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1. Introduction and main results

Let T be a linear operator. Given a function a, the commutator [T, a] is defined by

[T, a]( f ) := T (a f ) − aT ( f ).

There is an increasing interest to the study of T being a pseudo-differential operator because of its
theory plays an important role in many aspects of harmonic analysis and it has had quite a success
in linear setting. As one of the most meaningful branches, the study of bilinear pseudo-differential
operators was motivated not only as generalizations of the theory of linear ones but also its natural
appearance and important applications. This topic is continuously attracting many researchers.

Let a be a Lipschitz function and 1 < p < ∞. The estimates of the form

‖[T, a]( f )‖Lp . ‖a‖Lip1‖ f ‖Lp , for all f ∈ Lp(Rn) (1.1)

have been studied extensively. In particular, Calderón proved that (1.1) holds when T is a pseudo-
differential operator whose kernel is homogeneous of degree of −n − 1 in [7]. Coifman and Meyer
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showed (1.1) when T = Tσ and σ is a symbol in the Hörmander class S 1
1,0 go back to [10, 11], this

result was later extended by Auscher and Taylor in [4] to σ ∈ BS 1
1,1, where the class BS 1

1,1, which
contains S 1

1,0 modulo symbols associated to smoothing operators, consists of symbols whose Fourier
transforms in the first n-dimensional variable are appropriately compactly supported. The method in
the proofs of [10, 11] was mainly showed that, for each Lipschitz continuous functions a on Rn, [T, a]
is a Calderón-Zygmund singular integral whose kernel constants are controlled by ‖a‖Lip1 . For another
thing, Auscher and Taylor proved (1.1) in two different ways: one method is based on the paraproducts
while the other is based on the Calderón-Zygmund singular integral operator approach that relies on
the T (1) theorem. Fore a more systematic study of these (and even more general) spaces, we refer the
readers to see [38, 39].

Given a bilinear operator T and a function a, the following two kinds commutators are respectively
defined by

[T, a]1( f , g) = T (a f , g) − aT ( f , g)

and
[T, a]2( f , g) = T ( f , ag) − aT ( f , g).

In 2014, Bényi and Oh proved that (1.1) is also valid to this bilinear setting in [6]. More precisely,
given a bilinear pseudo-differential operator Tσ with σ in the bilinear Hörmander class BS 1

1,0 and a
Lipschitz function a on Rn, it was proved in [6] that [T, a]1 and [T, a]2 are bilinear Calderón-Zygmund
operators. The main aim of this paper is to study (1.1) of [Tσ, a] j( j = 1, 2) on the products of weighted
Lebesgue spaces and variable exponent Lebesgue spaces with σ ∈ BBS 1

1,1. Before stating our main
results, we need to recall some definitions and notations. We say that a function a defined on Rn is
Lipschitz continuous if

‖a‖Lip1 := sup
x,y∈Rn

|a(x) − a(y)|
|x − y|

< ∞.

Let δ ≥ 0, ρ > 0 and m ∈ R. An infinitely differentiable function σ : Rn × Rn × Rn → C belongs to
the bilinear Hörmander class BS m

ρ,δ if for all multi-indices α, β, γ ∈ Nn
0 there exists a positive constant

Cα,β,γ such that
|∂αx∂

β

ξ∂
γ

ησ(x, ξ, η)| ≤ C(1 + |ξ| + |η|)m+δ|α|−ρ(|β|+|γ|).

Given a σ(x, ξ, η) ∈ BS m
ρ,δ, the bilinear pseudo-differential operator associated to σ is defined by

Tσ( f , g)(x) =

∫
Rn

∫
Rn
σ(x, ξ, η) f̂ (ξ)ĝ(η)e2πix·(ξ+η)dξdη, for all x ∈ Rn, f , g ∈ S(Rn).

In 1980, Meyer [34] firstly introduced the linear BS m
1,1, and corresponding boundedness of

[Tσ, a] j( j = 1, 2) is obtained by Bényi-Oh in [6] , that is, given m ∈ R and r > 0, an infinitely
differentiable function σ : Rn × Rn × Rn → C belongs to BrBS m

1.1 if

σ ∈ BS m
1,1, supp(σ̂1) ⊂ {(τ, ξ, η) ∈ R3n : |τ| ≤ r(|ξ| + |η|)},

where σ̂1 denotes the Fourier transform of σ with respect to its first variable in Rn, that is, σ̂1(τ, ξ, η) =
̂σ(·, ξ, η)(τ), for all τ, ξ, η ∈ Rn. The class BBS m

1,1 is defined as

BBS m
1,1 =

⋃
r∈(0, 1

7 )

BrBS m
1,1.
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Recently, many authors are interested in bilinear operators, which is a natural generalization of
linear case. With the further research, Árpád Bényi and Virginia Naibo proved that boundedness for
the commutators of bilinear pseudo-differential operators and Lipschitz functions with σ ∈ BBS 1

1,1
on the Lebesgue spaces in [5]. In 2018, Tao and Li proved that the boundedness of the commutators
of bilinear pseudo-differential operators was also true on the classical and generalized Morrey spaces
in [40]. Motivated by the results mentioned above, a natural and interesting problem is to consider
whether or not (1.1) is true on the weighted Lebesgue spaces and variable exponent Lebesgue spaces
with σ ∈ BBS 1

1,1. The purpose of this paper is to give an surely answer. And also, the endpoint estimate
is obtained on L∞×L∞. Our proofs are based on the pointwise estimates of the sharp maximal function
proved in the next section.

Many results involving bilinear pseudo-differential operators theory have been obtained in parallel
with the linear ones but some new interesting phenomena have also been observed. One aspect
developed rapidly is the one related to the compactness of the bilinear pseudo-differential operators,
especially, the properties of compactness for the commutators of bilinear pseudo-differential operators
and Lipschitz functions. As the commutators [Tσ, a] j ( j = 1, 2) are bilinear Calderón-Zygmund
operators if σ ∈ BBS 1

1,1, similar to the proof of [15] (Theorem A and Theorem 2.12), we can obtain
easily that [Tσ, a] j and [[Tσ, a] j, b]i (i, j = 1, 2) are compact operators on the Lebesgue spaces and the
Morrey spaces. For the sake of convenience, there are no further details below.

Suppose that σ ∈ BBS 1
1,1. Let K and K j denote the kernel of Tσ and [Tσ, a] j ( j = 1, 2), respectively.

We have
K(x, y, z) =

∫ ∫
eiξ·(x−y)eiη·(x−z)σ(x, ξ, η)dξdη,

K1(x, y, z) = (a(y) − a(x))K(x, y, z), K2(x, y, z) = (a(z) − a(x))K(x, y, z).

Then the following consequences are true.
Theorem A. [6] If x , y or x , z, then we have

(1) | ∂αx∂
β
y∂

γ
z K(x, y, z) |. (|x − y| + |x − z|)−2n−1−|α|−|β|−|γ|;

(2) |K j(x, y, z)| . ‖a‖Lip1(|x − y| + |x − z| + |y − z|)−2n.

The statement of our main theorems will be presented in follows.
Theroem 1.1. Let q′ > 1, σ ∈ BBS 1

1,1 and a be a Lipschitz function on Rn. Suppose for fixed
1 ≤ r1, r2 ≤ q′ with 1/r = 1/r1 + 1/r2, [Tσ, a] j( j = 1, 2) is bounded from Lr1 × Lr2 into Lr,∞ with norm
controlled by ‖a‖Lip1 . If 0 < δ < 1/2, then

M]
δ([Tσ, a] j( f , g))(x) ≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x), j = 1, 2

for all f , g of bounded measurable functions with compact support.
Theorem 1.2. Let q′ > 1, σ ∈ BBS 1

1,1 and a be a Lipschitz function on Rn. Suppose for fixed
1 ≤ r1, r2 ≤ q′ with 1/r = 1/r1 + 1/r2, [Tσ, a] j( j = 1, 2) is bounded from Lr1 × Lr2 into Lr,∞ with norm
controlled by ‖a‖Lip1 . If b ∈ BMO, 0 < δ < 1/2, δ < ε < ∞, q′ < s < ∞, then

M]
δ([[Tσ, a] j, b]i)(x) ≤ C‖b‖BMO

(
(Mε([Tσ, a] j( f , g))(x) + ‖a‖Lip1(Ms( f )(x))(Ms(g)(x))

)
,

where i, j = 1, 2 and above inequality is valid for all f , g of bounded measurable functions with
compact support.
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Theorem 1.3. Let q′ > 1, σ ∈ BBS 1
1,1 and a be a Lipschitz function on Rn. Suppose for fixed

1 ≤ r1, r2 ≤ q′ with 1/r = 1/r1 + 1/r2, [Tσ, a] j( j = 1, 2) is bounded from Lr1 × Lr2 into Lr,∞ with norm

controlled by ‖a‖Lip1 . If (ω1, ω2) ∈ (Ap1/q′ , Ap2/q′) and ω = ω
p

p1
1 ω

p
p2
2 , then for q′ < p1, p2 < ∞ with

1/p = 1/p1 + 1/p2, [Tσ, a] j( j = 1, 2) is bounded from Lp1(ω) × Lp2(ω) into Lp(ω).
Theorem 1.4. Let q′ > 1, σ ∈ BBS 1

1,1 and a be a Lipschitz function on Rn. Suppose for fixed
1 ≤ r1, r2 ≤ q′ with 1/r = 1/r1 + 1/r2, [Tσ, a] j( j = 1, 2) is bounded from Lr1 × Lr2 into Lr,∞ with norm

controlled by ‖a‖Lip1 . If b ∈ BMO, (ω1, ω2) ∈ (Ap1/q′ , Ap2/q′) and ω = ω
p

p1
1 ω

p
p2
2 , then for q′ < p1, p2 < ∞

with 1/p = 1/p1 + 1/p2, [[Tσ, a] j, b]i(i, j = 1, 2) is bounded from Lp1(ω) × Lp2(ω) into Lp(ω).
Theorem 1.5. Let p(·), p1(·), p2(·) ∈ B(Rn) with 1/p(·) = 1/p1(·) + 1/p2(·), and q j

0 be given as in
Lemma 4.4 for p j(·), j=1,2. Suppose that σ ∈ BBS 1

1,1, a is a Lipschitz function on Rn and 1 < q′ ≤
min{q1

0, q
2
0}. If for fixed 1 ≤ r1, r2 ≤ q′ with 1/r = 1/r1+1/r2, [Tσ, a] j( j = 1, 2) is bounded from Lr1×Lr2

into Lr,∞ with norm controlled by ‖a‖Lip1 , then [Tσ, a] j( j = 1, 2) is bounded from Lp1(·)(Rn) × Lp2(·)(Rn)
into Lp(·)(Rn).
Theorem 1.6. Let p(·), p1(·), p2(·) ∈ B(Rn) with 1/p(·) = 1/p1(·) + 1/p2(·), and q j

0 be given as in
Lemma 4.4 for p j(·), j=1,2. Suppose that σ ∈ BBS 1

1,1, a is a Lipschitz function on Rn and 1 < q′ ≤
min{q1

0, q
2
0}. If for fixed 1 ≤ r1, r2 ≤ q′ with 1/r = 1/r1 + 1/r2, [Tσ, a] j( j = 1, 2) is bounded from

Lr1 × Lr2 into Lr,∞ with norm controlled by ‖a‖Lip1 , and b ∈ BMO, then [[Tσ, a] j, b]i(i, j = 1, 2) is
bounded from Lp1(·)(Rn) × Lp2(·)(Rn) into Lp(·)(Rn).
Theorem 1.7. Let σ ∈ BBS 1

1,1 and a be a Lipschitz function. Suppose for fixed 1 ≤ r1, r2 ≤ q′ with
1/r = 1/r1 + 1/r2, [Tσ, a] j( j = 1, 2) is bounded from Lr1 ×Lr2 into Lr,∞ with norm controlled by ‖a‖Lip1 .
Then [Tσ, a] j( j = 1, 2) is bounded from L∞ × L∞ into BMO.

We use the following notation: For 1 ≤ p ≤ ∞, p′ is the conjugate index of p, that is, 1/p+1/p′ = 1.
B(x,R) denotes the ball centered at x with radius R > 0 and fB = 1

|B(x,R)|

∫
B(x,R)

f (y)dy. The paper
is organized as follows. The pointwise estimates of the sharp maximal functions are presented in
Section 2. The weighted boundedness is given in Section 3. The proofs of the boundedness on the
product of variable exponent Lebesgue spaces are showed in Section 4. The endpoint estimate is
proved in Section 5.

2. Pointwise estimates for the sharp maximal functions

In this section, we shall prove Theorems 1.1 and 1.2. In order to do this, let’s recall some definitions.
Given a function f ∈ Lloc(Rn), the sharp maximal function is defined by

M]( f )(x) = sup
x∈B

1
|B|

∫
B
| f (y) − fB|dy ≈ sup

x∈B
inf
a∈C

1
|B|

∫
B
| f (y) − a|dx,

where the supremum is taken over all balls B containing x. Let 0 < δ < ∞. We denote by M]
δ the

operator

M]
δ( f ) = [M](| f |δ)]1/δ.

Similarly, we use Mδ to denote the operator Mδ( f ) = [M(| f |δ)]1/δ, where M is the Hardy-Littlewood
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maximal function defined by

M f (x) = sup
x∈B

1
|B|

∫
B

f (y)dy.

The operator M]
δ was appeared implicitly in a paper by John [20] and was introduced by

Strömberg [37]. The sharp maximal function M] and M]
δ not only have close relation to BMO, but

also are important tools to obtain pointwise inequalities regarding many operators in harmonic analysis
(see [3, 12, 21, 25, 26, 36]).

To prove the Theorems 1.1 and 1.2, we need the following Kolmogorov’s inequality and the
inequality regarding the BMO functions.
Lemma 2.1. [19, 28] Let 0 < p < q < ∞. Then there is a constant C = Cp,q > 0, such that

|Q|−1/p‖ f ‖Lp(Q) ≤ C|Q|−1/q‖ f ‖Lq,∞(Q)

for all measurable functions f .
Lemma 2.2. [27] Let f ∈ BMO(Rn). Suppose 1 ≤ p < ∞, r1 > 0, r2 > 0 and x ∈ Rn. Then(

1
|B(x, r1)|

∫
B(x,r1)

| f (y) − fB(x,r2)|
pdy

)1/p

≤ C
(
1 +

∣∣∣∣∣ln r1

r2

∣∣∣∣∣) ‖ f ‖BMO,

where C is a positive constant independent of f , x, r1 and r2.
Lemma 2.3. [5] If σ ∈ BBS 1

1,1 and a is a Lipschitz function on Rn, then the commutators [Tσ, a] j, j =

1, 2 are bilinear Calderón-Zygmund operators. In particular, [Tσ, a] j, j = 1, 2 are bounded from Lp1 ×

Lp2 into Lp for 1
p = 1

p1
+ 1

p2
and 1 < p1, p2 < ∞ and verify appropriate end-point boundedness

properties. Moreover, the corresponding norms of the operators are controlled by ‖a‖Lip1 .
Proof of Theorem 1.1. Let f , g be bounded measurable functions with compact support. Then for any
ball B = B(x0, rB) containing x, we decompose f and g as follows:

f = fχ16B + fχ(16B)c := f 1 + f 2, g = gχ16B + gχ(16B)c := g1 + g2.

Choose a z0 ∈ 3B\2B. Then(
1
|B|
||[Tσ, a] j( f , g)(z)|δ − |[Tσ, a] j( f 2, g2)(z0)|δ|dz

)1/δ

≤ C
(

1
|B|
|[Tσ, a] j( f , g)(z) − [Tσ, a] j( f 2, g2)(z0)|δdz

)1/δ

≤ C
(

1
|B|
|[Tσ, a] j( f 1, g1)(z)|δdz

)1/δ

+ C
(

1
|B|

∫
B
|[Tσ, a] j( f 2, g1)(z)|δdz

)1/δ

+C
(

1
|B|
|[Tσ, a] j( f 1, g2)(z)|δdz

)1/δ

+C
(

1
|B|

∫
B
|[Tσ, a] j( f 2, g2)(z) − [Tσ, a] j( f 2, g2)(z0)|δdz

)1/δ

:=
4∑

s=1

Is.
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For any 0 < δ < r < ∞, it follows from Lemma 2.1 that

I1 ≤ C|B|−1/δ‖[Tσ, a] j( f 1, g1)‖Lδ(B)

≤ C|B|−1/r‖[Tσ, a] j( f 1, g1)‖Lr,∞(B)

≤ C‖a‖Lip1

(
1
|16B|

∫
16B
| f (y1)|r1dy1

) 1
r1

(
1
|16B|

∫
16B
|g(y2)|r2dy2

) 1
r2

≤ C‖a‖Lip1 Mr1( f )(x)Mr2(g)(x)
≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x).

If z ∈ B, y1 ∈ (16B)c, y2 ∈ 16B, noticing that |z − y1| + |z − y2| + |y1 − y2| ∼ |z − y1| + |z − y2| ≥ |z − y1|,
then we have by Theorem A,

I2 ≤ C
 1
|B|

∫
B

(∫
(16B)c

∫
16B
|K(z, y1, y2)| f (y1)||g(y2)dy2dy1

)δ
dz

1/δ

≤ C
 1
|B|

∫
B

(∫
(16B)c

(∫
16B
|g(y2)dy2

)
‖a‖Lip1

f (y1)
|z − y1|

2n dy1

)δ
dz

1/δ

≤ C
(∫

16B
|g(y2)dy2

)
‖a‖Lip1

∞∑
k=4

∫
2k+1B\2k B

f (y1)
|x0 − y1|

2n dy1

≤ C‖a‖Lip1

(
1
|16B|

∫
16B
|g(y2)dy2

) ∞∑
k=4

2−kn 1
|2k+1B|

∫
2k+1B
| f (y1)|dy1

≤ C‖a‖Lip1 M( f )(x)M(g)(x)
∞∑

k=4

2−kn

≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x).

By the similar way, we can get that

I3 ≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x).

As z ∈ B and y1, y2 ∈ (16B)c, then |y1 − z0| ≥ 2|z − z0|, |y2 − z0| ≥ 2|z − z0| and rB ≤ |z − z0| ≤ 4rB. It
follows from Hölder’s inequality that

I4 ≤ C
 1
|B|

∫
B

(∫
Rn

∫
Rn
|K(z, y1, y2) − K(z0, y1, y2)|| f 2(y1)||g2(y2)|dy1dy2

)δ
dz

1/δ

≤ C(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

∫
2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

×|K(z, y1, y2) − K(z0, y1, y2)|| f (y1)||g(y2)|dy1dy2)δdz)1/δ

≤ C(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

∫
2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

|g(y2)|

×

(∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

|K(z, y1, y2) − K(z0, y1, y2)|| f (y1)|qdy1

) 1
q
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×(
∫

2k1+4B
| f (y1)|q

′

dy1)
1
q′ dy2)δdz)

1
δ

≤ C(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

(
∫

2k1+4B
| f (y1)|q

′

dy1)
1
q′ (

∫
2k2+4B

|g(y2)|q
′

dy2)
1
q′

×(
∫

2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

|K(z, y1, y2)

−K(z0, y1, y2)|qdy1dy2)
1
q )δdz)

1
δ

≤ C‖a‖Lip1(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

(
1

|2k1+4B|

∫
2k1+4B

| f (y1)|q
′

dy1)
1
q′

×(
1

|2k1+4B|

∫
2k2+4B

|g(y2)|q
′

dy2)
1
q′

×|2k1+4B|1/q
′

|2k2+4B|1/q
′

|z − z0|
− 2n

q′Ck12
−

k1n
q′ Ck22

−
k2n
q′ )δdz)1/δ

≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x)

 ∞∑
k1=1

Ck1


 ∞∑

k2=1

Ck2


≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x), (2.1)

where we use the fact of a weaker size condition of standard m-linear Calderón-Zygmund kernel than
its classical size condition given in [31], that is: For any k1, · · · , km ∈ N+, there are positive constant
Cki , i = 1, · · · ,m, such that

(
∫

2km |y0−y′0 |≤|ym−y0 |≤2km+1 |z0−z′0 |
· · ·

∫
2k1 |y0−y′0 |≤|y1−y0 |≤2k1+1 |z0−z′0 |

|K(y0, y1 · · · ym) − K(y′0, y1 · · · ym)|qdy1 · · · dym)
1
q

≤ C|y0 − y′0|
−mn

q′

m∏
i=1

Cki2
− n

q′ ki , (2.2)

where
∞∑

ki=1
Cki < ∞, i = 1, 2, 1 < q < ∞. Together with the commutators [Tσ, a] j, j = 1, 2 are bilinear

Calderón-Zygmund operators and Theorem A, then we obtain the fact that

(
∫

2k2 |y0−y′0 |≤|y2−y0 |≤2k2+1 |z0−z′0 |

∫
2k1 |y0−y′0 |≤|y1−y0 |≤2k1+1 |z0−z′0 |

|K(y0, y1, y2) − K(y′0, y1, y2)|qdy1dy2)
1
q

≤ C‖a‖Lip1 |y0 − y′0|
− 2n

q′

2∏
i=1

Cki2
− n

q′ ki . (2.3)

Thus, we have

M]
δ([Tσ, a] j( f , g))(x) ≈ sup

x∈B
inf
a∈C

(
1
|B|

∫
B
|[Tσ, a] j( f , g)(z)|δ − a|dz

)1/δ
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≤ sup
x∈B

(
1
|B|

∫
B
||[Tσ, a] j( f , g)(z)|δ − |[Tσ, a] j( f 2, g2)(z0)|δ|dz

)1/δ

≤ C‖a‖Lip1 Mq′( f )(x)Mq′(g)(x).

Thus we finish the proof of Theorem 1.1.
Proof of Theorem 1.2. Without loss of generality, we consider the case i = 1, the proof of the case
i = 2 is similar. Let f1, f2 be bounded measurable functions with compact support. As in the proof of
Theorem 1.1, we write f and g as

f = fχ16B + fχ(16B)c := f 1 + f 2, g = gχ16B + gχ(16B)c := g1 + g2.

Then

[[Tσ, a] j, b]1( f , g)(z) = (b(z) − b16B)[Tσ, a] j( f , g)(z) − [Tσ, a] j((b − b16B) f , g)(z)
= (b(z) − b16B)[Tσ, a] j( f , g)(z) − [Tσ, a] j((b − b16B) f 1, g1)(z)
−[Tσ, a] j((b − b16B) f 1, g2)(z) − [Tσ, a] j((b − b16B) f 2, g1)(z)
−[Tσ, a] j((b − b16B) f 2, g2)(z),

where b16B = 1
|16B|

∫
16B

b(z)dz. Therefore, for any fixed z0 ∈ 3B\2B, we have

(
1
|B|

∫
B
|[[Tσ, a] j, b]1( f , g)(z) + [Tσ, a] j((b − b16B) f 2, g2)(z0)|δdz

) 1
δ

≤ C
(

1
|B|

∫
B
|(b(z) − b16B)[Tσ, a] j( f , g)(z)|δdz

) 1
δ

+C
(

1
|B|

∫
B
|[Tσ, a] j((b − b16B) f 1, g1))(z)|δdz

) 1
δ

+C
(

1
|B|

∫
B
|[Tσ, a] j((b − b16B) f 1, g2)(z)|δdz

) 1
δ

+ C
(

1
|B|

∫
B
|[Tσ, a] j((b − b16B) f 2, g1)(z)|δdz

) 1
δ

+ C
(

1
|B|

∫
B
|[Tσ, a] j((b − b16B) f 2, g2)(z) − [Tσ, a] j((b − b16B) f 2, g2)(z0)|δdz

) 1
δ

:=
5∑

t=1

IIt.

Since 0 < δ < 1/2 and δ < ε < ∞, there exists an l such that 1 < l < min{ ε
δ
, 1

1−δ }. Then δl < ε and
δl′ > 1. By Hölder’s inequality, we have

II1 ≤ C
(

1
|B|

∫
B
|(b(z) − b16B|

δl′dz
) 1
δl′

(
1
|B|

∫
B
|[Tσ, a] j( f , g)(z)|δldz

) 1
δl
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≤ C‖b‖BMO

(
1
|B|

∫
B
|[Tσ, a] j( f , g)(z)|εdz

) 1
ε

≤ C‖b‖BMOMε([Tσ, a] j( f , g))(x).

Since q′ < s < ∞, denoting t = s/q′, then 1 < t < ∞. Noticing that 0 < δ < r < ∞, it follows from
Lemmas 2.1 and 2.3 that

II2 ≤ C|B|−1/δ‖[Tσ, a] j((b − b16B) f 1, g1)‖Lδ(B)

≤ C|B|−1/r‖[Tσ, a] j((b − b16B) f 1, g1)‖Lr,∞(B)

≤ C‖a‖Lip1(
1
|16B|

∫
16B
|b(y1) − b16B|

r1 | f (y1)|r1dy1)
1
r1 (

1
|16B|

∫
16B
|g(y2)|r2dy2)

1
r2

≤ C‖a‖Lip1(
1
|16B|

∫
16B
|b(y1) − b16B|

r1t′dy1)
1

r1t′ (
1
|16B|

∫
16B
| f (y1)|r1tdy2)

1
r1t

×(
1
|16B|

∫
16B
|g(y2)|r2dy2)

1
r2

≤ C‖a‖Lip1‖b‖BMO(
1
|16B|

∫
16B
| f (y1)|sdy2)

1
s × (

1
|16B|

∫
16B
|g(y2)|sdy2)

1
s

≤ C‖a‖Lip1‖b‖BMOMs( f )(x)Ms(g)(x).

By Theorem A, as z ∈ B, y1 ∈ (16B), y2 ∈ 16Bc, noticing that |z − y1| + |z − y2| + |y1 − y2| ∼

|z − y1| + |z − y2| ≥ |z − y2|, then we have

II3 ≤ C(
1
|B|

∫
B
(
∫

(16B)c

∫
(16B)
|K(z, y1, y2)||b(y1 − b16B)|| f (y1)||g(y2)|dy1dy2)δdz)1/δ

≤ C‖a‖Lip1(
1
|B|

∫
B
(
∫

(16B)c
(
∫

(16B)
|b(y1 − b16B)|| f (y1)|dy1)

f (y2)
|z − y2|

2n dy2)δdz)1/δ

≤ C‖a‖Lip1

(∫
(16B)
|b(y1 − b16B)|| f (y1)|dy1

) ∞∑
k=4

∫
2k+1B\2k B

f (y2)
|z0 − y2|

2n dy2

≤ C‖a‖Lip1

(∫
(16B)
|b(y1 − b16B)|qdy1

)1/q (∫
(16B)
| f (y1)|q

′

dy1

)1/q′

×

∞∑
k=4

2−kn 1
|2k+1B|

∫
2k+1B
|g(y2)|dy2

≤ C‖a‖Lip1‖b‖BMOMq′( f )(x)M(g)(x)
∞∑

k=4

2−kn

≤ C‖a‖Lip1‖b‖BMOMs( f )(x)Ms(g)(x).

Similar to estimate II3, by Lemma 2.2, we can get that

II4 ≤ C‖a‖Lip1

(∫
(16B)
|g(y2)|dy2

) ∞∑
k=4

∫
2k+1B\2k B

|b(y1b16B)|| f (y1)|
|x0 − yq|

2n dy1

≤ C‖a‖Lip1 M(g)(x)
∞∑

k=4

2−kn 1
|2k+1B|

∫
2k+1B
|b(y1 − b16B)|| f (y1)|dy1
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≤ C‖a‖Lip1 M(g)(x)
∞∑

k=4

2−kn

(
1

|2k+1B|
|b(y1 − b16B)|qdy1

)1/q

×

(
1

|2k+1B|

∫
2k+1B
| f (y1)|q

′

dy1

) 1
q′

≤ C‖a‖Lip1‖b‖BMOMq′( f )(x)M(g)(x)
∞∑

k=4

2−kn

≤ C‖a‖Lip1‖b‖BMOMs( f )(x)Ms(g)(x).

As z ∈ B and y1, y2 ∈ (16B)c, then |y1 − z0| ≥ 2|z − z0|, |y2 − z0| ≥ 2|z − z0| and rB ≤ |z − z0| ≤ 4rB.
Noticing that 1

q + 1
tq′ + 1

t′q′ = 1. It follows from Hölder’s inequality, Theorem A and the fact (2.3) that

II5 ≤ C(
1
|B|

∫
B
(
∫
Rn

∫
Rn
|K(z, y1, y2) − K(z0, y1, y2)||b(y1) − b16B|

×| f 2(y1)||g2(y2)|dy1dy2)δ)1/δ

≤ C(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

∫
2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

×|K(z, y1, y2) − K(z0, y1, y2)||b(y1) − b16B|| f (y1)||g(y2)|dy1dy2)δdz)1/δ

≤ C(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

∫
2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

|g(y2)|

×

(∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

|K(z, y1, y2) − K(z0, y1, y2)|qdy1

) 1
q

×(
∫

2k1+4B
|b(y1) − b16B|

t′q′dy1)
1

t′q′ (
∫

2k1+4B
| f (y1)|tq

′

dy1)
1

tq′ dy2)δdz)
1
δ

≤ C(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

(
∫

2k1+4B
|b(y1) − b16B|

t′q′dy1)
1

t′q′

×(
∫

2k2+4B
| f (y1)|tq

′

dy1)
1

tq′ (
∫

2k2+4B
|g(y2)|q

′

dy2)
1
q′

×(
∫

2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

|K(z, y1, y2)

−K(z0, y1, y2)|qdy1dy2)
1
q )δdz)

1
δ

≤ C‖a‖Lip1(
1
|B|

∫
B
(
∞∑

k1=1

∞∑
k2=1

(
1

|2k1+4B|

∫
2k1+4B

|b(y1) − b16B|
t′q′dy1)

1
t′q′

×(
1

|2k1+4B|

∫
2k1+4B

| f (y1)|tq
′

dy1)
1

tq′ × (
1

|2k1+4B|

∫
2k2+4B

|g(y2)|q
′

dy2)
1
q′

×|2k1+4B|1/q
′

|2k2+4B|1/q
′

|z − z0|
− 2n

q′Ck12
−

k1n
q′ Ck22

−
k2n
q′ )δdz)1/δ

≤ C‖a‖Lip1‖b‖BMOMs( f )(x)Mq′(g)(x)

 ∞∑
k1=1

Ck1


 ∞∑

k2=1

Ck2


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≤ C‖a‖Lip1‖b‖BMOMs( f )(x)Ms(g)(x).

Combining the estimate of II j, j = 1, 2, 3, 4, 5, we get

(
1
|B|

∫
B
|[[Tσ, a] j, b]1( f , g)(z) + [Tσ, a] j((b − b16B) f 2, g2)(z0)|δdz)

1
δ

≤ C‖b‖BMO(Mε([Tσ, a] j( f , g))(x) + ‖a‖Lip1 Ms( f )(x)Ms(g)(x)).

Similarly, for the case i = 2, we can obtain that

(
1
|B|

∫
B
|[[Tσ, a] j, b]2( f , g)(z) + [Tσ, a] j((b − b16B) f 2, g2)(z0)|δdz)

1
δ

≤ C‖b‖BMO(Mε([Tσ, a] j( f , g))(x) + ‖a‖Lip1 Ms( f )(x)Ms(g)(x)).

Thus,

M]
δ ([[Tσ, a] j, b]i( f , g))(x) ≈ sup

x∈B
inf
a∈C

(
1
|B|

∫
B
|[[Tσ, a] j, b]1( f , g)(z)|δ − a|dz

)1/δ

≤ C‖b‖BMO(Mε([Tσ, a] j( f , g))(x) + ‖a‖Lip1 Ms( f )(x)Ms(g)(x)).

This finishes the proof of Theorem 1.2.

3. Boundedness on product of weighted Lebesgue spaces

The theory of weighted estimates has played very important roles in modern harmonic analysis
with lots of extensive applications in the others fields of mathematics, which has been extensively
studied (see [35, 29, 30, 33], for instance). In this section, for the commutators of bilinear pseudo-
differential operators and Lipschitz functions, we will establish its boundedness of product of weighted
Lebesgue spaces owning to the pointwise estimate of its sharp maximal function, that is, Theorem 1.1.
The boundedness of the corresponding bilinear commutators with BMO function on the product of
weighted Lebesgue spaces is also obtained by using Theorem 1.1 and Theorem 1.2.

Let us recall the definition of the class of Muckenhoupt weights Ap before proving Theorems 1.3
and 1.4. Let 1 < p < ∞ and ω be a non-negative measurable function. We say ω ∈ Ap if for every cube
Q in Rn, there exists a positive C independent of Q such that(

1
|Q|

∫
Q
ω(x)dx

) (
1
|Q|

∫
Q
ω(x)1−p′dx

)p−1

≤ C.

Denote by A∞ =
⋃

p≥1 Ap. It is well known that if ω ∈ Ap with 1 < p < ∞, then ω ∈ Ar for all
r > p, and ω ∈ Ap for some q, 1 < q < p.

To prove Theorems 1.3 and 1.4, we need the following inequality regarding maximal functions
which is a version of the classical ones due to Fefferman and Stein in (see [17]), and a property of Ap.
Lemma 3.1. [17] Let 0 < p, δ < ∞, and ω ∈ A∞. Then there exists a positive constant C depending on
the A∞ constant of ω such that∫

Rn
[Mδ( f )(x)]pω(x)dx ≤ C

∫
Rn

[M]
δ( f )(x)]pω(x)dx,
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for every function f such that the left-hand side is finite.
Lemma 3.2 [18] For (ω1, · · · , ωm) ∈ (Ap1 , · · · , Apm) with 1 ≤ p1, · · · , pm < ∞, and for 0 < θ1, · · · , θm <

1 such that θ1 + · · · + θm = 1, we have ωθ1
1 · · ·ω

θm
m ∈ Amax{p1,··· ,pm}.

Proof of Theorem 1.3. It follows from Lemma 3.2 that ω ∈ Amax{p1/q′,p2/q′} ⊂ A∞. Take a δ such that
0 < δ < 1/2. Then by Lemma 3.1 and Theorem 1.1, we get

‖[Tσ, a] j( f , g)‖Lp(ω) ≤ ‖Mδ([Tσ, a] j( f , g))‖Lp(ω)

≤ C‖M]
δ([Tσ, a] j( f , g))‖Lp(ω)

≤ C‖a‖Lip1‖Mq′( f )Mq′(g)‖Lp(ω)

≤ C‖a‖Lip1‖Mq′( f )‖Lp1 (ω1)‖Mq′(g)‖Lp2 (ω2)

= C‖a‖Lip1‖M(| f |q
′

)‖1/q
′

Lp1/q
′ (ω1)

M(|g|q
′

)‖1/q
′

Lp2/q
′ (ω2)

≤ C‖a‖Lip1‖| f |q
′

‖
1/q′

Lp1/q
′ (ω1)
‖|g|q

′

‖
1/q′

Lp2/q
′ (ω2)

= C‖a‖Lip1‖ f ‖Lp1 (ω1)‖g‖Lp2 (ω2).

We complete the proof of the Theorem 1.3.
Proof of Theorem 1.4. It follows from Lemma 3.2 that ω ∈ A∞. Take δ and ε such that 0 < δ < ε < 1/2.
Then by Lemma 3.1 and Theorem 1.1, let ~f = ( f1, f2), we get

‖Mε([Tσ, a] j( ~f ))‖Lp(ω) ≤ C‖M]
ε([Tσ, a] j( ~f ))‖Lp(ω)

≤ C‖a‖Lip1‖

2∏
t=1

Mq′( ft)‖Lp(ω).

Since ωt ∈ Apt/q′ , t = 1, 2, there exists an lt such that 1 < lt < pt/q′ and ωt ∈ Alt . It follows from
q′ < pt/lt that there is an st such that q′ < st < pt/lt < pt. Let s = min{s1, s2}. Then s > q′ and s < pt.

Since lt < pt/st ≤ pt/s, then ωi ∈ Alt ⊂ Apt/s, t = 1, 2. It follows from Lemma 3.1 and Theorem 1.2
that

‖[[Tσ, a] j, b]i( ~f )‖Lp(ω) ≤ ‖Mδ([[Tσ, a] j, b]i( ~f ))‖Lp(ω) ≤ C‖M]
δ([[Tσ, a] j, b]i( ~f ))‖Lp(ω)

≤ C‖b‖BMO

‖Mε([Tσ, a] j( ~f ))‖Lp(ω) + ‖a‖Lip1‖

2∏
t=1

Ms( ft)‖Lp(ω)


≤ C‖b‖BMO

‖a‖Lip1‖

2∏
t=1

Mq′( ft)‖Lp(ω) + ‖a‖Lip1‖

2∏
t=1

Ms( ft)‖Lp(ω)


≤ C‖b‖BMO‖a‖Lip1

‖ 2∏
t=1

Ms( ft)‖Lp(ω)


= C‖b‖BMO‖a‖Lip1

2∏
t=1

‖Ms( ft)‖Lpt (ωt)

≤ C‖b‖BMO‖a‖Lip1

2∏
t=1

‖M(| ft|
s)‖1/s

Lpt/s(ωt)
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= C‖b‖BMO‖a‖Lip1

2∏
t=1

‖ ft‖Lpt (ωt).

We complete the proof of the Theorem 1.4.

4. Boundedness on product of variable exponent Lebesgue spaces

The spaces with variable exponent have been widely studied in recent ten years. The results show
that they are not only the generalized forms of the classical function spaces with invariable exponent,
but also there are some new breakthroughs in the research techniques. These new real variable methods
help people further understand the function spaces. Due to the fundamental paper [24] by Kovóc̆ik
and Rákosnı́k, Lebesgue spaces with variable exponent Lp(·)(Rn) becomes one of the important class
function spaces. The theory of the variable exponent function spaces have been applied in fluid
dynamics, elastlcity dynamics, calculus of variations and differential equations with non-standard
growth conditions (for example, see [1, 2, 16]). In [8], authors proved the extrapolation theorem which
leads the boundedness of some classical operators including the commutators on Lp(·)(Rn). Karlovich
and Lerner also obtained the bundedness of the singular integral commutators in [23]. The boundedness
of some typical operators is being studied with keen interest on spaces with variable exponent (see [9,
22, 41–43]).

In this section, we will establish the boundedness of [Tσ, a] j and [[Tσ, a] j, b]i(i, j = 1, 2) on the
product of variable exponent Lebesgue spaces, that is, we shall prove Theorems 1.5 and 1.6.

Denote P(Rn) to be the set of all measurable functions p(·) : Rn → [1,∞) with

p− =: ess inf
x∈Rn

p(x) > 1 and p+ =: ess sup
x∈Rn

p(x) < ∞,

and B(Rn) to be the set of all functions p(·) ∈ P(Rn) satisfying the condition that the Hardy-littlewood
maximal operator M is bounded on Lp(·)(Rn).
Definition 4.1. [23] Let p(·) ∈ P(Rn). The variable exponent Lebesgue space is defined by

Lp(·)(Rn) =

 f measurable :
∫
Rn

(
| f (x)|
η

)p(x)

dx < ∞ for some constant λ > 0

 .
As p(·) = p is a constant, then Lp(·)(Rn) = Lp(Rn) coincides with the usual Lebesgue space. It is pointed
out in [23] that Lp(·)(Rn) becomes a Banach space with respect to the norm

‖ f ‖Lp(·)(Rn) = inf

η > 0 :
∫
Rn

(
| f (x)|
η

)p(x)

dx ≤ 1

 .
Lemma 4.2. [13] Let p(·) ∈ P(Rn). Then M is bounded on Lp(·)(Rn) if and only if Mq0 is bounded on
Lp(·)(Rn) for some 1 < q0 < ∞, where Mq0( f ) = [M(| f |q0)]1/q0 .
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Lemma 4.3. [32] Let p(·), p1(·), · · · , pm(·) ∈ P(Rn) so that 1/p(x) = 1/p1(x) + · · · + 1/pm(x). Then for
any f j ∈ Lp j(Rn) , j = 1, 2, · · · ,m, there has

‖

m∏
j=1

f j‖Lp(·)(Rn) ≤ 2m−1
m∏

j=1

‖ f j‖Lp j(·)(Rn).

Lemma 4.4. [14] Given a family F of ordered pairs of measurable functions, suppose for some fixed
0 < p0 < ∞, every ( f , g) ∈ F and every ω ∈ A1,∫

Rn
| f (x)|p0ω(x)dx ≤ C0

∫
Rn
|g(x)|p0ω(x)dx.

Let p(·) ∈ P(Rn) with p0 ≤ p−. If ( p(·)
p0

)′ ∈ B(Rn), then there exists a constant C > 0 such that for all
( f , g) ∈ F , ‖ f ‖Lp(·)(Rn) ≤ C‖g‖Lp(·)(Rn).
Lemma 4.5. [14] If p(·) ∈ P(Rn), then C∞0 is dense in Lp(·)(Rn).
Lemma 4.6. [13] Let p(·) ∈ P(Rn). Then the following conditions are equivalent.

(1) p(·) ∈ B(Rn);
(2) p′(·) ∈ B(Rn);
(3) p(·)/p0 ∈ B(Rn) for some 1 < p0 < p−;
(4) (p(·)/p0)′ ∈ B(Rn) for some 1 < p0 < p−.

Proof of Theorem 1.5. Here we note ~f = ( f1, f2), where f1 and f2 are bounded measurable functions
with compact support. Since p(·) ∈ B(Rn), then by Lemma 4.6, there exists a p0 such that 1 < p0 < p−
and (p(·)/p0)′ ∈ B(Rn). Take a δ such that 0 < δ < 1/2. For any ω ∈ A1, it follows from Lemma 3.1
and Theorem 1.1 that∫

Rn
|[Tσ, a] j( ~f )|p0ω(x)dx ≤ C

∫
Rn

[Mδ([Tσ, a] j( ~f ))(x)]p0ω(x)dx

≤ C
∫
Rn

[M]
δ([Tσ, a] j( ~f ))(x)]p0ω(x)dx

≤ C‖a‖Lip1

∫
Rn

 2∏
t=1

Mq′( ft)(x)

p0

ω(x)dx

≤ C‖a‖Lip1

∫
Rn

 2∏
t=1

Mq j
0
( ft)(x)

p0

ω(x)dx.

Applying Lemma 4.4 to the pair ([Tσ, a] j( ~f ),
∏2

t=1 Mqt
0
( ft)), we can get

‖[Tσ, a] j( ~f )‖Lp(·)(Rn) ≤ C‖a‖Lip1

∥∥∥∥∥∥∥
2∏

t=1

Mq j
0
( ft))

∥∥∥∥∥∥∥
Lp(·)(Rn)

.

Then by Lemmas 4.2 and 4.3, we have

‖[Tσ, a] j( ~f )‖Lp(·)(Rn) ≤ C‖a‖Lip1

∥∥∥∥∥∥∥
2∏

t=1

Mq j
0
( ft))

∥∥∥∥∥∥∥
Lpt (·)(Rn)

≤ C‖a‖Lip1

2∏
t=1

‖ ft‖Lpt (·)(Rn) .
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This completes the proof of the Theorem 1.5.
Proof of Theorem 1.6. Denote q0 = min{q1

0, q
2
0}, then q′ < q0 < ∞. Let ~f = ( f1, f2), where f1 and f2 are

bounded measurable functions with compact support. Since p(·) ∈ B(Rn), then by Lemma 4.6, there
exists a p0 such that 1 < p0 < p− and (p(·)/p0)′ ∈ B(Rn). Take δ and ε such that 0 < δ < ε < 1/2. For
any ω ∈ A1, it follows from Lemma 3.1 , Theorem 1.1 and Theorem 1.2 that∫

Rn
|[[Tσ, a] j, b]i( ~f )|p0ω(x)dx ≤ C

∫
Rn

[Mδ([[Tσ, a] j, b]i( ~f ))(x)]p0ω(x)dx

≤ C
∫
Rn

[M]
δ([[Tσ, a] j, b]i( ~f ))(x)]p0ω(x)dx

≤ C‖b‖p0
BMO

∫
Rn

Mε([Tσ, a] j( ~f ))(x)dx + ‖a‖Lip1

2∏
t=1

Mq0( ft)(x)

p0

ω(x)dx

≤ C‖b‖p0
BMO

∫
Rn

[M]
ε([Tσ, a] j( ~f ))]p0ω(x)dx + ‖a‖p0

Lip1

∫
Rn

 2∏
t=1

Mq′( ft)(x)

p0

ω(x)dx


≤ C‖b‖p0

BMO‖a‖
p0

Lip1

∫
Rn

 2∏
t=1

Mq′( ft)(x)

p0

ω(x)dx +

∫
Rn

 2∏
t=1

Mq0( ft)(x)

p0

ω(x)dx


≤ C‖b‖p0

BMO‖a‖
p0

Lip1

∫
Rn

 2∏
t=1

Mq j
0
( ft)(x)

p0

ω(x)dx.

Applying Lemma 4.4 to the pair ([[Tσ, a] j, b]i( ~f ),
∏2

t=1 Mqt
0
( ft)), we can get

‖[[Tσ, a] j, b]i( ~f )‖Lp(·)(Rn) ≤ C‖a‖Lip1

∥∥∥∥∥∥∥
2∏

t=1

Mq j
0
( ft))

∥∥∥∥∥∥∥
Lp(·)(Rn)

.

Then by Lemmas 4.2 and 4.3, we have

‖[[Tσ, a] j, b]i( ~f )‖Lp(·)(Rn) ≤ C‖a‖Lip1

∥∥∥∥∥∥∥
2∏

t=1

Mqt
0
( ft))

∥∥∥∥∥∥∥
Lpt (·)(Rn)

≤ C‖a‖Lip1

2∏
t=1

‖ ft‖Lpt (·)(Rn) .

We complete the proof of Theorem 1.6.

5. Endpoint estimate

In this section, we will show the endpoint estimate for the [Tσ, a] j with j = 1, 2, that is, we will give
the proof of Theorem 1.7.
Proof of Theorem 1.7. Take p1, p2 such that max{q′, 2} < p1, p2 < ∞. Let 1/p = 1/p1 + 1/p2. Then
1 < p < ∞. It follows from Lemma 2.3 that [Tσ, a] j( j = 1, 2) is bounded from Lp1 × Lp2 into Lp.
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Let f , g ∈ L∞. Then for any ball B = B(x0, rB) with rB > 0, we decompose f and g as follows

f = fχ2B + fχ(2B)c := f 1 + f 2, g = gχ2B + gχ(2B)c := g1 + g2.

Then

1
|B|

∫
B
|[Tσ, a] j( f , g)(z)| − [Tσ, a] j( f 2, g2)(x0)|dz

≤
1
|B|

∫
B
|[Tσ, a] j( f 1, g1)(z)| +

1
|B|

∫
B
|[Tσ, a] j( f 2, g1)(z)|dz

+
1
|B|

∫
B
|[Tσ, a] j( f 1, g2)(z)|dz

+
1
|B|

∫
B
|[Tσ, a] j( f 2, g2)(z) − [Tσ, a] j( f 2, g2)(x0)|dz

:=
4∑

s=1

Js.

It follows from the Hölder’s inequality and Lemma 2.3 that

J1 ≤

(
1
|B|

∫
B
|[Tσ, a] j( f 1, g1)(z)|p

)1/p

≤ C|B|−1/p‖a‖Lip1‖ f 1‖Lp1 ‖g1‖Lp2

≤ ‖a‖Lip1‖ f ‖∞‖g‖∞.

By the size conditions in Theorem A of the kernel, we have

J2 ≤
1
|B|

∫
B

(∫
(2B)c

∫
2B
|K(z, y1, y2)| f (y1)||g(y2)|dy2dy1

)
dz

≤ C‖a‖Lip1
1
|B|

∫
B

(∫
(2B)c

(∫
2B
|g(y2)|dy2

)
| f (y1)|
|z − y1|

2n dy1

)
dz

≤ C‖a‖Lip1‖ f ‖∞‖g‖∞

(∫
2B

dy2

) (∫
(2B)c

1
|x0 − y1|

2n dy1

)
≤ C‖a‖Lip1‖ f ‖∞‖g‖∞.

Similarly, we can obtain that
J3 ≤ C‖a‖Lip1‖ f ‖∞‖g‖∞.

Noting that as z ∈ B, and y1, y2 ∈ (2B)c, then |y1 − x0| ≥ 2|z − x0| and |y2 − x0| ≥ 2|z − x0|. It follows
from the Hölder’s inequality and (2.3) that

J4 ≤
1
|B|

∫
B

(∫
Rn

∫
Rn
|K(z, y1, y2)| f (y1) − K(x0, y1, y2)| f 2(y1)||g2(y2)|dy1dy2

)
dz

≤ C
∞∑

k1=1

∞∑
k2=1

1
|B|

∫
B

∫
2k2 |z−z0 |≤|y2−z0 |≤2k2 |z−z0 |

∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |
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|K(z, y1, y2) − K(x0, y1, y2)|| f (y1)||g(y2)|dy1dy2|dy1dy2dz

≤ C‖a‖Lip1‖ f ‖∞‖g‖∞
∞∑

k1=1

∞∑
k2=1

1
|B|

∫
B

∫
2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

(2k1 |z − x0|)
n
q′

×

(∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

|K(z, y1, y2) − K(x0, y1, y2)|qdy1

)1/q

dy2dz

≤ C‖a‖Lip1‖ f ‖∞‖g‖∞
∞∑

k1=1

∞∑
k2=1

1
|B|

(2k1 |z − x0|)
n
q′ (2k2 |z − x0|)

n
q′

×(
∫

2k2 |z−z0 |≤|y2−z0 |≤2k2+1 |z−z0 |

∫
2k1 |z−z0 |≤|y1−z0 |≤2k1+1 |z−z0 |

×|K(z, y1, y2) − K(x0, y1, y2)|qdy1dy2)1/qdz

≤ C‖a‖Lip1‖ f ‖∞‖g‖∞
∞∑

k1=1

∞∑
k2=1

2
k1n
q′ 2

k2n
q′ (Ck12

−
k1n
q′ )(Ck22

−
k2n
q′ )

≤ C‖a‖Lip1‖ f ‖∞‖g‖∞.

Thus,

‖[Tσ, a] j( f , g)‖BMO = sup
B

1
|B|

∫
B
|[Tσ, a] j( f , g)(z) − ([Tσ, a] j( f , g))B|dz

≤ sup
B

1
|B|

∫
B
|[Tσ, a] j( f , g)(z) − [Tσ, a] j( f 2, g2)(x0)|dz

≤ C‖a‖Lip1‖ f ‖∞‖g‖∞.

Which completes the proof of the Theorem 1.7.

6. Conclusions

In this paper, we consider the commutators of bilinear pseudo-differential operators and the
operation of multiplication by a Lipschitz function. By establishing the pointwise estimates of the
corresponding sharp maximal function, the boundedness of the commutators is obtained respectively
on the products of weighted Lebesgue spaces and variable exponent Lebesgue spaces with σ ∈ BBS 1

1,1.
Moreover, the endpoint estimate of the commutators is also established on L∞ × L∞.
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pseudodifferential operators, J. Fourier Anal. Appl., 20 (2014), 282–300.
http://dx.doi.org/10.1007/s00041-013-9312-3

7. A. Calderón, Commutators of singular integral operators, P. Natl. Acad. Sci. USA, 53 (1965), 1092–
1099. http://dx.doi.org/10.1073/pnas.53.5.1092

8. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Pérez, The boundedness of classical operators on
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22. Ö. Kulak, The inclusion theorems for variable exponent Lorentz spaces, Turkish J. Math., 40
(2016), 605–619. http://dx.doi.org/10.3906/mat-1502-23

23. A. Y. Karlovich, A. K. Lerner, Commutators of singular integrals on
generalized Lp spaces with variable exponent, Publ. Mat., 49 (2005), 111–125.
http://dx.doi.org/10.5565/PUBLMAT 49105 05

24. O. Kovác̆ik, J. Rákosnı́k, On spaces Lp(x) and Wk,p(x), Czech. Math. J., 41 (1991), 592–618.

25. A. K. Lerner, Weighted norm inequalities for the local sharp maximal function, J. Fourier Anal.
Appl., 10 (2004), 465–474. http://dx.doi.org/10.1007/s00041-004-0987-3

26. A. K. Lerner, A pointwise estimate for the local sharp maximal function with
applications to singular integrals, Bull. London Math. Soc., 42 (2010), 843–856.
http://dx.doi.org/10.1112/blms/bdq042

27. Y. Lin, S. Lu, Strongly singular Calderón-Zygmund operators and their commutators, Jordan J.
Math. Stat., 1 (2008), 31–49.
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