In this paper, we review the underappreciated theorem by Lotz that tells us that every strongly continuous operator semigroup on a Grothendieck space with the Dunford-Pettis property is automatically uniformly continuous. A large class of spaces that carry these geometric properties are $ \mathrm{L}^\infty(\Omega, \Sigma, \mu) $ for non-negative measure spaces. This shows once again that $ \mathrm{L}^\infty $-spaces have to be treated differently.
Citation: Christian Budde. Another special role of $ \mathrm{L}^\infty $-spaces-evolution equations and Lotz' theorem[J]. AIMS Mathematics, 2024, 9(12): 36158-36166. doi: 10.3934/math.20241716
In this paper, we review the underappreciated theorem by Lotz that tells us that every strongly continuous operator semigroup on a Grothendieck space with the Dunford-Pettis property is automatically uniformly continuous. A large class of spaces that carry these geometric properties are $ \mathrm{L}^\infty(\Omega, \Sigma, \mu) $ for non-negative measure spaces. This shows once again that $ \mathrm{L}^\infty $-spaces have to be treated differently.
[1] | Y. A. Abramovich, C. D. Aliprantis, An invitation to operator theory, American Mathematical Society, 50 (2002). https://doi.org/10.1090/gsm/050 |
[2] | A. A. Albanese, J. Bonet, W. J. Ricker, Grothendieck spaces with the Dunford-Pettis property, Positivity, 14 (2010), 145–164. https://doi.org/10.1007/s11117-009-0011-x doi: 10.1007/s11117-009-0011-x |
[3] | N. Alon, K. Makarychev, Y. Makarychev, A. Naor, Quadratic forms on graphs, Invent. Math., 163 (2006), 499–522. https://doi.org/10.1007/s00222-005-0465-9 |
[4] | N. Alon, A. Naor, Approximating the cut-norm via Grothendieck's inequality, SIAM J. Comput., 35 (2006), 787–803. https://doi.org/10.1137/S0097539704441629 doi: 10.1137/S0097539704441629 |
[5] | W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, et al., One-parameter semigroups of positive operators, Lecture Notes in Mathematics, 1184 (1986). https://doi.org/10.1007/BFb0074922 |
[6] | S. V. Astashkin, L. Maligranda, $L_p +L_{\infty}$ and $L_p \cap L_{\infty}$ are not isomorphic for all $1 \leq p < \infty$, $p \neq 2$. Proc. Amer. Math. Soc., 146 (2018), 2181–2194. https://doi.org/10.1090/proc/13928 |
[7] | M. J. Beltrán-Meneu, M. C. Gómez-Collado, E. Jordá, D. Jornet, Mean ergodic composition operators on Banach spaces of holomorphic functions, J. Funct. Anal., 270 (2016), 4369–4385. https://doi.org/10.1016/j.jfa.2016.03.003 doi: 10.1016/j.jfa.2016.03.003 |
[8] | T. F. Bewley, A very weak theorem on the existence of equilibria in atomless economies with infinitely many commodities, Equilibrium theory in infinite dimensional spaces, 1991,224–232. https://doi.org/10.1007/978-3-662-07071-0_9 |
[9] | C. Bombach, D. Gallaun, C. Seifert, M. Tautenhahn, Observability and null-controllability for parabolic equations in $L_p$-spaces, Math. Control Relat. F., 13 (2023), 1484–1499. https://doi.org/10.3934/mcrf.2022046 doi: 10.3934/mcrf.2022046 |
[10] | J. Bonet, E. Jordá, A. Rodríguez, Mean ergodic multiplication operators on weighted spaces of continuous functions, Mediterr. J. Math., 15 (2018), 108. https://doi.org/10.1007/s00009-018-1150-8 doi: 10.1007/s00009-018-1150-8 |
[11] | J. Bourgain, On the Dunford-Pettis property, Proc. Amer. Math. Soc., 81 (1981), 265–272. https://doi.org/10.2307/2044207 doi: 10.2307/2044207 |
[12] | J. Bourgain, $H^{\infty}$ is a Grothendieck space, Stud. Math., 75 (1983), 193–216. https://doi.org/10.4064/sm-75-2-193-216 doi: 10.4064/sm-75-2-193-216 |
[13] | J. Bourgain, The Dunford-Pettis property for the ball-algebras, the polydisc-algebras and the Sobolev spaces, Stud. Math., 77 (1984), 245–253. https://doi.org/10.4064/sm-77-3-246-253 doi: 10.4064/sm-77-3-246-253 |
[14] | C. Budde, M. K. Fijavž, Bi-continuous semigroups for flows on infinite networks, 16 (2021), 553–567. https://doi.org/10.3934/nhm.2021017 |
[15] | J. Diestel, Grothendieck spaces and vector measures, Vector Operator Valued Meas. Appl., 1973, 97–108. https://doi.org/10.1016/B978-0-12-702450-9.50015-4 |
[16] | J. Diestel, A survey of results related to the Dunford-Pettis property, In: Proceedings of the Conference on Integration, Topology, and Geometry in Linear Spaces, 2 (1980), 15–60. https://doi.org/10.1090/conm/002/621850 |
[17] | N. Dunford, B. J. Pettis, Linear operations on summable functions, Trans. Amer. Math. Soc., 47 (1940), 323–392. https://doi.org/10.1090/S0002-9947-1940-0002020-4 doi: 10.1090/S0002-9947-1940-0002020-4 |
[18] | N. Dunford, J. T. Schwartz, Linear operators, I. General theory, New York and London: Interscience Publishers, 1988. |
[19] | E. Emel'yanov, N. Erkursun, Lotz-Räbiger's nets of Markov operators in $L^1$-spaces, J. Math. Anal. Appl., 371 (2010), 777–783. https://doi.org/10.1016/j.jmaa.2010.05.060 doi: 10.1016/j.jmaa.2010.05.060 |
[20] | K. J. Engel, R. Nagel, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, 194 (2000). https://doi.org/10.1007/b97696 |
[21] | B. Farkas, Perturbations of bi-continuous semigroups, Stud. Math., 161 (2004), 147–161. https://doi.org/10.4064/sm161-2-3 doi: 10.4064/sm161-2-3 |
[22] | D. H. Fremlin, Measure theory, Colchester: Torres Fremlin, 2003. |
[23] | J. A. Goldstein, Semigroups of linear operators and applications, Oxford: Oxford University Press, 1987. https://doi.org/10.1137/1029026 |
[24] | M. González, T. Kania, Grothendieck spaces: The landscape and perspectives, Jpn. J. Math., 16 (2021), 247–313. https://doi.org/10.1007/s11537-021-2116-3 doi: 10.1007/s11537-021-2116-3 |
[25] | A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$, Can. J. Math., 5 (1953), 129–173. https://doi.org/10.4153/CJM-1953-017-4 doi: 10.4153/CJM-1953-017-4 |
[26] | B. Jacob, F. L. Schwenninger, J. Wintermayr, A refinement of Baillon's theorem on maximal regularity, Stud. Math., 263 (2022), 141–158. https://doi.org/10.4064/sm200731-20-3 doi: 10.4064/sm200731-20-3 |
[27] | H. Keshavarzi, Mean ergodic composition operators on $H^{\infty} (\mathbb{B}_n)$, Positivity, 26 (2022), 30. https://doi.org/10.1007/s11117-022-00901-5 doi: 10.1007/s11117-022-00901-5 |
[28] | A. Kishimoto, D. W. Robinson, Subordinate semigroups and order properties, J. Aust. Math. Soc. Ser. A, 31 (1981), 59–76. https://doi.org/10.1017/S1446788700018486 doi: 10.1017/S1446788700018486 |
[29] | F. Kühnemund, A Hille-Yosida theorem for bi-continuous semigroups, Semigroup Forum, 67 (2003), 205–225. https://doi.org/10.1007/s00233-002-5000-3 doi: 10.1007/s00233-002-5000-3 |
[30] | H. P. Lotz, Tauberian theorems for operators on $L^{\infty}$ and similar spaces, North-Holland Math. Stud., 90 (1984), 117–133. https://doi.org/10.1016/S0304-0208(08)71470-1 |
[31] | H. P. Lotz, Uniform convergence of operators on $L^{\infty}$ and similar spaces, Math. Z., 190 (1985), 207–220. https://doi.org/10.1007/BF01160459 doi: 10.1007/BF01160459 |
[32] | G. Lumer, Evolution equations and their applications in physical and life sciences, Proceeding of the Bad Herrenalb (Karlsruhe) conference, New York, NY: Marcel Dekker, 2001. https://doi.org/10.1201/9780429187810 |
[33] | P. Meyer-Nieberg, Banach lattices, Berlin: Springer-Verlag, Universitext, 1991. https://doi.org/10.1007/978-3-642-76724-1 |
[34] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, 44 (1983). https://doi.org/10.1007/978-1-4612-5561-1 |
[35] | G. Pisier, Grothendieck's theorem, past and present, Bull. Amer. Math. Soc., 49 (2012), 237–323. https://doi.org/10.1090/S0273-0979-2011-01348-9 |
[36] | F. Räbiger, Beiträge zur Strukturtheorie der Grothendieck-Räume, Heidelberger: Sitzungsber, 1985. https://doi.org/10.1007/978-3-642-45612-1 |
[37] | C. L. Rogers, Complete $L_\infty $-algebras and their homotopy theory, J. Pure Appl. Algebra, 227 (2023), 107403. https://doi.org/10.1016/j.jpaa.2023.107403 doi: 10.1016/j.jpaa.2023.107403 |
[38] | H. H. Schaefer, Banach lattices and positive operators, New York-Heidelberg: Springer-Verlag, 1974. https://doi.org/10.1007/978-3-642-65970-6 |
[39] | W. Seyoum, T. Mengestie, J. Bonet, Mean ergodic composition operators on generalized Fock spaces, RACSAM, 114 (2020), 6. https://doi.org/10.1007/s13398-019-00738-w doi: 10.1007/s13398-019-00738-w |
[40] | S. Y. Shaw, Uniform convergence of ergodic limits and approximate solutions, Proc. Amer. Math. Soc., 114 (1992), 405–411. https://doi.org/10.2307/2159662 doi: 10.2307/2159662 |
[41] | J. M. A. M. van Neerven, A converse of Lotz's theorem on uniformly continuous semigroups, Proc. Amer. Math. Soc., 116 (1992), 525–527. https://doi.org/10.2307/2159762 doi: 10.2307/2159762 |
[42] | J. von Below, J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks, Results Math., 47 (2005), 199–225. https://doi.org/10.1007/BF03323026 doi: 10.1007/BF03323026 |
[43] | J. von Below, J. A. Lubary, The eigenvalues of the Laplacian on locally finite networks under generalized node transition, Results Math., 54 (2009), 15–39. https://doi.org/10.1007/s00025-009-0376-y doi: 10.1007/s00025-009-0376-y |
[44] | R. Wittmann, Schwach irreduzible Markoff-operatoren, Monatsh. Math., 105 (1988), 319–334. https://doi.org/10.1007/BF01318808 doi: 10.1007/BF01318808 |
[45] | A. J. Wrobel, A sufficient condition for a singular functional on $L^\infty [0, 1]$ to be represented on $\mathcal{C} [0, 1]$ by a singular measure, Indagat. Math. New Ser., 29 (2018), 746–751. https://doi.org/10.1016/j.indag.2017.12.005 doi: 10.1016/j.indag.2017.12.005 |
[46] | K. Yosida, E. Hewitt, Finitely additive measures, Trans. Amer. Math. Soc., 72 (1952), 46–66. https://doi.org/10.2307/1990654 |
[47] | Y. Zhang, C. C. Chen, Stochastic asymptotical regularization for linear inverse problems, Inverse Probl., 39 (2022), 015007. https://doi.org/10.1088/1361-6420/aca70f doi: 10.1088/1361-6420/aca70f |
[48] | Y. Zhang, B. Hofmann, On the second-order asymptotical regularization of linear ill-posed inverse problems, Appl. Anal., 99 (2020), 1000–1025. https://doi.org/10.1080/00036811.2018.1517412 doi: 10.1080/00036811.2018.1517412 |