Research article

Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators

  • Received: 26 October 2021 Revised: 12 December 2021 Accepted: 10 January 2022 Published: 14 January 2022
  • MSC : 42B20, 42B25, 47G30

  • In this paper, by applying the accurate estimates of the Hörmander class, the authors consider the commutators of bilinear pseudo-differential operators and the operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the corresponding sharp maximal function, the boundedness of the commutators is obtained respectively on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $. Moreover, the endpoint estimate of the commutators is also established on $ L^{\infty}\times L^{\infty} $.

    Citation: Yanqi Yang, Shuangping Tao, Guanghui Lu. Weighted and endpoint estimates for commutators of bilinear pseudo-differential operators[J]. AIMS Mathematics, 2022, 7(4): 5971-5990. doi: 10.3934/math.2022333

    Related Papers:

  • In this paper, by applying the accurate estimates of the Hörmander class, the authors consider the commutators of bilinear pseudo-differential operators and the operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the corresponding sharp maximal function, the boundedness of the commutators is obtained respectively on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with $ \sigma \in\mathcal{B}BS_{1, 1}^{1} $. Moreover, the endpoint estimate of the commutators is also established on $ L^{\infty}\times L^{\infty} $.



    加载中


    [1] E. Acerbi, G. Mingione, Regularity results for stationary electrorheological fluids, Arch. Ration. Mech. Anal., 164 (2002), 213–259. http://dx.doi.org/10.1007/s00205-002-0208-7 doi: 10.1007/s00205-002-0208-7
    [2] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. http://dx.doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
    [3] J. Alvarez, C. Pérez, Estimates with $A_{\infty}$ weights for various singular integral operators, Boll. Unione Mat. Ital., 8 (1994), 123–133.
    [4] P. Auscher, M. Taylor, Paradifferential operators and commutator estimates, Commun. Part. Diff. Eq., 20 (1995), 1743–1775. http://dx.doi.org/10.1080/03605309508821150 doi: 10.1080/03605309508821150
    [5] Á. Bényi, V. Naibo, Commutators of bilinear pseudodifferential operators and Lipschitz functions, J. Fourier Anal. Appl., 24 (2018), 759–779. http://dx.doi.org/10.1007/s00041-016-9519-1 doi: 10.1007/s00041-016-9519-1
    [6] Á. Bényi, T. Oh, Smoothing of commutators for a Hörmander class of bilinear pseudodifferential operators, J. Fourier Anal. Appl., 20 (2014), 282–300. http://dx.doi.org/10.1007/s00041-013-9312-3 doi: 10.1007/s00041-013-9312-3
    [7] A. Calderón, Commutators of singular integral operators, P. Natl. Acad. Sci. USA, 53 (1965), 1092–1099. http://dx.doi.org/10.1073/pnas.53.5.1092 doi: 10.1073/pnas.53.5.1092
    [8] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on variable $L^{p}$ spaces, Ann. Acad. Sci. Fenn.-M., 31 (2006), 239–264.
    [9] D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operators on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. http://dx.doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
    [10] R. Coifman, Y. Meyer, Au delà des opérateurs pseudo-différentiels, Astérisque, 57 (1978).
    [11] R. Coifman, Y. Meyer, Commutateurs d'intégrales singulières et opérateurs multilinéaires, Ann. I. Fourier, 28 (1978), 177–202. http://dx.doi.org/10.5802/aif.708 doi: 10.5802/aif.708
    [12] D. Cruz-Uribe, J. M. Martell, C. Pérez, Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture, Adv. Math., 216 (2007), 647–676. http://dx.doi.org/10.1016/j.aim.2007.05.022 doi: 10.1016/j.aim.2007.05.022
    [13] L. Diening, Maximal function on Musielak-Orlicz spaces and generlaized Lebesgue spaces, Bull. Sci. Math., 129 (2005), 657–700. http://dx.doi.org/10.1016/j.bulsci.2003.10.003 doi: 10.1016/j.bulsci.2003.10.003
    [14] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., Springer-Verlag, Berlin, 2011. http://dx.doi.org/10.1007/978-3-642-18363-8
    [15] Y. Ding, T. Mei, Boundedness and compactness for the commutators of bilinear operators on Morrey spaces, Potential Anal., 42 (2015), 717–748. http://dx.doi.org/10.1007/s11118-014-9455-0 doi: 10.1007/s11118-014-9455-0
    [16] L. Diening, M. Ružička, Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p}$ and problem related to fluid dynamics, J. Reine. Angew. Math., 563 (2003), 197–220. http://dx.doi.org/10.1515/crll.2003.081 doi: 10.1515/crll.2003.081
    [17] C. Fefferman, E. M. Stein, $H^{p}$ spaces of several variables, Acta Math., 129 (1972), 137–193. http://dx.doi.org/10.1007/bf02392215 doi: 10.1007/bf02392215
    [18] L. Grafakos, J. M. Martell, Extrapolation of weighted norm inequalities for multivariable operators and application, J. Geom. Anal., 14 (2004), 19–46. http://dx.doi.org/10.1007/BF02921864 doi: 10.1007/BF02921864
    [19] J. García-Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. Studies, 116, North-Holland Publishing Co., Amsterdam, 1985.
    [20] F. John, Quasi-isometric mappings, Seminari 1962/63 di Analisi Algebra, Geometria e Topologia, Ist. Naz. Alta Mat. Ediz., 2 (1965), 462–473. http://dx.doi.org/ 10.1002/cpa.3160220209 doi: 10.1002/cpa.3160220209
    [21] B. Jawerth, A. Torchinsky, Local sharp maximal functions, J. Approx. Theory, 43 (1985), 231–270. http://dx.doi.org/10.1016/0021-9045(85)90102-9 doi: 10.1016/0021-9045(85)90102-9
    [22] Ö. Kulak, The inclusion theorems for variable exponent Lorentz spaces, Turkish J. Math., 40 (2016), 605–619. http://dx.doi.org/10.3906/mat-1502-23 doi: 10.3906/mat-1502-23
    [23] A. Y. Karlovich, A. K. Lerner, Commutators of singular integrals on generalized $L^{p}$ spaces with variable exponent, Publ. Mat., 49 (2005), 111–125. http://dx.doi.org/10.5565/PUBLMAT_49105_05 doi: 10.5565/PUBLMAT_49105_05
    [24] O. Kováčik, J. Rákosník, On spaces $L^{p(x)}$ and $W^{k, p(x)}$, Czech. Math. J., 41 (1991), 592–618.
    [25] A. K. Lerner, Weighted norm inequalities for the local sharp maximal function, J. Fourier Anal. Appl., 10 (2004), 465–474. http://dx.doi.org/10.1007/s00041-004-0987-3 doi: 10.1007/s00041-004-0987-3
    [26] A. K. Lerner, A pointwise estimate for the local sharp maximal function with applications to singular integrals, Bull. London Math. Soc., 42 (2010), 843–856. http://dx.doi.org/10.1112/blms/bdq042 doi: 10.1112/blms/bdq042
    [27] Y. Lin, S. Lu, Strongly singular Calderón-Zygmund operators and their commutators, Jordan J. Math. Stat., 1 (2008), 31–49.
    [28] A. K. Lerner, S. Ombrosi, C. Pérez, R. H. Torres, R. Trujillo-González, New maximal functions and multiple weights for the multilinear Calderón-Zygmund theory, Adv. Math., 220 (2009), 1222–1264. http://dx.doi.org/10.1016/j.aim.2008.10.014 doi: 10.1016/j.aim.2008.10.014
    [29] K. Li, W. Sun, Weighted estimates for multilinear pseudodifferential operators, Acta Math. Sin., Engl. Ser., 30 (2014), 1281–1288. http://dx.doi.org/10.1007/s10114-014-3027-5 doi: 10.1007/s10114-014-3027-5
    [30] Y. Lin, M. Xu, Endpoint estimates for Marcinkiewicz integrals on weighted weak Hardy spaces, Acta Math. Sin., Engl. Ser., 31 (2015), 430–444. http://dx.doi.org/10.1007/s10114-015-4277-6 doi: 10.1007/s10114-015-4277-6
    [31] Y. Lin, Y. Xiao, Multilinear singular integral operators with generalized kernels and their multilinear commutators, Acta Math. Sin., 33 (2017), 1443–1462. http://dx.doi.org/10.1007/s10114-017-7051-0 doi: 10.1007/s10114-017-7051-0
    [32] G. Lu, P. Zhang, Multilinear Calderón-Zygmund operator with kernels of Dinis type and applications, Nonlinear Anal.-Theor., 107 (2014), 92–117. http://dx.doi.org/10.1016/j.na.2014.05.005 doi: 10.1016/j.na.2014.05.005
    [33] Y. Lin, G. Zhang, Weighted estimates for commutators of strongly singular Calderón-Zygmund operators, Acta Math. Sin., 32 (2016), 1297–1311. http://dx.doi.org/10.1007/s10114-016-6154-3 doi: 10.1007/s10114-016-6154-3
    [34] Y. Meyer, Régularité des solutions des équations aux dérivées partielles nonlinéaires, Springer LNM, 842 (1980), 293–302. http://dx.doi.org/10.1007/BFb0089941 doi: 10.1007/BFb0089941
    [35] D. Maldonado, D. Naibo, Weighted norm inequalities for paraproducts and bilinear pseudodifferentialoperators with mild regularity, J. Fourier Anal. Appl., 15 (2009), 218–261. http://dx.doi.org/10.1007/s00041-008-9029-x doi: 10.1007/s00041-008-9029-x
    [36] C. Pérez, R. H. Torres, Sharp maximal function estimates for multilinear singular integrals, Contemp. Math., 320 (2003), 323–331. http://dx.doi.org/10.1090/conm/320/05615 doi: 10.1090/conm/320/05615
    [37] J. O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., 28 (1979), 511–544. http://dx.doi.org/10.1512/iumj.1979.28.28037 doi: 10.1512/iumj.1979.28.28037
    [38] M. E. Taylor, Commutator estimates, P. Am. Math. Soc., 131 (2003), 1501–1507. http://dx.doi.org/10.1090/S0002-9939-02-06723-0 doi: 10.1090/S0002-9939-02-06723-0
    [39] M. E. Taylor, Commutator estimates for Hölder continuous and bmo-Sobolev multipliers, P. Am. Math. Soc., 143 (2015), 5265–5274. http://dx.doi.org/10.1090/proc/12825 doi: 10.1090/proc/12825
    [40] S. Tao, Q. Li, Commutators of bilinear pseudodifferential operators with Hörmander symbol on generalized Morrey spaces, J. Jilin Univ., 56 (2018), 469–474. http://dx.doi.org/10.13413/j.cnki.jdxblxb.2018.03.01 doi: 10.13413/j.cnki.jdxblxb.2018.03.01
    [41] L. Wang, S. Tao, Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with variable exponent, J. Inequal. Appl. 227 (2014), 1–17. http://dx.doi.org/10.1186/1029-242X-2014-227 doi: 10.1186/1029-242X-2014-227
    [42] L. Wang, S. Tao, Parameterized littlewood-paley operators and their commutators on Lebesgue spaces with variable exponent, Anal. Theory Appl., 31 (2015), 13–24. http://dx.doi.org/10.4208/ata.2015.v31.n1.2 doi: 10.4208/ata.2015.v31.n1.2
    [43] L. Wang, S. Tao, $\theta$-type Calderón-Zygmund operators and commutators in variable exponents Herz space, Open Math., 16 (2018), 1607–1620. http://dx.doi.org/10.1515/math-2018-0133 doi: 10.1515/math-2018-0133
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1823) PDF downloads(112) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog