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1. Introduction and main results

Let T be a linear operator. Given a function a, the commutator [T, a] is defined by

[T, al(f) := T(af) = aT(f).

There is an increasing interest to the study of 7" being a pseudo-differential operator because of its
theory plays an important role in many aspects of harmonic analysis and it has had quite a success
in linear setting. As one of the most meaningful branches, the study of bilinear pseudo-differential
operators was motivated not only as generalizations of the theory of linear ones but also its natural
appearance and important applications. This topic is continuously attracting many researchers.

Let a be a Lipschitz function and 1 < p < oo. The estimates of the form

T, al(Dller < Nlalluip Nl for all f e LP(R") (1.1)

have been studied extensively. In particular, Calderén proved that (1.1) holds when T is a pseudo-
differential operator whose kernel is homogeneous of degree of —n — 1 in [7]. Coifman and Meyer


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022333

5972

showed (1.1) when T = T, and o is a symbol in the Hormander class S %,0 go back to [10, 11], this
result was later extended by Auscher and Taylor in [4] to o € BS {’1, where the class 8BS },1, which
contains S }’0 modulo symbols associated to smoothing operators, consists of symbols whose Fourier
transforms in the first n-dimensional variable are appropriately compactly supported. The method in
the proofs of [10, 11] was mainly showed that, for each Lipschitz continuous functions a on R”", [T, a]
is a Calder6n-Zygmund singular integral whose kernel constants are controlled by |lal| ;1. For another
thing, Auscher and Taylor proved (1.1) in two different ways: one method is based on the paraproducts
while the other is based on the Calderon-Zygmund singular integral operator approach that relies on
the 7'(1) theorem. Fore a more systematic study of these (and even more general) spaces, we refer the
readers to see [38, 39].

Given a bilinear operator 7" and a function a, the following two kinds commutators are respectively
defined by

[T’ a]l(f’ g) = T(af’g) - aT(f,g)
and

(7, a]Z(f’ g) = T(f’ ag) - aT(f’ g)

In 2014, Bényi and Oh proved that (1.1) is also valid to this bilinear setting in [6]. More precisely,
given a bilinear pseudo-differential operator 7, with o in the bilinear Hormander class BS },0 and a
Lipschitz function a on R”, it was proved in [6] that [T, a]; and [T, a], are bilinear Calder6n-Zygmund
operators. The main aim of this paper is to study (1.1) of [T, a];(j = 1,2) on the products of weighted
Lebesgue spaces and variable exponent Lebesgue spaces with o € BBS i ,- Before stating our main
results, we need to recall some definitions and notations. We say that a function a defined on R" is
Lipschitz continuous if

llallpp := su la) = Gl < 0
x,yeR? lx — y |

Leto > 0, p > 0 and m € R. An infinitely differentiable function o : R" X R" X R" — C belongs to
the bilinear Hormander class BS; if for all multi-indices @, 8,y € Nj there exists a positive constant
Co g,y such that

1020:0,07(x, £, )| < C(1 + [€] + [ply"+le=P 80D

Given a o'(x,&,n) € BS 7', the bilinear pseudo-differential operator associated to o is defined by

To(f. )(x) = f f o (6, &) fERNETED dgdn, for all x € B, £, g € SR,
Rn Rn

In 1980, Meyer [34] firstly introduced the linear BSY,, and corresponding boundedness of

[T5,alj(j = 1,2) is obtained by Bényi-Oh in [6] , that is, given m € R and r > 0, an infinitely
differentiable function o : R" x R" X R" — C belongs to 8,BS ', if
o € BSY\, supp(6") C {(r.&,m) € RY : 7] < r(€] + I},

where 6! denotes the Fourier transform of o with respect to its first variable in R”, that is, 6 (t, &, 1) =
o (-, & n)(7), forall 7,£,n € R". The class BBSY is defined as

8BSt = | ] B,BST,.

re(0,4)
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Recently, many authors are interested in bilinear operators, which is a natural generalization of
linear case. With the further research, Arpad Bényi and Virginia Naibo proved that boundedness for
the commutators of bilinear pseudo-differential operators and Lipschitz functions with o € BBS {,1
on the Lebesgue spaces in [5]. In 2018, Tao and Li proved that the boundedness of the commutators
of bilinear pseudo-differential operators was also true on the classical and generalized Morrey spaces
in [40]. Motivated by the results mentioned above, a natural and interesting problem is to consider
whether or not (1.1) is true on the weighted Lebesgue spaces and variable exponent Lebesgue spaces
with o € BBS {’1. The purpose of this paper is to give an surely answer. And also, the endpoint estimate
is obtained on L™ X L. Our proofs are based on the pointwise estimates of the sharp maximal function
proved in the next section.

Many results involving bilinear pseudo-differential operators theory have been obtained in parallel
with the linear ones but some new interesting phenomena have also been observed. One aspect
developed rapidly is the one related to the compactness of the bilinear pseudo-differential operators,
especially, the properties of compactness for the commutators of bilinear pseudo-differential operators
and Lipschitz functions. As the commutators [7-,a]; (j = 1,2) are bilinear Calderon-Zygmund
operators if oo € BBS %’1, similar to the proof of [15] (Theorem A and Theorem 2.12), we can obtain
easily that [T, a]; and [[T,, al;, b]; (i, j = 1,2) are compact operators on the Lebesgue spaces and the
Morrey spaces. For the sake of convenience, there are no further details below.

Suppose that o € BBS } ,- Let K and K; denote the kernel of T, and [T, a]; (j = 1, 2), respectively.
We have

K(xy,2) = f f ECI (& e,

Ki(x,y,2) = (a(y) — a(x)K(x,y,2), Kx(x,y,2) = (a(z) — a(x)K(x,y, ).
Then the following consequences are true.
Theorem A. [6] If x # y or x # z, then we have
(1) | 090007 K (x,3,2) IS (Ix = y| + |x — 2]y~ -lel=-;
(2) IKj(x, y, 2| $ llalluip (1 =yl + |x = 2l + [y = 2 ™>".
The statement of our main theorems will be presented in follows.

Theroem 1.1. Let ¢ > 1, o € BBS %,1 and a be a Lipschitz function on R". Suppose for fixed
1 <r,rn<qg withl/r=1/r +1/r, [Ts,al;(j = 1,2) is bounded from L™ x L™ into L"* with norm
controlled by ||al| iy . If 0 < 6 < 1/2, then

MT,. ali(f,)(x) < Cllalluip My (f)(X) My (9)(x), j=1,2

for all f, g of bounded measurable functions with compact support.

Theorem 1.2. Let ¢’ > 1, o € BBS %,1 and a be a Lipschitz function on R". Suppose for fixed
1 <r,rn<qg withl/r=1/r +1/r, [Ts,al;(j = 1,2) is bounded from L™ x L™ into L"* with norm
controlled by |lall iyt If b € BMO,0 <6 <1/2,6 <& <00,q" <5 < oo, then

ME([[T . al;, b1)(x) < Cllbllamo ((Ms([TO', ali(f, e)(x) + llalluip (M(f )(X))(Ms(g)(X))) ;

where i, j = 1,2 and above inequality is valid for all f, g of bounded measurable functions with
compact support.
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Theorem 1.3. Let ¢’ > 1, o € BBS {,1 and a be a Lipschitz function on R". Suppose for fixed
1 <r,rn<qg withl/r=1/r +1/r, [Ts,al;j(j = 1,2)is bounded from L™ X L™ into L"* with norm
p P

controlled by llallLip- If (W1, @2) € (Ap, /4, Apsy) and @ = w]'w}, then for ¢’ < pi,py < oo with
1/p=1/pi+1/ps, [Ts,al;(j = 1,2)is bounded from L’!(w) X L”*(w) into LF(w).

Theorem 1.4. Let g > 1, o € BBS %,1 and a be a Lipschitz function on R". Suppose for fixed
1 <r,rn<qg withl/r=1/r +1/r, [Ts,al;(j = 1,2)is bounded from L™ x L™ into L"* with norm

p P

controlled by ||ally;pt. If b € BMO, (w;, w:) € (A, /4, Ap, /) and w = w]" w§7’ then for ¢’ < py, pp < 0
with 1/p = 1/py + 1/p,, [[T4,al;, bli(i, j = 1,2) is bounded from "' (w) X LP*(w) into LP(w).
Theorem 1.5. Let p(-), pi(-), p2(:) € BR") with 1/p(-) = 1/p1(-) + 1/p,(), and qé be given as in
Lemma 4.4 for p;(), j=1,2. Suppose that o € BBS}’I, a is a Lipschitz function on R" and 1 < ¢’ <
min{g,, ¢Z}. If for fixed 1 < r,r, < ¢’ with 1/r = 1/ri+1/ry, [Ty, al;(j = 1,2) is bounded from L™ x L™
into L™ with norm controlled by |lall;,1, then [Ty, a];(j = 1,2) is bounded from LP*O(R") x LP2O(R")
into LPO(R").

Theorem 1.6. Let p(-), pi(-), p.(:) € BR") with 1/p(-) = 1/p1(-) + 1/p,(), and qé be given as in
Lemma 4.4 for p;(-), j=1,2. Suppose that o € BBS {’], a is a Lipschitz function on R" and 1 < ¢’ <
min{g,, ¢g}. If for fixed 1 < ri,r, < ¢ with 1/r = 1/ri + 1/rp, [Ty, al;(j = 1,2) is bounded from
L" x L™ into L™ with norm controlled by [lallr;,1, and b € BMO, then [[T,,al;, bli(i,j = 1,2) 1s
bounded from LP'O(R") x LP*(R") into LPO(R™).

Theorem 1.7. Let o € 8BS } , and a be a Lipschitz function. Suppose for fixed 1 < ry,r, < ¢’ with
L/r=1/ri+1/r, [Ty, al;(j = 1,2) is bounded from L™ X L" into L"* with norm controlled by ||a||ip: .
Then [T, a];(j = 1,2) is bounded from L* X L* into BMO.

We use the following notation: For 1 < p < oo, p’ is the conjugate index of p, thatis, 1/p+1/p" = 1.
B(x, R) denotes the ball centered at x with radius R > 0 and f3 = m s f(»)dy. The paper
is organized as follows. The pointwise estimates of the sharp maximal functions are presented in
Section 2. The weighted boundedness is given in Section 3. The proofs of the boundedness on the
product of variable exponent Lebesgue spaces are showed in Section 4. The endpoint estimate is
proved in Section 5.

2. Pointwise estimates for the sharp maximal functions
In this section, we shall prove Theorems 1.1 and 1.2. In order to do this, let’s recall some definitions.

Given a function f € Lj,.(R"), the sharp maximal function is defined by

1 1
M) = sup o [ 170) = fuldy = supint - [ 170 - ald,

xeB

where the supremum is taken over all balls B containing x. Let 0 < § < co. We denote by Mg the
operator

ME(f) = IMA( 1)1
Similarly, we use M, to denote the operator M°(f) = [M(|f]°)]'/°, where M is the Hardy-Littlewood
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maximal function defined by

1
Mf(x) = supﬁ f F()dy.
B

x€B

The operator Mg was appeared implicitly in a paper by John [20] and was introduced by
Stromberg [37]. The sharp maximal function M* and Mg not only have close relation to BMO, but

also are important tools to obtain pointwise inequalities regarding many operators in harmonic analysis
(see [3, 12, 21, 25, 26, 36]).

To prove the Theorems 1.1 and 1.2, we need the following Kolmogorov’s inequality and the
inequality regarding the BMO functions.

Lemma 2.1. [19, 28] Let 0 < p < g < oo. Then there is a constant C = C,,, > 0, such that

-1 -1
101711 fllrigy < CIOI NI fllowcoy

for all measurable functions f.
Lemma 2.2. [27] Let f € BMO(R"). Suppose 1 < p < oo, r; >0, r, >0and x € R". Then

1 1/p
( |f(y) - fB(x,rz)lpdy) <C (1 + |1

|B(X, 7"1)' B(x,r1)

)IIfIIBMo,

where C is a positive constant independent of f, x, r; and r;.

Lemma 2.3. [5] If o € BBS },1 and a is a Lipschitz function on R”, then the commutators [T, al;, j =
1,2 are bilinear Calder6n-Zygmund operators. In particular, [T, a];, j = 1,2 are bounded from L' X

LP> into L? for % = pil + piz and 1 < p;, p» < oo and verify appropriate end-point boundedness

properties. Moreover, the corresponding norms of the operators are controlled by ||a||Lip|.

Proof of Theorem 1.1. Let f, g be bounded measurable functions with compact support. Then for any
ball B = B(xy, rp) containing x, we decompose f and g as follows:

f=rxies + fxaepy := f1 + f2, g = gX168 + &Y (16B) = gl + 82-
Choose a zp € 3B\2B. Then

1 1/6
(|B|| [To, ali(f, @ = [To, al (£, &) (20)l Idz)

1/6
< (| B [T, ali(f,8)@) — [To al(f*,g )(ZO)I5dZ)

1/6

IA

1/6
0 0
(lBll[Tma] (f', e dZ) + C(|B| fl [To, al,(f* g dz)

1/6
+C (ﬁl[Tma] (f'.g )(Z)I‘Sdz)

1/6
(|B| f [T, ali(f* )@ — [Ts, al;(f*, g)(Zo)I‘sdz)

4
= le.

s=1
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Forany 0 < 6 < r < oo, it follows from Lemma 2.1 that

I

IA

IA

IA

IA

IA

CIBI °IT,, al;(f", g")llses)
CIBI™'"IT,, al;(f', &)l

1 |
. [ r1 -
Cllall ip! (Il 6Bl )., lf ol Y1) ( . FQ%)

Cllalluipr My, (f)(x)M,(g)(x)
Cllallipr My (F)(X) My (g)(x).

|16B|

If z € B, y; € (16B)", y, € 16B, noticing that |z — y{| + |z — y2| + [y1 — ¥2| ~
then we have by Theorem A,

I

IA

IA

IA

IA

<

<

C

Cl—=

C

1 )
1 f ( f f |1<<z,yl,yz)|f<yl>||g(yz>dyzdyl) dz)
|B| B (16B)¢ 16B

SO
d SV
1B] f(ﬁsmr (f()B lg(y2) )’2)||a||L1p Z— P
f |g(y2)dy2)”a||L1p Zﬁ f(y1)|2ndy1

2k+1 B\2kB |X0 -

C”a”Lip (|16B| |g()72)dy2) Z 2_ |2k+lB| f

k=4

CllallLipt M(f)(x)M(g)(x) Z y—kn
k=4

Cllallp My (FIOMy (2)(0).

By the similar way, we can get that

As z € B and yy,

Iy

IA

IA

AIMS Mathematics

I3 < Cllalluipt My () ()M g (8)(X)-

)”>dy,

|z = yil + |z = yal = |z = yil,

1/6

Ky 1/6
dyl) dz]

[f(roldys

y2 € (16B)°, then |y, — 2ol = 2|z — zol, [y2 — 20l = 2lz — 2ol and rp < |z — 29| < 4rp. It
follows from Holder’s inequality that

(1
C -
|B|

ﬁ

><|K(z Vi, Y2) —

)
f ( f K (2, y1,y2) — K(zO,yl,y2>||f2<y1>||g2(yz>|dy1dyz) dz)
B R JR2

Q,

(5]

(o)

B [ =1 k=1

K(zo, y1. )N O)lIg(2)ldyidy,)°dz)'/°

Ci5 f ( f 802)
1] kzzll;:l 2k |z—z9|<lya—z0l<2%2* =20

X(f |K(Z,y1,y2)_K(ZO,)’I,yz)”f()’qud)’l
2kt z—z0| <[y —zol<281 L ez

1/6

- L‘Z lz==z0l<ly2—z0l<2%2 ! 2=z jZ‘kl lz==z0l<ly1 —z0l<2¥ 1+ z—z0|

1
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X(J DI dn)7 da)da)
k|+4B
1 R , I , I
< C(— Tdy,)7 Tdy,)e
< o [ Q0% [ vouran? ([ oot

X(f f |K(z, y1,y2)
2k2|z—z9|<lyr —z0l<2%2+ |z—20] J2K1 |z—z0|<ly1 —20l<2¥1+ 220

—K(z0, y1, y2)|*dy dy,)1)°dz)?

1 R 1 , I
(— § E - q 7
C”a”Llp (lBl fg:( (|2k1+4B| L]MB |f()71)| dyl)fi

ki=1ky=1

1 S
N — 7 dy,)7
(|2'<1+4 B LZMB lg(v2)I? dy2)

’ 4 ~2n - -z
X|2kl+4B|1/q |2k2+4B|]/q |Z _ ZOl 7 Ck]2 7 Ck22 7 )5dz)1/6

< Cllallip My (N)X)My (%) [Z ckl] [Z ckz]

ki=1 lo=1
< Cllalluip My (F)(x) My (8)(x), 2.1)

IA

where we use the fact of a weaker size condition of standard m-linear Calderon-Zygmund kernel than
its classical size condition given in [31], that is: For any k;,--- ,k, € N, there are positive constant
Cy,i=1,---,m,such that

L’" o=y, I lym—yol<2km*1zg—zf| j;"l Iyo—ypl<ly1—yol<21+! 20—z
1
, 1
IKo, y1 -+ ym) = KO, y1 -+ ym)l?dy1 - - - dy,)

< Clyo—-yl 7 [ e, (2.2)

i=1

where ) Cj, < oo, i=1,2,1 < g < oo. Together with the commutators [T, a];, j = 1,2 are bilinear
ki=1
Calderon-Zygmund operators and Theorem A, then we obtain the fact that

LZ vo—yjl<ly2—yol<2k2* 20—z »f2"1 Iyo—ypl<lyr—yol<2k1+! 20—z

1
IK (Yo, ¥1,¥2) = Ky, y1, y2)9dyidy,)

2
_2n _n
< Cllallplyo = Y577 | ] Co277". (2.3)
i=1
Thus, we have

1/6

1
Mi((T,.al(f.)(x) =~ SUPinf(—fl[Tma]j(f,g)(Z)l‘S—aIdZ
B

xeB a<C |B|
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1/6

IA

SUP(l B f 7o, ali(f, )@ = [T, al,(f*, §*)(z0)ldz

xeB

CllallLip Mg (f)(x) My ()().

IA

Thus we finish the proof of Theorem 1.1.

Proof of Theorem 1.2. Without loss of generality, we consider the case i = 1, the proof of the case

i = 2 is similar. Let f;, f> be bounded measurable functions with compact support. As in the proof of
Theorem 1.1, we write f and g as

f=fxies+ fxaes: == f +f>, &= 8Xen + guene =& +&-

Then

([T, al;, b1i(f, 8)(2) (b(z) = biep) [T, alj(f, 8)(2) — [Ty, alj((b — bisp) [, 8)(2)
= (b2) - biep) T, al(f. 8)@) — [T al (b — bisp) ', "))
-7, a]j((b - b16B)f1a gz)(Z) - [T, a]j((b - b]()B)fz’ 81)(2)

~[Ts, al (b = bien) /%, 8°)(2),
where bigp = ﬁ f] 6B b(z)dz. Therefore, for any fixed zyo € 3B\2B, we have

1

(|B| f [Tl b1y )(2) + [T al (b = breg) f g>(Zo)|6dz)
(|B| f (b(2) = breg)[Tos @l (. g)(z)mz)

+C( fI[Ta, al (b - b163)f1,gl))(z)l5dz)
Bl Jg

+C |fl[To-,a]j((b_bl6B)f1’gz)(Z)|6dZ)&

+

|B
1
c (II [T, al (b = bies) [ g)(z)|5dz)
B

1

+

1
C(I B [Ty, al (b= biss)f*, 8 )2) = [T, al (b —bisp)f*, g )(Zo)lédZ)
5
= Z 11
=1

Since 0 < 6 < 1/2 and 6 < & < oo, there exists an / such that 1 < [ < min{g,ﬁ}. Then 6/ < € and
ol' > 1. By Holder’s inequality, we have

| A\
I < c(— f (b(2) = bgsl” dz) (— f [T, ali(f, )"z
Bl Js Bl Js
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1

C||b||BMo(|B| f Ty al(f, g)(z)lsdz)
ClbllsnoM.(Tos al,(f, 2))().

Since ¢’ < s < oo, denoting t = s/¢’, then 1 < ¢ < co. Noticing that 0 < § < r < oo, it follows from
Lemmas 2.1 and 2.3 that

II, < C|B|_l/6||[Tma]j((b — bip)f, gl)”Lﬁ(B)

IA

IA

< C|B|-”f||m,a] (b= bisa) ", &)l

< ||a||L1pl<|16B| |b<y1>—blﬁgrwf(yl)rldyl)n<|16B| |g<yz>|’2dy2>%

< ||a||L1pl<|1;B| |b<y1>—b163|’”’dy1>~‘f'<|163| 163|f<y1)|”’dyz>rif
(M |g<y2>|’2dyz>%

< Cllally ||b||BMo<|16B| oo dyy)* X(|16B| |g(yz>|~*'dyz)%

< C”a”Lipl||b||BMOMs(f)(-x)MS(g)(x)-

By Theorem A, as z € B, y; € (16B), y, € 16B, noticing that |z — y| + |z — y2| + |y1 — ya| ~
|z — yil + |z = y2| = |z — y2|, then we have

113_c<— f f f Koy 32l = brslFsllgya)ldysdys)’da)
(16B)¢ J(16B)

< Clallp(— f (o bon = banironian L2 dyyan
|B| (168 J(168) |z = yal
F(n)
< Cllalliip b b d ————d
llallLip (f(l63)| 1 = biep)llf (1)l M)ZLHB\%B 20— ol 2
1/q ) 1/q'
< Cllallupy (f |b(y1 —b163)|qd)’1) (f lF Ol dyl)
(16B) (16B)
N —kn 1 f
X,;z FoTg .., 180D
< Cllallipt[1bllsmMo My (f)(x)M(g)(x) Z 27k
< Cllalluipt[1bllsmo M s(f)(x) M (8)(x).

Similar to estimate /73, by Lemma 2.2, we can get that

b(yb
Cllaly ( f |g<y2>|dyz)Z f POl Oy,
(16B) k+lB\2kB |_x0 — yql

Cllalluip M(g)(x) Z 27t
k=4

11,

IA

IA

b(y; —b d
218] J 1B| On 168)I1f (y)ldy:

AIMS Mathematics Volume 7, Issue 4, 5971-5990.



5980

< Cllally M) 2 2t (lzkfl b0 - me)wdyl)l/q
x(ﬁ f2 +lB|f<y1>|q’dy1)q'

< Cllally oMy (M@0 S 27

< Cllally IblaoM.(NOM.)D.

As z € Band y;,y, € (16B), then [y, — zol > 2|z — zol, [y2 — 20l > 2|z — 20l and rp < |z — 20| < 4rp.

Noticing that é +

11

AIMS Mathematics

L

tq’

IA

IA

IA

IA

+

t

1
C(ﬁ f(f f |K(z,y1,¥2) — K(20, Y1, Y)IIb(y1) — b16Bl
B n n
X F2)lIg*ra)ldy 1 dy,)°) !

1 (o) (o]
o [, |.
IBl Jp 22 z—zglsly—z0l<2t2 fo—zo] J 241 [e—zollyr —201<241+ ez

1=1 k=1

X|K(z,y1,¥2) = K (20, 1, y)IIBG1) = bissll f)llg(2)ldy dy,)°dz)

1 (o8] (o)
ca [, 180
|B| B klZ=1 ;; 2K2|z—z0|<ly2 ~z01<2%2+ 1 |z—70

q
X (f |K(z,¥1,¥2) — K(ZO,)’1,y2)|qd)’1)
2K1 |z—z0|<ly1 —z0/<2¥1% ! 2= 70

X( Ib(1) — sl dy;)77 ( £ dy) dy,)°dz)s
B

2ki+4p ki +4

1 y Y Y 1
C( f( E E (f Ib(y1) = bresl” ¥ dy, )77
|Bl Jg L I On 168 NI

X( £ dy)i ( gl dy)7

2k2 +4 B 2k2 +4 B

x( f IK(z,y1,2)
2%2|z—z0|<ly2 —z0|<2k2+ 1 z—20| J2K1 |7=20|<|y1 —20]<2K1 |z — 20

—K(zo, y1, y2)ldy dy,)1)°dz)?

1 (s8] [ee] 1 [/q, %
Clalhip fB QD gy |, o0 = brsl  dy)7s

fo=l ka1 2h+4B

’ 1 1 ’ 1

X(——— 1q dv))@ X (— | -5
g o PO X [ gy

’ 4 - -4z -
X|2k1+4B|1/q |2k2+4B|1/q |Z —_ ZOl q C](12 q Ck22 7 )6dz)l/6

< Cllallip 16llswo My (M ()() [Z ckl] [Z ckz]

k1=1 ko=1

,Lq, = 1. It follows from Holder’s inequality, Theorem A and the fact (2.3) that
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< Cllalluip1bllsmo M (f)(x)M()(x).

Combining the estimate of I1;, j = 1,2,3,4,5, we get

1 i
C 5 f [T, alj b1 (f, )(@) + [T, al (b = brop) £ 820 d2)}
B
< Clbllsso(Mo([Tor al(f. D)) + lalluip Mo ()M ()(0)).

Similarly, for the case i = 2, we can obtain that

1 1
( Efl[[Towa]j’b]Z(fag)(Z)"i'[To—,a]j((b—b163)f2,g2)(10)|6dz)5
B
< Clbllsmo(Ms([T,, al(f> &)(x) + llallLip M (f)(x)M(g)(x)).
Thus,

1/6

1
M ([[Tma]j,b]i(f,g))(X)%Supinf(—fl[[Tma]j,bh(f,g)(z)lé—aldz
B

xeB a€C |B|
< Clbllsmo(M([T e, al;j(f, 8))(x) + llallLipt Ms(f)(x) M (g)(x)).

This finishes the proof of Theorem 1.2.
3. Boundedness on product of weighted Lebesgue spaces

The theory of weighted estimates has played very important roles in modern harmonic analysis
with lots of extensive applications in the others fields of mathematics, which has been extensively
studied (see [35, 29, 30, 33], for instance). In this section, for the commutators of bilinear pseudo-
differential operators and Lipschitz functions, we will establish its boundedness of product of weighted
Lebesgue spaces owning to the pointwise estimate of its sharp maximal function, that is, Theorem 1.1.
The boundedness of the corresponding bilinear commutators with BMO function on the product of
weighted Lebesgue spaces is also obtained by using Theorem 1.1 and Theorem 1.2.

Let us recall the definition of the class of Muckenhoupt weights A, before proving Theorems 1.3
and 1.4. Let 1 < p < oo and w be a non-negative measurable function. We say w € A,, if for every cube
Q in R”, there exists a positive C independent of Q such that

(i‘[a)(x)dx)(ifv(,u()c)l_p'dx)p_1 <C
10l Jo 10l Jo T

Denote by Ac, = |U,»1 Ap. It is well known that if w € A, with 1 < p < oo, then w € A, for all
r>p,andw €A, forsomeg, 1 <g < p.

To prove Theorems 1.3 and 1.4, we need the following inequality regarding maximal functions
which is a version of the classical ones due to Fefferman and Stein in (see [17]), and a property of A,,.

Lemma 3.1. [17] Let O < p,d < o0, and w € A. Then there exists a positive constant C depending on
the A, constant of w such that

f [Ms(/)(0)Pw(x)dx < C f (MA@ w(x)dx,
Rﬂ

Rn
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for every function f such that the left-hand side is finite.

Lemma 3.2 [18] For (wy, -+ ,w,) € (A,,,-+- ,A,, ) with1 < p;,--- ,p, < oo,andfor0 < 6;,---,0, <
1 such that; +--- + 6, = 1, we have w?' = Amax{pi, . pm)-

Proof of Theorem 1.3. It follows from Lemma 3.2 that w € Anax(p,/q.pr/q} € Ac. Take a ¢ such that
0 <6 < 1/2. Then by Lemma 3.1 and Theorem 1.1, we get

T, al,(fs ) < IMs(To @) )(fs )lir)
CIIME( T, a)(fs )lire)
Cllalluip 1My ()M ()ll1r(w)
Cllallip 1My Ml n My (@72

Cllally IMAADI Mgl

L9 (wy) LP219 (wy)

’ l/ ’ ’ 1/ ’
CllallLip AT o gl

L2119 (wy) L7217 ()
= Cllalluip 1/ 1lze1 @i l1gllzr2 ws)-

IA A

IA

IA

We complete the proof of the Theorem 1.3.

Proof of Theorem 1.4. 1t follows from Lemma 3.2 that w € A,. Take 6 and e such that0) < 6 < & < 1/2.
Then by Lemma 3.1 and Theorem 1.1, let f = (f1, f>), we get

A

IMo((To al (I rwy < CUIMA T, al ()l

2
Cllalluprll | | My (Fllro-

=1

IA

Since w, € Ap, )y, t = 1,2, there exists an [, such that 1 </, < p,/q" and w, € A,,. It follows from
q' < p./l, that there is an s, such that ¢’ < s, < p,/l; < p;. Let s = min{sy, s,}. Then s > ¢’ and s < p;.

Since I; < p;/s; < p;/s, then w; € A, C A, 5, t = 1,2. It follows from Lemma 3.1 and Theorem 1.2
that

Ty, alj, DDl < IMsU[To alj, By < CIMEIIT, al;, b1 v
2
< Clbllsyo [||M8<[Ta,a],~<ﬁ)||mw> +llallup | | MM)HWJ
=1
2 2
< Clblleyo [uauupln [ | My (Dl + a1 ] ] Msm)nmw)]
=1 =1
2
< Cliblsmolialy (I | Mo(llzre
=1
2
= Cllblismollalliy | [ 1IM{(lirin
=1
2
< Clbllsmollaliuiy | | IMAAIN,L .,
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2
= Clbllssolialiy | | 1l

t=1

We complete the proof of the Theorem 1.4.

4. Boundedness on product of variable exponent Lebesgue spaces

The spaces with variable exponent have been widely studied in recent ten years. The results show
that they are not only the generalized forms of the classical function spaces with invariable exponent,
but also there are some new breakthroughs in the research techniques. These new real variable methods
help people further understand the function spaces. Due to the fundamental paper [24] by Kovécik
and Rdkosnik, Lebesgue spaces with variable exponent LP"(R") becomes one of the important class
function spaces. The theory of the variable exponent function spaces have been applied in fluid
dynamics, elastlcity dynamics, calculus of variations and differential equations with non-standard
growth conditions (for example, see [1, 2, 16]). In [8], authors proved the extrapolation theorem which
leads the boundedness of some classical operators including the commutators on LPO(R"). Karlovich
and Lerner also obtained the bundedness of the singular integral commutators in [23]. The boundedness
of some typical operators is being studied with keen interest on spaces with variable exponent (see [9,
22,41-43)).

In this section, we will establish the boundedness of [T, al; and [[T,al;, b];(i, j = 1,2) on the
product of variable exponent Lebesgue spaces, that is, we shall prove Theorems 1.5 and 1.6.

Denote P(R") to be the set of all measurable functions p(:) : R” — [1, c0) with

p- =:essinf p(x) > 1 and p, =: ess sup p(x) < oo,
xeR? xeR”

and B(R") to be the set of all functions p(-) € P(R") satisfying the condition that the Hardy-littlewood
maximal operator M is bounded on LPO(R").

Definition 4.1. [23] Let p(-) € P(R"). The variable exponent Lebesgue space is defined by

p(x)
LPORY) = { f measurable : f (lf(x)l) dx < oo for some constant A > 0}.
R” n

As p(+) = pis a constant, then LPO(R") = LP(R") coincides with the usual Lebesgue space. It is pointed
out in [23] that L’/(R") becomes a Banach space with respect to the norm

p(x)
A 1lzro@ny = inf{n >0: f (|f§;€)|) dx < 1}.
R’l

Lemma 4.2. [13] Let p(-) € P(R"). Then M is bounded on LPO(R") if and only if M,, is bounded on
LPO(R™) for some 1 < go < oo, where M, (f) = [M(|f]9)]"/%.
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Lemma 4.3. [32] Let p(-), p1(-), -+ - » pm(-) € P(R") so that 1/p(x) = 1/p1(x) + - - - + 1/ pu(x). Then for
any f; € LPI(R"), j=1,2,--- ,m, there has

m

m
-1
I l—[ fillLrogn < 2" 1—[ iz
J=1

J=1

Lemma 4.4. [14] Given a family # of ordered pairs of measurable functions, suppose for some fixed
0 < py < oo, every (f,g) € ¥ andevery w € Ay,

f P wdx < Co f P (),
R7 R2

Let p(-) € P(R") with py < p_. If (%)’ € B(R™M), then there exists a constant C > 0 such that for all
(.8 € F. Ifllrown < Cliglro@n-
Lemma 4.5. [14] If p(-) € P(R"), then Cy is dense in LPV(R").
Lemma 4.6. [13] Let p(:) € P(R"). Then the following conditions are equivalent.
(1) p(-) € BR™");
(2) p'(:) € BR");
3) p(-)/ po € B(R") for some 1 < pg < p_;
@) (p(-)/ po) € B(R") for some 1 < py < p_.

Proof of Theorem 1.5. Here we note f = (f1, f»), where f; and f, are bounded measurable functions
with compact support. Since p(-) € B(R"), then by Lemma 4.6, there exists a py such that 1 < py < p_
and (p(-)/po) € B(R"). Take a ¢ such that 0 < 6 < 1/2. For any w € Ay, it follows from Lemma 3.1
and Theorem 1.1 that

f [T, al(HPwx)dx < C f [M5(I T, a) ;(H))(0)]P w(x)dx
R" Rr

IA

C f [MY(T, al () ()] w(x)dx
Rn
1P0

[ 2
CllallLiy f [ [Me ()| wdx
Rn [ 1 ]

IA

1P0

[ 2
Cllalliy fR A M| e

L =1 |

IA

Applying Lemma 4.4 to the pair ([T, a] ;( f), ]_[f:1 M, (f0), we can get

2
I, al(Pllsos < Cllallug ||| | M,
t=1 LPO(RM)
Then by Lemmas 4.2 and 4.3, we have
2 2
T, @l (Pl < Cliallug || | M, (50 < Cllallup: [ [ 1Alno o -
t=1 LPO(R?) t=1
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This completes the proof of the Theorem 1.5.

Proof of Theorem 1.6. Denote gy = min{g;, g3}, then ¢’ < go < co. Let £ =(fi, ), where f; and £, are
bounded measurable functions with compact support. Since p(-) € B(R"), then by Lemma 4.6, there
exists a pg such that 1 < py < p_ and (p(-)/po)’ € B(R™). Take 6 and € such that 0 < 6 < £ < 1/2. For
any w € Ay, it follows from Lemma 3.1 , Theorem 1.1 and Theorem 1.2 that

[T, alj bY(DHIPw(x)dx < C f [Ms([[T, alj, b1(H)(0]P w(x)dx

Rn

IA

R
C fR n [ME([T,, al;, b1 (01 w(x)dx

IA

2 Po
ClbE0 fR (Mg([To-,a]j(ﬁXx)dw||a||up1]_[Mqo(ﬁ)m] w(x)dx
! =1

IA

2 Po
C||b||g°MO( f [Mg([TU,a]j(f))]pow(x)dx"‘||a||i(i)p1 f []_[Mq'(ft)(x)] w(x)dx)
R" R =1

2 Po
IS lall” [ fR ]_[quft)(x)} w(x)dx + fR
AL n

2

Po
Clibligroliall fR n []_[ Mqé(f,)(x)} w(x)dx.

t=1

IA

2 Po
l_[ Mqo(ﬁ)(x)] w(x)dx)
t=1

IA

Applying Lemma 4.4 to the pair ([[T, a];, b]i(f), ]_[f:] M%(ft)), we can get

2
LT, @)y, Bl < Cllals ||[ ] M0
t=1 LPORM)
Then by Lemmas 4.2 and 4.3, we have
2
Il[Ts,alj, bl ro@n < CllallLip l_l My (f)
t=1 LPiO(R?)

2

Cllallup | 1Al -

=1

IA

We complete the proof of Theorem 1.6.
5. Endpoint estimate

In this section, we will show the endpoint estimate for the [T, a]; with j = 1,2, that is, we will give
the proof of Theorem 1.7.

Proof of Theorem 1.7. Take py, p> such that max{q’,2} < py,p> < co. Let 1/p = 1/p; + 1/p,. Then
1 < p < co. It follows from Lemma 2.3 that [T, a];(j = 1,2) is bounded from L' x LF? into L”.
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Let f,g € L™. Then for any ball B = B(xy, rg) with rz > 0, we decompose f and g as follows

f=fxwm+ fxes = f +f% g=gxm+gxes =g +&-

Then
1
1Bl

1 2
ﬁfl [To,al;(f g)(z)|+®f| [To, ali(f% g )(@ldz

f (T, al(f, )@ = [Trsal (2 €0z

IA

|B|f| T, al(f', §)(2)dz

o f [Ty al (£ 8)(@) — [Tl (2 €00z

4
= Z Js.

s=1

It follows from the Holder’s inequality and Lemma 2.3 that

1 1 1 1
- . p
(|B| fBI[TU,a]J(f ,&)(@) )

-1 1 1
CIBI™ P llalluip 11f 1271 18" -
llalliipt [1f ool I&lleo-

Ji

IA

IA

By the size conditions in Theorem A of the kernel, we have

1
J < —f(f |K(Z,yl,yz)lf()’1)||g()’2)|d)’2dy1)dZ
|B| B 2B) J2B
1 | |
Clallyys — f ( f ( |g<y2>|dy) f(y”z dy)dz
1Bl Jp\J2p)y \J2s |z = yi[*"
1
< C||a||up.||f||w||g||w( f dyz)( f —zndyl)
2B (2B)° lxo — yil

< Cllalluip 1 lleollgleo-

IA

Similarly, we can obtain that
J3 < Cllalluipt | flloollg]leo-

Noting that as z € B, and y;,y, € (2B)¢, then [y; — xo| > 2|z — xo| and |y, — xo| > 2|z — xo|. It follows

from the Holder’s inequality and (2.3) that

Jy

1
IBlf(f f K (2, y1, y)If 1) = K(xo0, y1, )l 0)llg (Yz)ldyldyz)d

[e6] [ee]
ZZ ffzkz < <2k fz;l < <2k +1
—1k 1 lz=z0l<ly2~201<2"2]z~20] lz=z0l<ly1—z0l< |z—zol

IA
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|K(z,y1,y2) — K(x0, y1, y)I f (YDIg(y2)ldy 1 dy,|dy dy,dz

o0 (o] 1 n
CllallLipt 1 fllollglloo — ff 24z = xo) 7
b ,Z Z |B| B J2k ‘

1=1 kp=1 2lz=z0l<ly2~201<22* 22|

IA

1/q
X (f |K(2,y1,y2) — K(x0,y1,y2)I%dy; | dy»dz
2kt |z—z0|<ly) —zol<2k1* L)z

IA

o 1 n n
Cllalluip I llsliglheo Y > (21 = x0D7 "1z = xo)?
k

1=1 k=1

X(
2k2 |z—z0l<ly2 —z0|<2k2 |z — K1 1z—z0|< v —z0|<2K1+ 17—
lz=zol<ly2—20l< lz—zo0l lz=z0l<ly1 —z0l< lz—zo0l

X|K (2, y1,¥2) — K(x0, y1, y2)l?dy dy,)"/4dz

(9]

o ko _n _kan
Cllallp | Allsligllee D Y2727 (C, 277 NCi2™7)

ki=1 k=1

IA

< CllallLipt 1/ Tlool1glleo-
Thus,
1
||[TO" a]](f’ g)”BMO = s‘;p E f|[TO'5 a]j(fa g)(Z) - ([TO" a]/(f’ g))B|dZ

B

1
< sup — f [To. ali(f, 8)(@) — [Te. al;(f*, g°)(xo)ldz
B |Bl Jp

IA

Cllalluipt | fllsollglleo-

Which completes the proof of the Theorem 1.7.

6. Conclusions

In this paper, we consider the commutators of bilinear pseudo-differential operators and the
operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the
corresponding sharp maximal function, the boundedness of the commutators is obtained respectively
on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with o € 8BS } \-
Moreover, the endpoint estimate of the commutators is also established on L™ x L*.
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