∣∣∣θTPRP

k

∣∣∣ ‖yk−1‖

≤ ‖hk‖ +
(

1
µ

+ 1
µ2

)
‖hk‖

‖dk−1‖
‖dk−1‖ + t̂‖hk‖

µ‖yk−1‖
‖yk−1‖

= a2‖hk‖.

This shows that (3.2) holds. �

3.2. Properties of convergence

To systematically analyze the global convergence of Algorithm MPHL, we first introduce some
general assumptions. Throughout the analysis, we assume that the sequences {xk} and {zk} generated
by Algorithm MPHL are infinite. Otherwise, the last iteration is the solution of the problem (1.1).
To provide a comprehensive understanding of the global convergence, we begin by describing these
general assumptions:

(S1) The solution set of the problem (1.1) is non-empty, which is critical for ensuring that the
optimization problem is well-posed and that the existence of solutions can be guaranteed under typical
scenarios encountered in nonlinear systems.

(S2) The function h(x) is monotone, meaning that (h(x) − h(y))T(x − y) ≥ 0 holds for any x, y ∈ Rn.
The following lemma plays a pivotal role in establishing the global convergence of Algorithm

MPHL, providing the foundation for the subsequent analysis and results.

Lemma 2. Let sequences {xk}, {zk}, and {dk} be generated by Algorithm MPHL. Then the following
statements are true:

(i) There exists a step size αk such that the line search mechanism (2.1) is satisfied for all k;
(ii) The sequence {xk} is bounded;

(iii) As the iteration number k approaches infinity, we have lim
k→∞

αk‖dk‖ = 0, meaning that the product
of the step size αk and the norm of the search direction dk tends to zero.

Proof. First, we aim to prove that statement (i) holds. We proceed by using a proof by contradiction.
Assume that the line search mechanism (2.1) does not hold. In other words, there exists a constant
k̃ > 0 such that the following inequality is satisfied for any integer i > 0:

−h(xk̃ + βρidk̃)
Tdk̃ < σβρ

i‖h(xk̃ + βρidk̃)‖‖dk̃‖
2.
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By leveraging the continuity of h, we can analyze the behavior of the inequality as i → ∞.
Specifically, we note that as i increases, the term βρidk̃ tends to dominate the argument of the function
h, leading to a more pronounced influence of h at points increasingly distant from xk̃. This suggests
that the values of h(xk̃ + βρidk̃) will converge to a certain limit determined by the continuity of h and
the direction of dk̃. Taking the limit as i→ ∞, we obtain the following expression:

−h(xk̃)
Tdk̃ ≤ 0.

On the other hand, from a previously established result given by (3.1), we know that:

−h(xk̃)
Tdk̃ ≥ a1‖hk̃‖

2,

Therefore, we conclude that statement (i) is indeed valid.
Next, we aim to prove that statement (ii) holds. To facilitate the analysis, we begin by two key

inequalities. From Assumption (S2), we have the following:

h(zk)T(xk − x∗) = h(zk)T(xk − zk + zk − x∗) ≥ h(zk)T(xk − zk), (3.3)

where x∗ denotes an optimal solution such that h(x∗) = 0. From the definition of zk and the condition
given by (2.1), we have:

h(zk)T(xk − zk) = −αkh(zk)Tdk ≥ σα
2
k‖dk‖

2 = σ‖xk − zk‖
2. (3.4)

Now, by utilizing the projection operator PH[x], the definition of χk, and combining (3.3), and (3.4),
we can derive the following inequality:

‖xk+1 − x∗‖2 ≤ ‖xk − γχkh(zk) − x∗‖2

= ‖xk − x∗‖2 − 2γχkh(zk)T(xk − x∗) + γ2χ2
k‖h(zk)‖2

≤ ‖xk − x∗‖2 − γ(2 − γ)χ2
k‖h(zk)‖2

≤ ‖xk − x∗‖2 − γ(2 − γ)σ2‖xk − zk‖
4,

(3.5)

where the above equality holds for the sum of squares. The inequality (3.5) shows that the norm
{‖xk − x∗‖} decreases at each iteration. Thus, we can conclude that the sequence {xk − x∗} is decreasing
and converging to 0, implying that {xk} is bounded and converges to the optimal solution x∗. Therefore,
we conclude that statement (ii) is indeed valid.

Finally, we proceed to prove that statement (iii) holds. Starting with the inequality in (3.5), we
reorganize it to derive the following expression:

γ(2 − γ)σ2
∞∑

k=0

‖xk − zk‖
4 ≤

∞∑
k=0

(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
≤ ‖x0 − x∗‖2.

This inequality implies that the series
∞∑

k=0
‖xk − zk‖

4 is bounded and convergent. Since ‖xk − zk‖
4 ≥ 0,

we can conclude that lim
k→∞
‖xk−zk‖

4 = 0. This, in turn, implies that lim
k→∞
‖xk−zk‖ = 0. From the definition

of zk, we know that zk = xk +αkdk. Hence, the convergence of ‖xk− zk‖ to 0 implies lim
k→∞

αk‖dk‖ = 0. �

The global convergence properties of Algorithm MPHL are outlined in the following theorem.
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Theorem 1. Let the sequence {hk} be generated by Algorithm MPHL. Then, the sequence satisfies the
following convergence property:

lim
k→∞
‖hk‖ = 0.

Proof. We begin by proceeding with a proof by contradiction. For the sake of contradiction, assume
that there exists a positive constant ϑ such that ‖hk‖ > ϑ holds for all k ≥ 0. This assumption, combined
with the result from (3.2), implies that ‖dk‖ ≥ a1ϑ. Moreover, due to the continuity of the function h(x)
and the boundedness of the sequence {xk}, it follows that the sequence {hk} is also bounded. This means
that there exists another positive constant ι such that ‖hk‖ ≤ ι. Utilizing this, together with (3.2), we
can deduce that ‖dk‖ ≤ a2ι. Consequently, the sequence {dk} is bounded, which implies that lim

k→∞
αk = 0

with Lemma 2 (iii).
Since both sequences {xk} and {dk} are bounded, there exists an infinite index set Γ such that:

lim
j→∞, j∈Γ

xk j = x́ lim
j→∞, j∈Γ

dk j = d́.

Next, we consider the line search mechanism (2.1), which gives the inequality:

−h(xk j + ρ−1αk jdk j)
Tdk j < σρ

−1αk j‖h(xk j + ρ−1αk jdk j)‖‖dk j‖
2.

Taking the limit as j → ∞, we arrive at −h(x́)Td́ ≤ 0. Furthermore, from the inequality derived in
(3.1), we have:

hT
k j

dk j ≤ −a1‖hk j‖
2.

Taking the limit as j → ∞, we conclude that −h(x́)Td́ ≥ a1‖h(x́)‖ > 0. This directly contradicts the
earlier result that −h(x́)Td́ ≤ 0. Therefore, the assumption that ‖hk‖ > ϑ for all k ≥ 0 must be false, and
we conclude that lim

k→∞
‖hk‖ = 0. �

4. Numerical experiment for constrained nonlinear systems of equations

4.1. General setups

This section focuses on applying the Algorithm MPHL to a set of widely recognized test problems
and comparing its performance with three existing algorithms: Algorithm PSGM [22], Algorithm
PDY [29], and Algorithm PCG [30]. The experiments were conducted on a system running Ubuntu
20.04.2 LTS 64-bit, powered by an Intel(R) Xeon(R) Gold 5115 2.40GHz CPU. This standardized
computational environment ensures the reliability and consistency of the results, enabling a fair
comparison between the algorithms.

The parameter settings for Algorithm PSGM, Algorithm PDY, and Algorithm PCG are configured
according to their respective references. For Algorithm MPHL, the parameters are set as follows:
β = 1, ρ = 0.74, σ = 10−4, γ = 1.3, t̂ = 103, µ = 2, ε = 10−6. The test problems are formulated in
the form h(x) = (h1(x), h2(x), . . . , hn(x))T with the variable x = (x1, x2, . . . , xn). For each test problem,
the dimension n is set to [10,000 50,000 100,000 150,000 200,000]. The initial points are selected
as follows: x1 = (1, 1, . . . , 1)T, x2 = (0.1, 0.1, . . . , 0.1)T, x3 = ( 1

2 ,
1
22 , . . . ,

1
2n )T, x4 = (2, 2, . . . , 2)T,

x5 = (1, 1
2 , . . . ,

1
n )T, x6 = ( 1

n ,
2
n , . . . ,

n
n )T, and x7 = ( n−1

n ,
n−2

n , . . . ,
n−n

n )T. Specifically, each algorithm is
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terminated when ‖hk‖ ≤ ε or the number of iterations exceeded 2000. The following test problems are
considered:

Problem 1. Set

h1(x) = ex1 − 1,
hi(x) = exi + xi − 1, for i = 2, 3, . . . , n,

and the constraint set H = Rn
+.

Problem 2. Set
hi(x) = 2xi − sin(|xi|), for i = 1, 2, . . . , n,

and the constraint set H = {x ∈ Rn :
n∑

i=1
xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3. Set

hi(x) = (exi)2 + 3 sin(xi) cos(xi) − 1, for i = 1, 2, . . . , n,

and the constraint set H = Rn
+.

Problem 4. Set
hi(x) =

1
n

exi − 1, for i = 1, 2, . . . , n,

and the constraint set H = Rn
+.

Problem 5. Set
hi(x) = xi − 2 sin(|xi − 1|), for i = 1, 2, . . . , n,

and the constraint set H = Rn
+.

Problem 6. Set
hi(x) = ln(|xi| + 1) −

xi

n
, for i = 1, 2, . . . , n,

and the constraint set H = Rn
+.

Problem 7. Set
hi(x) = 2xi − sin(|xi|), for i = 1, 2, . . . , n,

and the constraint set H = Rn
+.

4.2. Numerical reports

The numerical results of the test problems, solved by these four algorithms, are presented in
Tables 1–7. In these tables, “Init(n)” denotes the initial points and the dimension multiplied by 1000.
“CPUT” denotes the CPU time in seconds, “NF” denotes the number of function evaluations, and
“NIter” denotes the number of iterations. These tables demonstrate that all four algorithms are
capable of solving the test problems under different initial points and dimensions. The results clearly
show that each of the four algorithms successfully solved the test problems. To visually assess the
performance of the four algorithms, we employed the performance profiles technique [31] to plot
performance curves based on CPUT, NF, and NIter. In these plots, the higher the curve, the better the
corresponding algorithm performs. As shown in Figures 1–3, Algorithm MPHL outperformed the
others in a significant portion of the test cases, winning approximately 52%, 51%, and 48% of the test
problems in terms of CPUT, NF, and NIter, respectively. The performance curves of Algorithm

AIMS Mathematics Volume 9, Issue 12, 36167–36190.



36176

MPHL generally lie above those of Algorithm PSGM, Algorithm PDY, and Algorithm PCG,
indicating its superior efficiency and effectiveness in solving these test problems.
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Figure 1. Performance profiles on NIter.
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Figure 2. Performance profiles on NF.
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Figure 3. Performance profiles on CPUT.
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Table 1. Numerical results for Problem 1.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 1.29e-02/7/1 9.05e-03/20/7 1.48e-02/73/18 1.89e-02/93/23
x2(10) 1.71e-03/6/1 3.30e-03/17/6 1.10e-02/65/16 1.75e-02/99/26
x3(10) 7.31e-04/4/1 2.86e-03/15/6 6.85e-03/37/12 5.32e-03/24/9
x4(10) 1.21e-03/8/1 5.28e-03/27/8 1.44e-02/77/18 1.97e-02/106/27
x5(10) 1.86e-03/11/2 4.25e-03/22/7 1.10e-02/65/16 2.06e-02/110/31
x6(10) 6.55e-03/40/8 3.74e-03/20/7 1.21e-02/69/17 1.62e-02/93/23
x7(10) 6.73e-03/40/8 4.02e-03/20/7 1.15e-02/69/17 1.77e-02/101/26
x1(50) 5.05e-03/7/1 1.94e-02/26/8 5.31e-02/79/19 6.74e-02/97/24
x2(50) 3.50e-03/6/1 1.40e-02/17/6 4.40e-02/65/16 7.09e-02/101/26
x3(50) 2.50e-03/4/1 9.78e-03/15/6 2.37e-02/37/12 1.78e-02/24/9
x4(50) 4.85e-03/8/1 2.82e-02/41/10 6.65e-02/102/22 7.61e-02/108/27
x5(50) 6.48e-03/11/2 1.52e-02/22/7 4.23e-02/65/16 8.06e-02/110/31
x6(50) 2.56e-02/40/8 1.47e-02/21/7 4.96e-02/73/18 6.58e-02/97/24
x7(50) 2.46e-02/40/8 1.46e-02/21/7 4.93e-02/73/18 6.82e-02/99/25

x1(100) 1.36e-02/7/1 5.37e-02/29/8 1.25e-01/86/20 1.60e-01/97/24
x2(100) 9.47e-03/6/1 3.27e-02/17/6 1.14e-01/69/17 1.57e-01/95/24
x3(100) 7.34e-03/4/1 2.85e-02/15/6 5.51e-02/37/12 4.11e-02/24/9
x4(100) 1.18e-02/8/1 7.70e-02/59/12 1.65e-01/120/25 1.65e-01/105/26
x5(100) 1.82e-02/11/2 3.49e-02/22/7 9.49e-02/65/16 1.71e-01/110/31
x6(100) 5.65e-02/40/8 3.35e-02/24/8 1.17e-01/79/19 1.57e-01/97/24
x7(100) 5.55e-02/40/8 4.01e-02/24/8 1.12e-01/79/19 1.41e-01/100/25
x1(150) 2.96e-02/7/1 1.86e-01/38/9 4.44e-01/97/22 4.96e-01/101/25
x2(150) 2.34e-02/6/1 8.58e-02/17/6 3.30e-01/69/17 4.90e-01/99/25
x3(150) 1.77e-02/4/1 7.90e-02/15/6 1.84e-01/37/12 1.40e-01/24/9
x4(150) 2.95e-02/8/1 3.10e-01/73/13 6.31e-01/144/28 5.46e-01/109/27
x5(150) 4.58e-02/11/2 1.04e-01/22/7 3.06e-01/65/16 5.84e-01/110/31
x6(150) 1.77e-01/40/8 1.21e-01/25/8 3.70e-01/79/19 4.82e-01/97/24
x7(150) 1.79e-01/40/8 1.21e-01/25/8 3.73e-01/79/19 4.82e-01/97/24
x1(200) 3.51e-02/7/1 2.71e-01/45/10 6.46e-01/103/23 6.93e-01/101/25
x2(200) 3.34e-02/6/1 1.16e-01/17/6 4.34e-01/69/17 6.73e-01/99/25
x3(200) 2.33e-02/4/1 1.01e-01/15/6 2.45e-01/37/12 1.87e-01/24/9
x4(200) 3.99e-02/8/1 5.16e-01/93/15 9.41e-01/160/30 7.14e-01/106/26
x5(200) 6.20e-02/11/2 1.40e-01/22/7 4.12e-01/65/16 7.56e-01/110/31
x6(200) 2.34e-01/40/8 1.71e-01/28/8 5.08e-01/83/20 6.59e-01/101/25
x7(200) 2.30e-01/40/8 1.65e-01/28/8 5.09e-01/83/20 6.58e-01/101/25
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Table 2. Numerical results for Problem 2.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 4.81e-03/34/8 2.40e-03/19/7 2.44e-03/19/6 5.56e-03/36/10
x2(10) 5.01e-03/33/8 2.16e-03/16/6 1.13e-02/68/17 6.95e-03/36/10
x3(10) 8.54e-03/62/13 2.57e-03/16/6 8.70e-03/72/18 4.86e-03/39/11
x4(10) 4.90e-03/31/8 1.80e-01/24/7 9.16e-02/81/20 6.05e-03/38/11
x5(10) 9.07e-03/67/15 3.29e-03/20/8 9.95e-03/72/18 5.96e-03/48/14
x6(10) 7.79e-03/58/12 2.53e-03/18/7 8.97e-03/76/19 7.77e-03/54/15
x7(10) 7.23e-03/58/12 2.37e-03/18/7 9.62e-03/76/19 8.26e-03/54/15
x1(50) 1.62e-02/34/8 1.06e-02/19/7 3.37e-02/77/19 1.87e-02/40/11
x2(50) 1.71e-02/37/9 7.60e-03/16/6 3.03e-02/72/18 1.82e-02/39/11
x3(50) 2.58e-02/59/13 7.77e-03/16/6 3.23e-02/72/18 1.93e-02/39/11
x4(50) 1.72e-02/35/9 8.43e-01/28/7 8.30e-01/82/20 2.03e-02/41/12
x5(50) 2.80e-02/68/14 1.02e-02/20/8 3.04e-02/72/18 2.36e-02/50/14
x6(50) 2.87e-02/67/14 9.81e-03/18/7 3.33e-02/80/20 2.46e-02/54/15
x7(50) 2.54e-02/63/13 9.15e-03/18/7 3.57e-02/80/20 2.84e-02/54/15

x1(100) 2.73e-02/34/8 1.56e-02/21/7 5.63e-02/77/19 3.32e-02/43/12
x2(100) 2.86e-02/37/9 1.68e-02/19/7 5.88e-02/77/19 3.22e-02/39/11
x3(100) 4.70e-02/63/14 1.71e-02/20/7 5.82e-02/77/19 3.13e-02/39/11
x4(100) 2.93e-02/35/9 2.67e+00/33/8 2.67e+00/86/21 3.27e-02/41/12
x5(100) 5.29e-02/69/15 1.88e-02/23/8 5.68e-02/77/19 3.97e-02/53/15
x6(100) 4.71e-02/67/14 1.61e-02/19/7 5.73e-02/77/19 4.12e-02/54/15
x7(100) 4.71e-02/67/14 1.70e-02/19/7 5.68e-02/77/19 4.02e-02/54/15
x1(150) 7.15e-02/34/8 4.41e-02/23/7 1.53e-01/81/20 9.95e-02/43/12
x2(150) 7.75e-02/37/9 4.18e-02/20/7 1.47e-01/77/19 9.32e-02/39/11
x3(150) 1.19e-01/60/13 4.24e-02/21/7 1.53e-01/81/20 9.25e-02/39/11
x4(150) 7.86e-02/35/9 5.49e+00/36/8 5.54e+00/88/21 1.01e-01/41/12
x5(150) 1.39e-01/68/15 7.11e-02/41/10 1.58e-01/81/20 1.31e-01/53/15
x6(150) 1.34e-01/67/14 4.04e-02/19/7 1.48e-01/77/19 1.29e-01/54/15
x7(150) 1.30e-01/67/14 4.42e-02/19/7 1.50e-01/77/19 1.28e-01/54/15
x1(200) 1.00e-01/38/9 5.80e-02/23/7 2.15e-01/87/21 1.30e-01/43/12
x2(200) 9.95e-02/37/9 5.26e-02/21/7 1.98e-01/81/20 1.22e-01/39/11
x3(200) 1.51e-01/59/13 5.70e-02/22/7 2.09e-01/86/21 1.20e-01/39/11
x4(200) 9.68e-02/35/9 9.33e+00/37/8 9.49e+00/93/22 1.31e-01/41/12
x5(200) 1.64e-01/63/14 6.12e-02/24/8 2.14e-01/86/21 1.64e-01/53/15
x6(200) 1.67e-01/67/14 5.29e-02/20/7 1.92e-01/77/19 1.66e-01/54/15
x7(200) 1.67e-01/67/14 5.19e-02/20/7 1.95e-01/77/19 1.66e-01/54/15
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Table 3. Numerical results for Problem 3.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 3.83e-03/6/1 3.48e-03/25/7 7.98e-03/66/13 7.49e-03/67/13
x2(10) 1.08e-03/9/1 2.73e-03/21/6 7.02e-03/61/12 6.52e-03/56/11
x3(10) 4.17e-04/3/1 3.54e-04/3/1 3.41e-04/3/1 3.55e-04/3/1
x4(10) 6.28e-04/4/1 4.96e-03/37/9 9.76e-03/80/15 1.59e-03/11/2
x5(10) 1.85e-03/19/2 3.45e-03/29/8 9.22e-03/84/16 7.17e-03/57/11
x6(10) 4.44e-02/240/19 1.03e-02/85/31 8.82e-03/83/16 7.99e-03/78/15
x7(10) 1.15e-02/132/16 1.00e-02/86/29 8.75e-03/83/16 8.30e-03/78/15
x1(50) 2.80e-03/6/1 1.54e-02/30/8 3.56e-02/81/15 2.91e-02/67/13
x2(50) 3.10e-03/9/1 1.11e-02/21/6 2.87e-02/66/13 2.68e-02/61/12
x3(50) 1.39e-03/3/1 1.19e-03/3/1 1.21e-03/3/1 1.46e-03/3/1
x4(50) 2.10e-03/4/1 2.27e-02/43/10 4.76e-02/105/18 5.63e-03/11/2
x5(50) 6.71e-03/19/2 1.22e-02/29/8 3.57e-02/84/16 2.39e-02/57/11
x6(50) 6.34e-02/201/15 1.18e-02/27/8 3.41e-02/78/15 3.42e-02/78/15
x7(50) 8.85e-02/293/23 1.21e-02/27/8 3.35e-02/78/15 3.30e-02/78/15

x1(100) 6.80e-03/6/1 2.91e-02/35/8 6.57e-02/81/15 5.09e-02/67/13
x2(100) 5.98e-03/9/1 1.89e-02/21/6 5.09e-02/66/13 4.37e-02/61/12
x3(100) 3.00e-03/3/1 2.50e-03/3/1 3.22e-03/3/1 3.07e-03/3/1
x4(100) 5.27e-03/4/1 4.82e-02/53/11 1.08e-01/132/21 1.04e-02/11/2
x5(100) 1.15e-02/19/2 2.22e-02/29/8 6.27e-02/84/16 4.03e-02/57/11
x6(100) 4.14e-01/298/15 2.27e-02/29/8 6.19e-02/78/15 6.13e-02/78/15
x7(100) 1.09e-01/200/15 2.48e-02/29/8 5.96e-02/78/15 5.77e-02/78/15
x1(150) 1.18e-02/6/1 7.72e-02/40/9 1.71e-01/94/17 1.47e-01/72/14
x2(150) 1.29e-02/9/1 4.32e-02/21/6 1.21e-01/66/13 1.24e-01/61/12
x3(150) 6.34e-03/3/1 4.55e-03/3/1 5.72e-03/3/1 7.47e-03/3/1
x4(150) 9.20e-03/4/1 1.23e-01/68/13 2.73e-01/153/23 2.39e-02/11/2
x5(150) 2.90e-02/19/2 5.44e-02/29/8 1.55e-01/84/16 1.14e-01/57/11
x6(150) 7.60e-01/319/24 5.86e-02/30/8 1.53e-01/83/16 1.69e-01/83/16
x7(150) 4.19e-01/341/22 5.51e-02/30/8 1.50e-01/83/16 1.66e-01/83/16
x1(200) 1.42e-02/6/1 9.94e-02/44/9 2.54e-01/112/19 1.85e-01/72/14
x2(200) 1.67e-02/9/1 5.61e-02/21/6 1.56e-01/66/13 1.58e-01/61/12
x3(200) 7.95e-03/3/1 6.22e-03/3/1 6.66e-03/3/1 8.94e-03/3/1
x4(200) 1.22e-02/4/1 1.85e-01/80/14 3.66e-01/163/24 3.00e-02/11/2
x5(200) 3.35e-02/19/2 6.82e-02/29/8 1.89e-01/84/16 1.33e-01/57/11
x6(200) 1.17e+00/738/48 7.43e-02/31/8 2.24e-01/97/18 2.13e-01/83/16
x7(200) 4.37e-01/276/19 7.18e-02/31/8 2.22e-01/97/18 2.09e-01/83/16
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Table 4. Numerical results for Problem 4.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 5.82e-03/29/14 1.07e-02/117/14 1.11e-02/84/27 6.53e-03/40/18
x2(10) 5.52e-03/29/14 1.26e-02/140/15 1.17e-02/87/28 8.87e-03/50/22
x3(10) 8.45e-03/46/20 1.28e-02/146/15 1.18e-02/87/28 7.33e-03/45/20
x4(10) 5.40e-03/27/13 9.04e-03/97/13 1.02e-02/77/25 7.36e-03/46/20
x5(10) 7.03e-03/42/17 1.33e-02/150/17 1.16e-02/87/28 7.36e-03/47/21
x6(10) 8.39e-03/46/20 1.16e-02/130/15 1.09e-02/84/27 7.51e-03/45/20
x7(10) 8.00e-03/46/20 1.21e-02/130/15 1.19e-02/84/27 7.35e-03/45/20
x1(50) 2.41e-02/33/16 1.52e-01/479/30 1.02e-01/219/52 3.47e-02/52/23
x2(50) 2.32e-02/33/16 1.74e-01/554/31 1.10e-01/235/55 3.60e-02/54/24
x3(50) 2.82e-02/42/18 1.81e-01/573/33 1.12e-01/239/56 3.62e-02/54/24
x4(50) 2.20e-02/31/15 1.29e-01/403/26 9.46e-02/199/48 3.42e-02/50/22
x5(50) 3.29e-02/49/21 1.79e-01/573/33 1.17e-01/239/56 3.68e-02/54/24
x6(50) 2.99e-02/47/19 1.68e-01/530/33 1.06e-01/228/54 3.59e-02/54/24
x7(50) 3.03e-02/47/19 1.76e-01/530/33 1.06e-01/228/54 3.63e-02/54/24

x1(100) 3.97e-02/31/15 4.66e-01/851/42 2.02e-01/264/60 5.53e-02/52/23
x2(100) 4.40e-02/35/17 5.26e-01/950/45 2.19e-01/284/64 6.03e-02/54/24
x3(100) 5.17e-02/41/19 5.32e-01/952/46 2.17e-01/284/64 6.01e-02/56/25
x4(100) 3.83e-02/31/15 4.14e-01/736/39 1.92e-01/244/56 5.35e-02/50/22
x5(100) 5.33e-02/47/20 5.39e-01/956/48 2.29e-01/284/64 6.37e-02/56/25
x6(100) 5.51e-02/49/20 5.09e-01/897/45 2.11e-01/274/62 6.23e-02/59/26
x7(100) 5.63e-02/49/20 5.01e-01/897/45 2.14e-01/274/62 6.56e-02/59/26
x1(150) 1.14e-01/33/16 1.40e+00/1140/50 5.44e-01/281/63 1.85e-01/54/24
x2(150) 1.12e-01/33/16 1.58e+00/1291/54 5.84e-01/301/67 1.88e-01/56/25
x3(150) 1.35e-01/44/19 1.64e+00/1341/60 5.85e-01/301/67 1.83e-01/53/24
x4(150) 1.14e-01/33/16 1.25e+00/1011/48 5.09e-01/261/59 1.76e-01/52/23
x5(150) 1.42e-01/46/19 1.67e+00/1346/63 5.85e-01/301/67 1.91e-01/56/25
x6(150) 1.55e-01/49/21 1.54e+00/1234/56 6.21e-01/295/66 2.11e-01/56/25
x7(150) 1.70e-01/49/21 1.58e+00/1234/56 6.14e-01/295/66 2.11e-01/56/25
x1(200) 1.69e-01/35/17 2.29e+00/1432/61 1.32e+00/534/100 2.45e-01/51/23
x2(200) 1.67e-01/35/17 2.59e+00/1621/66 1.40e+00/577/107 2.55e-01/53/24
x3(200) 2.02e-01/45/20 2.59e+00/1625/66 1.41e+00/582/108 2.66e-01/56/25
x4(200) 1.58e-01/33/16 2.02e+00/1249/56 1.19e+00/486/92 2.37e-01/49/22
x5(200) 2.07e-01/48/20 2.58e+00/1625/66 1.41e+00/582/108 2.63e-01/56/25
x6(200) 2.15e-01/52/21 2.46e+00/1548/66 1.36e+00/558/104 2.60e-01/56/25
x7(200) 2.18e-01/52/21 2.47e+00/1548/66 1.36e+00/558/104 2.60e-01/56/25
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Table 5. Numerical results for Problem 5.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 9.00e-03/67/13 3.54e-03/18/6 5.10e-03/41/10 7.26e-03/41/10
x2(10) 8.47e-03/67/13 2.83e-03/19/6 1.52e-02/125/25 5.33e-03/45/11
x3(10) 1.39e-02/127/22 2.69e-03/19/6 1.35e-02/125/25 5.40e-03/45/11
x4(10) 6.76e-03/50/11 3.86e-03/38/7 6.39e-03/51/13 5.78e-03/46/12
x5(10) 1.74e-02/121/21 4.00e-03/21/7 1.44e-02/125/25 5.65e-03/45/11
x6(10) 1.81e-02/133/23 3.16e-03/21/7 1.59e-02/120/24 5.14e-03/41/10
x7(10) 1.55e-02/134/23 2.68e-03/21/7 1.32e-02/120/24 4.78e-03/41/10
x1(50) 2.80e-02/67/13 8.72e-03/18/6 2.11e-02/45/11 1.87e-02/41/10
x2(50) 2.76e-02/67/13 9.55e-03/20/6 5.25e-02/130/26 2.00e-02/45/11
x3(50) 5.02e-02/133/23 1.01e-02/20/6 5.50e-02/130/26 1.96e-02/45/11
x4(50) 2.33e-02/55/12 1.77e-02/46/8 2.64e-02/56/14 2.35e-02/50/13
x5(50) 5.70e-02/145/25 1.23e-02/24/8 5.66e-02/130/26 2.17e-02/45/11
x6(50) 6.02e-02/158/27 1.03e-02/21/7 5.03e-02/125/25 2.01e-02/45/11
x7(50) 5.61e-02/144/25 1.12e-02/21/7 5.18e-02/125/25 2.04e-02/45/11

x1(100) 4.91e-02/72/14 1.52e-02/19/6 3.60e-02/45/11 3.17e-02/41/10
x2(100) 4.69e-02/67/13 1.68e-02/21/6 4.47e-02/55/13 3.45e-02/45/11
x3(100) 9.30e-02/145/25 2.10e-02/26/7 1.01e-01/142/28 3.46e-02/45/11
x4(100) 4.10e-02/55/12 5.26e-02/91/9 4.85e-02/63/15 4.02e-02/50/13
x5(100) 8.30e-02/127/22 2.52e-02/28/8 1.12e-01/142/28 3.29e-02/45/11
x6(100) 1.03e-01/157/27 1.72e-02/21/7 9.35e-02/130/26 3.37e-02/45/11
x7(100) 8.95e-02/138/24 1.91e-02/21/7 9.33e-02/130/26 3.38e-02/45/11
x1(150) 1.38e-01/72/14 4.67e-02/22/7 8.85e-02/45/11 1.02e-01/45/11
x2(150) 1.35e-01/72/14 4.96e-02/26/7 2.62e-01/142/28 1.07e-01/45/11
x3(150) 2.24e-01/127/22 5.60e-02/31/8 2.55e-01/142/28 1.15e-01/49/12
x4(150) 1.17e-01/55/12 1.01e-01/63/10 1.42e-01/73/17 1.17e-01/50/13
x5(150) 2.82e-01/156/27 5.72e-02/31/8 2.69e-01/142/28 1.10e-01/49/12
x6(150) 2.73e-01/151/26 4.62e-02/22/7 2.35e-01/130/26 1.03e-01/45/11
x7(150) 2.48e-01/139/24 4.59e-02/22/7 2.34e-01/130/26 1.02e-01/45/11
x1(200) 1.73e-01/72/14 5.76e-02/22/7 1.25e-01/51/12 1.28e-01/45/11
x2(200) 1.71e-01/72/14 7.15e-02/31/8 3.22e-01/142/28 1.27e-01/45/11
x3(200) 3.11e-01/136/24 7.53e-02/34/8 3.35e-01/147/29 1.41e-01/49/12
x4(200) 1.39e-01/55/12 1.46e-01/80/11 3.89e-01/171/34 1.48e-01/50/13
x5(200) 3.76e-01/168/29 7.58e-02/34/8 3.62e-01/147/29 1.40e-01/49/12
x6(200) 3.26e-01/146/25 6.53e-02/25/8 2.56e-01/111/23 1.28e-01/45/11
x7(200) 3.11e-01/139/24 6.43e-02/25/8 2.59e-01/111/23 1.28e-01/45/11
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Table 6. Numerical results for Problem 6.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 1.26e-03/5/2 8.11e-04/5/2 1.04e-03/5/2 1.87e-03/9/4
x2(10) 4.73e-04/3/1 2.35e-03/13/6 8.69e-04/5/2 8.99e-04/5/2
x3(10) 4.83e-04/3/1 1.48e-03/11/5 6.15e-04/5/2 1.19e-03/7/3
x4(10) 1.45e-03/7/3 1.51e-03/9/3 2.20e-03/13/4 2.26e-03/11/5
x5(10) 4.06e-03/19/9 2.11e-03/15/7 9.00e-04/5/2 4.46e-03/23/11
x6(10) 3.35e-03/17/8 2.55e-03/17/8 1.54e-03/9/4 4.54e-03/26/12
x7(10) 3.33e-03/17/8 3.76e-03/17/8 1.78e-03/9/4 4.76e-03/26/12
x1(50) 3.51e-03/5/2 5.59e-03/10/3 7.61e-03/13/4 7.31e-03/9/4
x2(50) 1.68e-03/3/1 9.88e-03/15/7 3.38e-03/5/2 3.67e-03/5/2
x3(50) 1.34e-03/3/1 5.17e-03/11/5 2.31e-03/5/2 4.16e-03/7/3
x4(50) 5.44e-03/7/3 1.51e-02/33/5 1.30e-02/23/6 8.56e-03/11/5
x5(50) 1.51e-02/19/9 8.58e-03/15/7 3.15e-03/5/2 1.82e-02/25/12
x6(50) 1.28e-02/17/8 9.79e-03/17/8 6.09e-03/9/4 2.27e-02/31/15
x7(50) 1.18e-02/17/8 1.06e-02/17/8 6.09e-03/9/4 2.27e-02/31/15
x1(100) 6.82e-03/5/2 1.88e-02/19/4 2.37e-02/23/6 1.32e-02/9/4
x2(100) 3.87e-03/3/1 1.64e-02/15/7 7.05e-03/5/2 6.41e-03/5/2
x3(100) 3.32e-03/3/1 8.66e-03/11/5 4.85e-03/5/2 7.66e-03/7/3
x4(100) 9.83e-03/7/3 4.79e-02/58/8 4.46e-02/44/10 1.67e-02/11/5
x5(100) 2.67e-02/19/9 1.49e-02/15/7 5.83e-03/5/2 3.20e-02/25/12
x6(100) 2.33e-02/17/8 1.96e-02/18/7 1.03e-02/10/3 3.81e-02/31/15
x7(100) 2.36e-02/17/8 1.77e-02/18/7 1.15e-02/10/3 4.02e-02/31/15
x1(150) 1.57e-02/5/2 4.97e-02/27/5 5.39e-02/23/6 3.27e-02/9/4
x2(150) 7.74e-03/3/1 3.97e-02/15/7 1.31e-02/5/2 1.69e-02/5/2
x3(150) 6.87e-03/3/1 2.48e-02/11/5 1.15e-02/5/2 2.25e-02/7/3
x4(150) 2.34e-02/7/3 1.24e-01/76/9 1.16e-01/55/12 4.06e-02/11/5
x5(150) 7.44e-02/19/9 3.80e-02/15/7 1.38e-02/5/2 9.39e-02/25/12
x6(150) 6.02e-02/17/8 5.58e-02/24/9 3.15e-02/13/4 1.14e-01/31/15
x7(150) 5.89e-02/17/8 5.37e-02/24/9 3.13e-02/13/4 1.16e-01/31/15
x1(200) 1.97e-02/5/2 8.34e-02/36/6 6.76e-02/23/6 4.10e-02/9/4
x2(200) 1.08e-02/3/1 5.24e-02/15/7 1.75e-02/5/2 2.16e-02/5/2
x3(200) 9.28e-03/3/1 3.23e-02/11/5 1.50e-02/5/2 2.82e-02/7/3
x4(200) 3.08e-02/7/3 2.06e-01/99/11 1.65e-01/61/13 5.13e-02/11/5
x5(200) 8.44e-02/19/9 4.59e-02/15/7 1.71e-02/5/2 1.16e-01/25/12
x6(200) 7.45e-02/17/8 7.16e-02/24/9 4.17e-02/13/4 1.44e-01/31/15
x7(200) 7.55e-02/17/8 6.93e-02/24/9 4.08e-02/13/4 1.45e-01/31/15
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Table 7. Numerical results for Problem 7.

Inti(n) MPHL PSGM PDY PCG
CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter CPUT/NF/NIter

x1(10) 6.77e-04/4/1 2.63e-03/16/7 7.65e-03/52/17 4.56e-03/31/12
x2(10) 5.96e-04/4/1 2.63e-03/16/7 6.01e-03/46/15 6.64e-03/29/11
x3(10) 4.26e-04/4/1 1.96e-03/14/6 4.85e-03/37/12 3.22e-03/24/9
x4(10) 5.83e-04/5/1 2.87e-03/23/8 8.58e-03/60/19 7.28e-03/34/13
x5(10) 5.62e-03/31/12 2.43e-03/16/7 6.40e-03/40/13 3.94e-03/26/10
x6(10) 5.51e-03/34/13 2.20e-03/16/7 6.86e-03/52/17 4.65e-03/31/12
x7(10) 5.90e-03/34/13 2.30e-03/16/7 6.69e-03/52/17 4.38e-03/31/12
x1(50) 1.97e-03/4/1 1.23e-02/22/8 2.92e-02/60/19 1.89e-02/31/12
x2(50) 1.69e-03/4/1 1.01e-02/16/7 2.55e-02/49/16 1.84e-02/31/12
x3(50) 1.41e-03/4/1 5.53e-03/14/6 1.46e-02/37/12 1.20e-02/24/9
x4(50) 2.19e-03/5/1 1.71e-02/39/10 3.73e-02/77/22 2.08e-02/34/13
x5(50) 1.84e-02/31/12 7.07e-03/16/7 2.09e-02/40/13 1.50e-02/26/10
x6(50) 2.07e-02/34/13 1.08e-02/19/8 2.55e-02/52/17 1.97e-02/34/13
x7(50) 2.09e-02/34/13 9.77e-03/19/8 2.59e-02/52/17 1.95e-02/34/13
x1(100) 4.28e-03/4/1 2.31e-02/28/9 5.79e-02/65/20 3.04e-02/31/12
x2(100) 3.55e-03/4/1 1.48e-02/16/7 4.37e-02/49/16 3.05e-02/31/12
x3(100) 3.02e-03/4/1 9.40e-03/14/6 2.62e-02/37/12 1.93e-02/24/9
x4(100) 4.09e-03/5/1 4.09e-02/60/12 7.24e-02/91/24 3.33e-02/34/13
x5(100) 3.10e-02/31/12 1.15e-02/16/7 3.38e-02/40/13 2.59e-02/26/10
x6(100) 3.40e-02/34/13 1.78e-02/21/8 4.88e-02/60/19 3.44e-02/36/14
x7(100) 3.50e-02/34/13 1.91e-02/21/8 5.08e-02/60/19 3.49e-02/36/14
x1(150) 8.52e-03/4/1 6.37e-02/34/9 1.62e-01/77/22 9.48e-02/31/12
x2(150) 8.49e-03/4/1 3.93e-02/16/7 1.11e-01/49/16 9.67e-02/31/12
x3(150) 7.68e-03/4/1 2.93e-02/14/6 7.29e-02/37/12 6.51e-02/24/9
x4(150) 9.60e-03/5/1 1.17e-01/74/13 2.08e-01/103/26 1.00e-01/34/13
x5(150) 8.68e-02/31/12 3.37e-02/16/7 8.95e-02/40/13 7.67e-02/26/10
x6(150) 9.75e-02/34/13 4.76e-02/23/8 1.36e-01/60/19 1.09e-01/36/14
x7(150) 9.45e-02/34/13 4.97e-02/23/8 1.31e-01/60/19 1.07e-01/36/14
x1(200) 1.05e-02/4/1 8.25e-02/37/9 2.09e-01/77/22 1.20e-01/31/12
x2(200) 1.00e-02/4/1 4.77e-02/16/7 1.40e-01/49/16 1.19e-01/31/12
x3(200) 8.83e-03/4/1 3.64e-02/14/6 9.53e-02/37/12 8.19e-02/24/9
x4(200) 1.14e-02/5/1 1.67e-01/85/14 2.92e-01/117/28 1.29e-01/34/13
x5(200) 1.11e-01/31/12 4.33e-02/16/7 1.15e-01/40/13 1.03e-01/26/10
x6(200) 1.23e-01/34/13 6.60e-02/23/8 1.89e-01/65/20 1.42e-01/36/14
x7(200) 1.25e-01/34/13 6.26e-02/23/8 1.84e-01/65/20 1.41e-01/36/14
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5. Numerical experiment for sparse signal restoration

5.1. General setups

A key challenge in compressed sensing is recovering sparse signals from under-determined systems
of linear equations [32]. The objective is to identify sparse solutions that meet a specific set of linear
constraints. We consider the under-determined systems of linear equations as follows:

θ = Θx̃,

where θ is an observed signal, Θ ∈ Rm×n is a linear mapping, and x̃ is an original sparse signal.
It is inherently difficult to restore the sparse signal x̃ from the observed signal θ due to the ill-posed
nature of the linear system, which often lacks a unique solution. To tackle this challenge, regularization
techniques are often employed, which impose additional constraints to promote sparsity in the solution.
Specifically, the problem can be formulated as the minimization of a combined `1 − `2 norm:

min
x

1
2
‖θ − Θx‖22 +$‖x‖1, (5.1)

where $ > 0 is the regularization parameter, and ‖x‖1 and ‖x‖2 represent the `1 and `2 norms,
respectively. Clearly, the problem (5.1) is a convex, unconstrained optimization problem. This
convexity is crucial as it ensures the existence of a global minimum, which can be efficiently
identified using various optimization algorithms. The regularization parameter $ plays a key role in
balancing the trade-off between sparsity and the signal.

The process of solving the problem (5.1) begins with reformulating the problem into a convex
quadratic form [33]. This involves expressing any x ∈ Rn as a vector composed of two non-negative
components, such that

x = u − v, u ≥ 0, v ≥ 0, u, v ∈ Rn,

where ui = (xi)+ and vi = (−xi)+ for all i = 1, 2, . . . , n, with (·)+ = max{0, x}. Together with the problem
(5.1), this results in the following optimization problem:

min
u,v

1
2
‖Θ(u − v) − θ‖22 +$eT

n u +$eT
n v, (5.2)

where en = (1, 1, . . . , 1)T ∈ Rn. For convenient writing, we define the following notations:

η =

(
u
v

)
, τ = $e2n +

(
−ΘTθ

ΘTθ

)
, Γ =

(
ΘTΘ −ΘTΘ

−ΘTΘ ΘTΘ

)
.

According to these notations, the problem (5.2) can be reformulated as follows:

min
η

1
2
ηTΓη + τTη, η ≥ 0. (5.3)

Additionally, according to the work [34], the problem (5.3) was further reformulated, and it was
demonstrated to be equivalent to the following:

h(η) = min {η,Γη + τ} = 0.
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As a result, our proposed algorithm can be applied in the sparse signal restoration.
To evaluate the performance of Algorithm MPHL, its numerical results are compared with those of

Algorithm PSGM, Algorithm PDY, and Algorithm PCG. The context of this evaluation is sparse signal
restoration, which involves recovering an original signal of length n from an observed signal of length
m. Note that the length of the observed signal is less than that of the original signal. The performance
of the algorithms is characterized using the following metrics: (i) Mean Squared Error (MSE); (ii)
NIter; (iii) CPUT; (iv) Objective function value (objFun).
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PCG(MSE = 1.39e−05, NIter=216, CPUT=0.96s)

Figure 4. From top to bottom: the original signal, the observed signal, and the recovered
signals by four algorithms with the signal size (n,m, k) = (4096, 1024, 128).

5.2. Numerical reports

In this experiment, we consider two signal sizes: (n,m, k) = (212, 210, 27) and
(n,m, k) = (213, 211, 28). Figures 4 and 6 sequentially display the original signal, the observed signal,
and the recovered signals obtained by each algorithm. The results indicate that all algorithms
successfully recover the original signal. However, Algorithm MPHL achieves signal recovery with
fewer iterations and shorter CPU time compared to the other algorithms. Further analysis reveals that
as the signal size increases, Algorithm MPHL shows only a modest increase in the number of
iterations and CPU time. Additionally, Figures 5 and 7 provide a comparative analysis of the
convergence results for the four algorithms in terms of MSE, NIter, CPUT, and objFun. These figures
illustrate that the MSE values and objective function values for all four algorithms ultimately
approach zero, indicating that each algorithm can achieve high-quality restoration results. Notably,
Algorithm MPHL demonstrates faster convergence, outperforming the other algorithms in terms of
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both efficiency and computational cost.
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Figure 5. Comparison results of four algorithms with the signal size (n,m, k) =

(4096, 1024, 128).
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Figure 6. From top to bottom: the original signal, the observed signal, and the recovered
signals by four algorithms with the signal size (n,m, k) = (8192, 2048, 256).
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Figure 7. Comparison results of four algorithms with the signal size (n,m, k) =

(8192, 2048, 256).

6. Conclusions

In this paper, we proposed a novel hybrid PRP-HS-LS-type conjugate gradient algorithm tailored
for solving nonlinear systems of equations with convex constraints. The proposed algorithm
incorporates a hybrid technique to design the conjugate parameter, combining the strengths of PRP,
HS, and LS conjugate gradient methods to enhance performance and stability. The search direction,
formulated by using the hybrid conjugate parameter, inherently satisfies the sufficient descent
condition and trust region properties. Remarkably, this is achieved without the need for a line search
mechanism. The global convergence of the proposed algorithm is rigorously established under
general conditions. Notably, this proof does not rely on the often restrictive Lipschitz continuity
assumption, broadening the applicability of the algorithm to a wider class of problems. Extensive
numerical experiments demonstrate the algorithm’s superior efficiency, particularly in solving
large-scale nonlinear systems of equations with convex constraints. Additionally, the proposed
algorithm proves highly effective in addressing sparse signal restoration problems. In the future, we
will discuss the potential extension of our algorithm to complex variables.
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