We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies u,b∈L∞(−(43)2,0;L3,q(B34)), q∈(3,∞) in Lorentz space, then (u,b) is Hölder continuous in the closure of the set Q12.
Citation: Jae-Myoung Kim. Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space[J]. AIMS Mathematics, 2021, 6(3): 2440-2453. doi: 10.3934/math.2021148
[1] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[2] | Wenjuan Liu, Zhouyu Li . Global weighted regularity for the 3D axisymmetric non-resistive MHD system. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017 |
[3] | A. M. Alghamdi, S. Gala, M. A. Ragusa . A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565 |
[4] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[5] | Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687 |
[6] | Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944 |
[7] | Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024 |
[8] | Xiaolei Dong . Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256 |
[9] | Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV . An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Mathematics, 2020, 5(4): 3751-3761. doi: 10.3934/math.2020243 |
[10] | Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa . Regularity results for solutions of micropolar fluid equations in terms of the pressure. AIMS Mathematics, 2023, 8(9): 21208-21220. doi: 10.3934/math.20231081 |
We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies u,b∈L∞(−(43)2,0;L3,q(B34)), q∈(3,∞) in Lorentz space, then (u,b) is Hölder continuous in the closure of the set Q12.
We study the three-dimensional incompressible magnetohydrodynamic (3D MHD) equations (see e.g. [5]):
(MHD){ut−△u+(u⋅∇)u−(b⋅∇)b+∇π=0bt−△b+(u⋅∇)b−(b⋅∇)u=0div u=0anddiv b=0,u(x,0)=u0(x),b(x,0)=b0(x) in QT:=R3×[0,T), | (1.1) |
Here u is the flow velocity vector, b is the magnetic vector and π=p+|b|22 is the scalar pressure. By suitable weak solutions we mean solutions that solves MHD in the sense of distribution and satisfy the local energy inequality (see Definition 2.1 in section 2 for details). For a point z=(0,0)∈R3×(0,T) by translation, we denote Br(x):=Br={y∈R3:|y−x|<r},
Qr(z):=Qr=Br×(−r2,0),r<√T. |
We say that solutions u and b are regular at z∈R3×(0,T) if u and b are bounded for some Qr, r>0. Otherwise, it is said that u and b are singular at z. The original paper where the weak solvability of the various boundary value problems was proved is Ladyženskaja and Solonnikov [9]. As in the Navier-Stokes equations, regularity problem remains open in dimension three. On the other hand, He and Xin proved in [8] a suitable weak solution to this equations using the construction arguments of a solution in [4]. Furthermore, they show that a suitable weak solution, (u,b) become regular in the presence of a certain type of scaling invariant local integral conditions for velocity and magnetic fields. Recently, in [14], Phuc give a new regularity condition, that is, u∈L∞(−1,0;L3,q(B1)), a weak solution to the 3D Navier-Stokes equations are regular for q≠∞ (cf [2]). In this paper, we give a criterion of local interior regularity as like Phuc's result for a suitable weak solution to the 3D MHD equations in Lorentz space which is still unknown (see e.g. [20,12] for the Naiver-Stokes equations). For proofs, we prove the ϵ- regularity criteria for this solution in Lorentz space (below Proposition 2.3)based on the ϵ-regularity criteria in Sobolev space. After that, using the standard blow-up argument(or contraction argument) and the unique continuation for parabolic equation, we show a solution is regular (see e.g. [1,3,6,7,13]). In summary, overall, our proof is followed the arguments in [14,2] which is mainly contained the arguments for the Naiver-Stokes equations. Now we are ready to state the first part of our main result.
Theorem 1.1. Let a pair of functions u, b and π have the following differentiability properties:
u,b∈L2,∞(Q2)∩W1,02(Q2),π∈L32(Q2) |
Suppose that (u,b,π) satisfy the 3D MHD equations in Q2 in the sense of distributions. Assume, in addition, that there exists 3<q<∞ such that
u,b∈L∞(−4,0;L3,q(B2)). |
Then (u,b) is Hölder continuous in the closure of the set Q12.
In this section we introduce some scaling invariant functionals and suitable weak solutions, and recall an estimation of the Stokes system.
We first start with some notations. Let Ω be an open domain in R3 and I be a finite time interval. We denote by Lp,q(R3) with 1≤p, q≤∞ the Lorentz space with the norm [21]
‖φ‖Lp,q=(∫∞0tq(m(φ,t))q/p dtt)1/q<∞for 1≤q<∞, |
where m(φ,t) is the Lebesgue measure of the set {x∈R3:|φ(x)|>t}, i.e.
m(φ,t):=m{x∈R3:|φ(x)|>t}. |
In particular, when q=∞,
‖φ‖Lp,∞=supt≥0{t(m(φ,t))1p}<∞. |
The Lorentz space Lp,∞ is also called weak Lp space. The norm is equivalent to the norm
‖f‖Lq,∞=sup0<|E|<∞|E|1/q−1∫E|f(x)|dx. |
For a function f(x,t), we denote ‖f‖Lp,qx,t(Ω×I)=‖f‖Lqt(I;Lpx(Ω))=‖‖f‖Lpx(Ω)‖Lqt(I) and vector fields u,v we write (uivj)i,j=1,2,3 as u⊗v. We denote by C=C(α,β,...) a constant depending on the prescribed quantities α,β,..., which may change from line to line. Next we recall suitable weak solutions for the MHD equations (1.1) in three dimensions.
Definition 2.1. Let I=(0,T). A triple of (u,b,π) is a suitable weak solution to (1.1) if the following conditions are satisfied:
(a) The functions u,b:QT→R3 and π:QT→R satisfy
u,b∈L∞(I;L2(R3))∩L2(I;W1,2(R3)),π∈L32(QT), |
(b) (u,b,π) solves the MHD equations in QT in the sense of distributions.
(c) u,b and π satisfy the local energy inequality
∫B(|u(x,t)|2+|b(x,t)|2)ϕ(x,t)dx |
+2∫tt0∫B(|∇u(x,t′)|2+|∇b(x,t′)|2)ϕ(x,t′)dxdt′ |
≤∫tt0∫B(|u|2+|b|2)(∂tϕ+Δϕ)dxdt′+∫tt0∫B(|u|2+|b|2+2π)u⋅∇ϕdxdt′ |
−2∫tt0∫B(b⋅u)(b⋅∇ϕ)dxdt′. | (2.1) |
for all nonnegative function ϕ∈C∞0(R3×R).
The crucial regularity result in [8] and [22] ensures that
Lemma 2.1. There exists ϵ>0 such that if (u,b,π) is a suitable weak solution of the 3D MHD equations and for r>0,
1r2∫Qz,r|u(y,s)|3+|b(y,s)|3+|π(y,s)|32dyds<ϵ, |
then z is a regular point.
Before a proof, we know some necessary results, which is crucial role for our analysis (see [2] and [14]). After then, using these result, we prove Theorem 1.1.
Proposition 2.1. Suppose that the pair of functions (u,b,π) satisfies the 3D MHD equations in Q:=Q1(0,0)=B1(0)×(−1,0) in the sense of distributions and has the following properties
u, b∈L∞(−1,0;L2(B1))∩L2(−1,0;W1,2(B1)), |
π∈L2(−1,0;L1(B1)). |
for some q∈(3,∞). Then (u,b,π) forms a suitable weak solution to the 3D MHD equations in Q56 with a generalized energy equality, u∈L4(Q), and π∈L2(Q56). Suppose further that
u∈L∞(−1,0;L3,q(B1)),b∈L∞(−1,0;L3,q(B1)). |
In addition, the inequalities
‖u(⋅,t)‖L3,q(B34)≤‖u‖L∞(−(34)2,0; L3,q(B34)), |
and
‖b(⋅,t)‖L3,q(B34)≤‖b‖L∞(−(34)2,0; L3,q(B34)) |
hold for all t∈(−(34)2,0), and the function
t→∫B34u(x,t)w(x)dx |
is continuous on [−(34)2,0] for any w∈L32,qq−1(B34). Here, it is clear that qq−1=1 in the case q=∞.
Proof. By Sobolev's inequality, we know u∈L2(−1,0;L6(B1)). And also by the assumptions and interpolative inequality, we have
‖u‖L4(B1)≤C‖u‖12L3,q‖u‖12L6(B1), | (2.2) |
which implies u∈L4(Q1). Similarly, we get b∈L4(Q1). Thus by Hölder's inequality, we obtain
u⋅∇u,b⋅∇b,u⋅∇b,b⋅∇u∈L43(Q1). | (2.3) |
Decompose the pressure so that
π=π1+π2, |
where π1:=RiRj(χBρ(uiuj+bibj)). Here Ri is Riesz operator and we adopt summation convention. It is not difficult to notice that in Bρ:
Δπ2=0. |
By Calderón-Zygmund estimate we have
‖π1‖L2(B1)≤C(‖u‖2L4(B1)+‖b‖2L4(B1)), | (2.4) |
and thus (2.4), it holds
‖π2‖L2(−1,0;L∞(B56))≤C‖π2‖L2(−1,0;L1(B1))=C‖π−π1‖L2(−1,0;L1(B1)) |
≤C‖π‖L2(−1,0;L1(B1))+C(‖u‖2L4(Q)+‖b‖2L4(Q)). | (2.5) |
Estimates (2.4) and (2.4) imply that the pressure π∈L2(Q56). With the energy class, estimate (2.2), (2.3) and (2.5), and the local interior regularity of Stokes systems, we have
(‖u‖L4(Q34)+‖b‖L4(Q34))+ |
(‖ut‖L43(Q34)+‖bt‖L43(Q34)+(‖∇2u‖L43(Q34)+‖∇2b‖L43(Q34)+‖∇π‖L43(Q34)<∞. |
It then follows that
u,b∈C(−(34)2,0;L43(B34)) |
and thus the function
gφ(t):=∫B3/4u(x,t)φ(x)dx |
is continuous on [−(34)2,0] for any φ∈C∞0(B34). This yields
|∫B3/4u(x,t)φ(x)dx|≤C‖φ‖L32,qq−1(B34)‖u‖L∞(−(43)2,0;L3,q(B34)). |
Thus by the density of C∞0(B34) in L32,qq−1(B34) we see that
‖u‖L3,q(B34)≤C‖u‖L∞(−(43)2,0;L3,q(B34)),t∈[−(34)2,0]. |
Then it can be seen, again by density, that the function gφ above is actually continuous on [−(34)2,0] for any φ∈L32,qq−1(B34). Finally, using u∈L4(B1) and a standard mollification in R3+1 combined with a truncation in time of test functions, we obtain the local generalized energy equality in Q56.
For simplicity, we write
Φ(r):=Au(r)+Ab(r)+Eu(r)+Eb(r). |
where
Au(r):=supt−r2≤s<t1r∫Br|u(y,s)|2dy,Eu(r):=1r∫Qr|∇u(y,s)|2dyds, |
Ab(r):=supt−r2≤s<t1r∫Br|b(y,s)|2dy,Eb(r):=1r∫Qr|∇b(y,s)|2dyds, |
Also, we introduce following the scale invariant functional : for 0<r<1,
Cu∞(r)=1r2∫0−r2‖u(y,s)‖3L3,∞(Br)ds,Cb∞(r)=1r2∫0−r2‖b(y,s)‖3L3,∞(Br)ds. |
D∞(r)=1r2∫0−r2‖π(y,s)‖32L32,∞(Br)ds. |
Now, we begin with stating a well known algebraic Lemma, whose proof is omitted but found in [4].
Lemma 2.2. Let I(s) be a bounded non negative function in the interval [R1,R2]. Assume that for every s,ρ∈[R1,R2] and s<ρ we have
I(s)≤[A(ρ−s)−α+B(ρ−s)−β+C]+θI(ρ) |
with A,B,C≥0, α>β>0 and θ∈[0,1). Then there holds
I(R1)≤c(α,θ)[A(R2−R1)−α+B(R2−R1)−β+C]. |
Lemma 2.3. Let (u,b,π) be a suitable weak solution to 3D MHD equations. Then for 0<r the following holds
Φ(r2)≤C(Cu∞(r)23+Cb∞(r)23+Cu∞(r)43+Cb∞(r)43+D∞(r)23). |
Proof. Without loss of generally, consider z0 to be the origin. Let 0<r2≤s<ρ≤r<1. Let η1∈C∞0(B(ρ)) such that 0≤η1≤1 in R3 and η1=1 on B(s). Furthermore for |α|≤2:
|∇αη1|≤C(ρ−s)α. |
Let η2∈C∞0(−ρ2,ρ2) such that 0≤η2≤1 in R and η1=1 on [−s2,s2].
|η′1|≤C(ρ2−s2)≤Cr(ρ−s)≤C(ρ−s)2. |
Let ϕ(x,t):=η(t)η2(x). Hence:
|∇ϕ|≤Cρ−s,|∇2ϕ|≤C(ρ−s)2,|ϕt|≤C(ρ−s)2. |
From the local energy inequality, we are known
∫Br(|u(x,t)|2+|b(x,t)|2)ϕ(x,t)dx+2∫0−ρ2∫Br(|∇u(x,t′)|2+|∇b(x,t′)|2)ϕ(x,t′)dxdt′ |
≤∫0−ρ2∫Bρ(|u|2+|b|2)(∂tϕ+Δϕ)dxdt′ |
+∫0−ρ2∫Bρ(|u|2+|b|2)u⋅∇ϕdxdt′+2∫0−ρ2∫Bρπu⋅∇ϕdxdt′−2∫0−ρ2∫Bρ(b⋅u)(b⋅∇ϕ)dxdt′, | (2.6) |
:=E1+E2+E3+E4 |
for all t∈I=(−1,0) and for all non-negative functions ϕ∈C∞0(R3×R). Let us treat the term E1 first. By O'Neil's inequality in space, the property of ϕ, and then Hölder in time, we have
E1≤∫0−ρ2(‖u‖2L3,∞(Bρ)+‖b‖2L3,∞(Bρ))‖Δϕ+∂tϕ‖L3,1(Bρ)ds |
≤Cρ(ρ−s)2∫0−ρ2(‖u‖2L3,∞(Bρ)+‖b‖2L3,∞(Bρ))ds |
≤Cρ53(ρ−s)2[(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23+(∫0−ρ2‖b‖3L3,∞(Bρ)ds)23]. | (2.7) |
Lorentz spaces is characterization as interpolation space between L2 and L6 as follows:
L3,1(Ω)=(L2(Ω),L6(Ω))12,1 | (2.8) |
Before the term E3 is estimated, we note that
‖u⋅∇ϕ‖L3,1(Bρ)≤‖u⋅∇ϕ‖12L2(Bρ)‖u⋅∇ϕ‖12L6(Bρ)≤‖u⋅∇ϕ‖12L2(Bρ)‖∇(u⋅∇ϕ)‖12L2(Bρ) |
≤C‖u‖L2(Bρ)(ρ−s)32+C‖u‖12L2(Bρ)‖∇u‖12L2(Bρ)ρ−s, | (2.9) |
where we use the interpolation (2.8), Sobolev embedding and the property of ϕ. Set I(ρ)=ρΦ(ρ). Using O'Neil inequality and the estimate (2.9), the term E3 is estimated as follows: for ρ≤r,
E3≤∫0−ρ2‖u⋅∇ϕ‖L3,1(Bρ)‖π‖L32,∞(Bρ)ds≤[C(ρ−s)32(∫0−ρ2‖u‖3L2(Bρ)ds)13 |
+Cρ−s(∫0−ρ2‖u‖32L2(Bρ)‖u‖32L2(Bρ)ds)13]×(∫0−ρ2‖π‖32L32,∞(Bρ)ds)23 |
≤C(r23I(ρ)12(ρ−s)32+r16ρ−sI(ρ)12)(∫0−ρ2‖π‖32L32,∞(Bρ)ds)23. | (2.10) |
Similarly, we are obtained the following estimate as like E3:
∫0−ρ2∫Bρ2|u|2u⋅∇ϕdxdt′≤C(r23I(ρ)12(ρ−s)32+r16ρ−sI(ρ)12)(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23, | (2.11) |
∫0−ρ2∫Bρ2|b|2u⋅∇ϕdxdt′≤C(r23I(ρ)12(ρ−s)32+r16ρ−sI(ρ)12)(∫0−ρ2‖b‖3L3,∞(Bρ)ds)23. | (2.12) |
So thus, with the estimates (2.11) and (2.12), the term E2+E4 is estimated by
E2+E4≤C(r23I(ρ)12(ρ−s)32+r16ρ−sI(ρ)12)[(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23+(∫0−ρ2‖b‖3L3,∞(Bρ)ds)23]. | (2.13) |
We combine with the estimate (2.7), (2.10) and (2.13) and Young's inequality to get
I(ρ)≤r53(ρ−s)2[(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23+(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23]+12I(ρ) |
+(r43(ρ−s)3+r13(ρ−s)2)[(∫0−ρ2‖u‖3L3,∞(Bρ)ds)43+(∫0−ρ2‖b‖3L3,∞(Bρ)ds)43+(∫0−ρ2‖π‖32L32,∞(Bρ)ds)43] |
Since r2≤s<ρ≤r and by Lemma 2.2, we obtain
Φ(r2)≤r−13[(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23+(∫0−ρ2‖u‖3L3,∞(Bρ)ds)23] |
+Cr−53[(∫0−ρ2‖u‖3L3,∞(Bρ)ds)43+(∫0−ρ2‖b‖3L3,∞(Bρ)ds)43+(∫0−ρ2‖π‖32L32,∞(Bρ)ds)43]. |
Following the notation in [14], we suppose that z0:=(x0,t0)∈Q12(0,0) is a singular point. It means that there exists no neighborhood N of z0 such that (u,b) has a Hölder continuous representative on N∩[B1(0)×(−1,0]). By Theorem 3.2 [13], there exist c0>0 and a sequence of numbers ϵk∈(0,1) such that ϵk→ 0 as k→∞ and
supt0−ϵk≤s≤t01ϵk∫B(x0,ϵk)|u(x,s)|2dx+|b(x,s)|2dx≥c0, | (2.14) |
for any k∈N. Moreover, by Proposition 2.1, we have in particular
u(⋅,t0)∈L3,q(B3/4(0)),b(⋅,t0)∈L3,q(B3/4(0)) |
Recall that we can decompose π=˜π+h, where h is harmonic in B1, and ˜π=RiRj[(uiuj+bibj)χB1]. For each Q=ω×(a,b), where ω∈R3 and −∞<a<b≤0, we choose a large k0=k0(Q)≥1 so that for any k≥k0 there hold the implications x∈ω⟹x0+ϵkx∈B23, and t∈(a,b)⟹t0+ϵkt∈(−(23)2,0), where the sequence ϵk is as in (4.7). Set Q=ω×(a,b), let us set
uk(x,t)=ϵku(x0+ϵkx,t0+ϵ2kt),bk(x,t)=ϵkb(x0+ϵkx,t0+ϵ2kt), |
and
πk(x,t)=ϵ2kkπ(x0+ϵkx,t0+ϵ2kt), |
˜πk(x,t)=ϵ2k˜π(x0+ϵkx,t0+ϵ2kt),andhk(x,t)=ϵ2kh(x0+ϵkx,t0+ϵ2kt), |
for any (x,t)∈Q and k≥k0(Q).
The following proposition is a key in the proof of Theorem 1.1, which says the properties in the limit.
Proposition 2.2. Let 0<q<∞ and Q=ω×(a,b) with ω⊂R3, −∞<a<b≤0. There exists a subsequence of (uk,bk,πk), still denoted by (uk,bk,πk), and a pair of functions
(u∞, b∞,π∞)∈L∞(−∞,0;L3,q(R3))×L∞(−∞,0;L3,q(R3))×L∞(−∞,0;L32,q2(R3)) |
with \mathit{\text{div}} \ u^{\infty} = 0 and \mathit{\text{div}} \ b^{\infty} = 0 in { \mathbb{R} }^3\times (-\infty, 0) , such that for s\in (1, 3) ,
\begin{equation} u^k \rightarrow u^{\infty} \ \mathit{\text{in}} \ C(a,b; L^s(\omega)), \end{equation} | (2.15) |
\begin{equation} b^k \rightarrow b^{\infty} \ \mathit{\text{in}} \ C(a,b; L^s(\omega)), \end{equation} | (2.16) |
\begin{equation} \pi^k \rightarrow \pi^{\infty} \ \mathit{\mbox{weakly}}^* \ \mathit{\text{in}} \ L^\infty(a,b; L^{\frac{3}{2},\frac{q}{2}}(\omega)), \end{equation} | (2.17) |
Moreover
\begin{equation} |u^{\infty}|^2, |b^{\infty}|^2, \nabla u^{\infty}, \nabla b^{\infty}\in L^2(Q), \end{equation} | (2.18) |
\begin{equation} \partial_tu^{\infty}, \partial_tb^{\infty}, \nabla^2 u^{\infty}, \nabla^2 b^{\infty}, \nabla \pi^{\infty} \in L^{\frac{4}{3}}(Q), \end{equation} | (2.19) |
and (u^{\infty}, b^{\infty}, \pi^{\infty}) satisfies a suitable weak solution to the 3D MHD equations in Q . Additionally, u^{\infty} and b^{\infty} satisfy the lower bound satisfies the lower bound
\begin{equation} \int_Q(|u^{\infty}|^2+|b^{\infty}|^2)dz\geq \varepsilon_3. \end{equation} | (2.20) |
Proof. For each Q = \omega \times (a, b) , where for \omega \subset { \mathbb{R} }^3 and t \in [a, b] with -\infty < a < b \leq 0 , we have
\begin{equation} \|u_k(\cdot,t)\|_{L^{3,q}(\omega)}\leq \|u_k(\cdot,t_0+\epsilon_k^2t)\|_{L^{3,q}(B_{\frac{3}{4}})}\leq \|u\|_{L^{\infty}(-1,0);L^{3,q}(B_{1})}, \end{equation} | (2.21) |
and
\begin{equation} \|b_k(\cdot,t)\|_{L^{3,q}(\omega)}\leq \|b\|_{L^{\infty}(-1,0);L^{3,q}(B_{1})}, \end{equation} | (2.22) |
By Calderón-Zygmund estimate, for a.e. t \in (a, b) there holds
\begin{equation} \|\tilde{\pi}_k(\cdot,t)\|_{L^{\frac{3}{2},\frac{q}{2}}(\omega)}\leq \|\tilde{\pi}_k(\cdot,t_0+\epsilon_k^2t)\|_{L^{\frac{3}{2},\frac{q}{2}}(B_{\frac{3}{4}})}\leq C(\|u\|^2_{L^{\infty}(-1,0);L^{3,q}(B_{1})}+\|b\|^2_{L^{\infty}(-1,0);L^{3,q}(B_{1})}). \end{equation} | (2.23) |
On the other hand, by harmonicity we have
\begin{equation} \int_a^b \sup\limits_{x\in \omega}|h_k(x,t)|^{\frac{3}{2}}dt\leq \epsilon_k\int_{-(3/4)^2} \sup\limits_{x\in \omega}|h_k(x_0+\epsilon_kx,s)|^{\frac{3}{2}}ds\leq \epsilon_k \|h\|^{\frac{3}{2}}_{L^{\frac{3}{2}}(-1,0);L^{\infty}(B_{\frac{3}{4}})} \end{equation} | (2.24) |
\leq C\epsilon_k(\|u\|^3_{L^{\infty}((-1,0);L^{3,q}(B_{1}))}+\|b\|^3_{L^{\infty}((-1,0);L^{3,q}(B_{1}))}+\|\pi\|_{L^{\frac{3}{2}}(Q_{1})}) |
Thus each (u_k, b_k) is a suitable solution in Q . Then, from the energy estimate follows that
\begin{equation} \|u_k\|_{L^{\infty}(a,b;L^2(\omega))} +\|b_k\|_{L^{\infty}(a,b;L^2(\omega))}+ \|\nabla b_k\|_{L^2(Q)}+\|\nabla u_k\|_{L^2(Q)} \leq C. \end{equation} | (2.25) |
Using (2.25) and Sobolev embedding, we have \|u_k\|_{L^{2}(a, b;L^6(\omega))}\leq C , which by (4.12), interpolation, and Hölder's inequality gives for
\|u_k\|_{L^4(Q)}+\|b_k\|_{L^4(Q)}+\|(u_k\cdot \nabla)u_k\|_{L^{\frac{4}{3}}(Q)}+\|(b_k\cdot \nabla)u_k\|_{L^{\frac{4}{3}}(Q)}\leq C. |
From the bounds (2.23) and (2.24), we also have
\begin{equation} \|\pi_k\|_{L^s(Q)} \leq C\|\pi_k\|_{L^2(a,b;L^{\frac{3}{2},\frac{q}{2}}(\omega))} \leq C, \quad s \in (0, \frac{3}{2}). \end{equation} | (2.26) |
Using the estimate (2.25)–(2.26), it follows from the local interior regularity of solutions to non-stationary Stokes equations we find
\begin{equation} \|\partial_tu_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla^2u_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla \pi_k\|_{L^{\frac{4}{3}}(Q)}\leq C. \end{equation} | (2.27) |
Furthermore, we can easily check the as following:
\begin{equation} \|\partial_tu_k\|_{L^{\frac{4}{3}}(Q)}+\|\partial_tb_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla^2u_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla^2b_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla \pi_k\|_{L^{\frac{4}{3}}(Q)}\leq C. \end{equation} | (2.28) |
Using estimates (2.21)–(2.23), we may get that
u_k \rightharpoonup^{*} u^{\infty} \quad \mbox{in}\ L^{\infty}(-\infty, 0; L^{3,q}( { \mathbb{R} }^3)). |
b_k \rightharpoonup^{*} b^{\infty} \quad \mbox{in}\ L^{\infty}(-\infty, 0; L^{3,q}( { \mathbb{R} }^3)). |
\tilde{\pi}_k \rightharpoonup^{*} \tilde{\pi}^{\infty} \quad \mbox{in}\ L^{\infty}(-\infty, 0; L^{\frac{3}{2},\frac{q}{2}}( { \mathbb{R} }^3)). |
Estimates (2.25) and (2.27) yield
\begin{equation} u_k \rightharpoonup^{*} u^{\infty} \quad \mbox{in}\ C(-\infty, 0; L^{\frac{4}{3}}(Q)), \end{equation} | (2.29) |
\begin{equation} b_k \rightharpoonup^{*} b^{\infty} \quad \mbox{in}\ C(-\infty, 0; L^{\frac{4}{3}}(Q)). \end{equation} | (2.30) |
For any s\in (1, 3) , the uniform bound (2.21) and the interpolation inequality
\|u_k(\cdot, t)- u_k(\cdot, t^{\prime})\|_{L^s}\leq \|u_k(\cdot, t)- u_k(\cdot, t^{\prime})\|^{\frac{12}{5}\Big(\frac{1}{s}-\frac{1}{3}\Big)}_{L^{\frac{4}{3}}}\|u_k(\cdot, t)- u_k(\cdot, t^{\prime})\|^{\frac{12}{5}\Big(\frac{3}{4}-\frac{1}{s}\Big)}_{L^s} |
imply that each u_k \in C([a, b]; L^s(\omega)) . Thus by using (2.29) and interpolating we obtain (2.15) for any s\in (1, 3) . On the other hand, by (2.24), we have
h_k \rightarrow 0 \ \text{strongly in} \ L^2(a, b;L^{\infty}(\omega)), |
Now (2.18)–(2.19) follows from (2.29), (2.30), (2.25) and (2.27) via an argument as in the proof of Proposition 2.1. Finally, note that by (2.14) and a change of variables we have
\sup\limits_{-1\leq t\leq 0}\int_{B(0,1)} |u_k(x, t)|^2dx = \sup\limits_{t_0-\epsilon_k^2\leq t\leq r_0}\frac{1}{\epsilon_k}\int_{B(0,1)} |u_k(y, s)|^2dy\geq C_0. |
Similarly, \sup_{-1\leq t\leq 0}\int_{B(0, 1)} |u_k(x, t)|^2dx \geq C_0 . Thus using the convergences (2.15) and (2.16) with s = 2 we obtain the lower bound (2.20).
Before proving the main statement we introduce some notation
C_u(r): = \frac{1}{r^2}\int_{Q_r}|u|^3dz,\quad C_b(r): = \frac{1}{r^2}\int_{Q_r}|b|^3dz,\quad D(r): = \frac{1}{r^2}\int_{Q_r}|\pi|^{\frac{3}{2}}dz. |
Now, we prove the \epsilon - regularity criteria for a suitable weak solution to the 3D MHD equations under our circumstance.
Proposition 2.3. Let (u, b, \pi) be a suitable weak solution to 3D MHD equations. Then there exists a universal constants c_0 and c_{0k}(\epsilon_0) (with k = 1, 2, \cdots) with the following property. Assume
\begin{equation} C^u_{\infty}(1)+C^b_{\infty}(1)+D_{\infty}(1)\leq \epsilon_0, \end{equation} | (2.31) |
then for any natural number k , \nabla^{k-1}u is Hölder continuous in \tilde{Q}_{1/8} and the following bound is valid:
\sup\limits_{\tilde{Q}_{1/8}}\Big(|\nabla^{k-1}u(z)|+|\nabla^{k-1}b(z)|\Big) < c_{0k}(\epsilon_0). |
Proof. From Lemma 2.3 and assumptions (2.31), it follows that
\begin{equation} A_u(\frac{1}{2})+A_b(\frac{1}{2})+E_u(\frac{1}{2})+E_b(\frac{1}{2})\leq C(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}}. \end{equation} | (2.32) |
By interpolation and Sobolev embedding theorem one can show that
C_u(\frac{1}{2}) \leq C[A_u(\frac{1}{2})^{\frac{3}{4}}E_u(\frac{1}{2})^{\frac{3}{4}} + A_u(\frac{1}{2})^{\frac{3}{2}}]. |
Thus, by (2.32) we have
\begin{equation} C_u(\frac{1}{2}) \leq C(\epsilon_0+\epsilon_0^2). \end{equation} | (2.33) |
Similarly, we have
\begin{equation} C_b(\frac{1}{2}) \leq C(\epsilon_0+\epsilon_0^2). \end{equation} | (2.34) |
For similar reasons it is not so difficult to see that
\|\nabla \cdot (u\times u)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C[A_u(\frac{1}{2}) + A_u(\frac{1}{2})^{\frac{1}{3}}B_u(\frac{1}{2})^{\frac{2}{3}}]. |
Thus,
\begin{equation} \|\nabla \cdot (u\times u)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}}. \end{equation} | (2.35) |
Similarly, we have
\begin{equation} \|\nabla \cdot (b\times b)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}}. \end{equation} | (2.36) |
On the other hand, by Hölder's inequality, it is obvious that
\begin{equation} \|u\|_{W^{1,0}_{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(A_u(\frac{1}{2})+B_u(\frac{1}{2}))\leq C(\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}. \end{equation} | (2.37) |
Similarly, we have
\begin{equation} \|b\|_{W^{1,0}_{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}. \end{equation} | (2.38) |
Using O'Neil's inequality, we have
\int_{B(\frac{1}{2})}|\pi(x,t)|^{\frac{9}{8}}dx\leq C\|\pi^{\frac{9}{8}}\|_{L^{\frac{8}{3},\infty}} = C\|\pi\|^{\frac{9}{8}}_{L^{3,\infty}} |
Hence,
\begin{equation} \|\pi(x,t)\|_{L^{\frac{9}{8},\frac{3}{2}}}\leq C\epsilon_0^{\frac{2}{3}}. \end{equation} | (2.39) |
Using the local interior regularity theory for Stokes equation, we have
\|u_t\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}+\|\nabla^2 u\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}+\|\nabla \pi\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})} |
\leq C(\|\nabla \cdot (u\times u)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}+\|\nabla \cdot (b\times b)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}) |
+\|u\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})} +\|\nabla u\|_{L^{\frac{9}{8},\frac{3}{2}}Q_{\frac{1}{2}}}+\|\pi\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}. |
Note that a suitable weak solution (u, b, \pi) implies that
u,b \in W^{2,1}_{\frac{9}{8}, \frac{3}{2}}(Q_2) \cap W^{1,0}_{\frac{4}{3}} (Q_2), \quad \pi \in W^{1,0}_{\frac{9}{8}, \frac{3}{2}}(Q_2) \cap L^{\frac{4}{3}}(Q_2). |
(see e.g. [18,19]). Using this together with the estimates (2.35)–(2.39), we obtain that
\|\nabla \pi\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}\leq c[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})]. |
Thus, by the Poincaré inequality, we have
\|\pi-[\pi]\|_{L^{\frac{3}{2}}(Q_{\frac{1}{4}})}\leq c[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})]. |
Therefore, we conclude
\begin{equation} \|\pi\|_{L^{\frac{3}{2}}(Q_{\frac{1}{4}})}\leq c[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})] \end{equation} | (2.40) |
This along with (2.33), (2.34) and (2.40) gives
\begin{equation} C_u(\frac{1}{2})+C_b(\frac{1}{2})+D(\frac{1}{2})\leq C[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})] \end{equation} | (2.41) |
Choosing \epsilon_0 sufficiently small, the estimate (2.14) satisfies the conditions of Theorem 3.3 in [13] and so we complete the proof.
Proof of Theorem 1.1. The proof is similar to the argument in [13, Theorem 1.1] We now fix such numbers M and N and let z_1 = (x_1, t_1) \in ({ \mathbb{R} }^3 \backslash \bar{B}_{2N}(0)) \times (-\frac{M}{2}, 0] . Due to C^{u^{\infty}}_{\infty}(1)+C^{b^{\infty}}_{\infty}(1)+D_{\infty}(1)\leq \epsilon_0 , we obtain, by Proposition 2.3
\max\limits_{z\in \bar{Q}_{\frac{1}{2}}(z_1)}|\nabla^k u^\infty(z)|\leq C(k), \quad \max\limits_{z\in \bar{Q}_{\frac{1}{2}}(z_1)}|\nabla^k b^\infty(z)|\leq C(k),\quad k = 1, 2,\cdots. |
On the other hand, on the set ({ \mathbb{R} }^3 \backslash \bar{B}_{2N}(0)) \times (-\frac{M}{2}, 0] , we have that there exists M > 0 such that
|\partial_tW -\Delta W| \leq M(|W| + |\nabla W|), \quad \text{and} \quad |W| \leq C, |
for the (15-component) vector-valued function W = (b^{\infty}, w^{\infty}, {b^{\infty}}_{, 1}, {b^{\infty}}_{, 2}, {b^{\infty}}_{, 3}) where w^{\infty} = \nabla \times u^{\infty} given in [13, pp.2922-2923]. Then
W = 0 \ \text{on} \ ( { \mathbb{R} }^3 \setminus \overline{B_{4N}}(0)) \times (-\frac{M}{4}, 0]. |
Using the theory of unique continuation for parabolic equation (see [6, Theorem 5]), we see W(\cdot, t) = 0 in { \mathbb{R} }^3 for a.e. t \in (-\frac{M}{4}, 0) . Thus u^{\infty}(\cdot, t) = 0 is globally harmonic, and using Liouville theorem, it follows that u^{\infty}(\cdot, t) = 0 for a.e. t \in (-\frac{M}{4}, 0) . This yields to a contradiction to the lower bound (2.20) and hence completes the proof of Theorem 1.1.
In this paper, we investigete some local regularity condition for a suitable weak solution to 3D MHD equations in Lorentz space. However, it remains an open question to obtain the local regularity condition for only velocity vector u .
The author thank the very knowledgeable referee very much for his/her valuable comments and helpful suggestions. Jae-Myoung Kim's work is supported by a Research Grant of Andong National University and NRF-2020R1C1C1A01006521.
The authors declare that they have no conflicts of interest
[1] |
R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion in weak spaces to Boussinesq Equations, Mathematics, 8 (2020), 920. doi: 10.3390/math8060920
![]() |
[2] |
T. Barker, Local boundary regularity for the Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Sci.(N.Y.), 224 (2017), 391-413. doi: 10.1007/s10958-017-3424-2
![]() |
[3] |
S. Benbernou, S. Gala, M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space, Math. Methods Appl. Sci., 37 (2014), 2320-2325. doi: 10.1002/mma.2981
![]() |
[4] |
L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831. doi: 10.1002/cpa.3160350604
![]() |
[5] | P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge University Press, Cambridge, 2001. |
[6] | L. Escauriaza, G. Seregin, V. Šverák, L^{3, \infty}-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 211-250. |
[7] |
N. S. Khan, Mixed convection in MHD second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction, Filomat, 33 (2019), 4627-4653. doi: 10.2298/FIL1914627K
![]() |
[8] |
C. He, Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Funct. Anal., 227 (2005), 113-152. doi: 10.1016/j.jfa.2005.06.009
![]() |
[9] | O. A. Ladyženskaja, V. A. Solonnikov, Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid, Trudy Mat. Inst. Steklov., Acad. Sci. USSR, Moscow-Leningrad, 59 (1960), 115-173. |
[10] |
O. A. Ladyženskaja, G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387. doi: 10.1007/s000210050015
![]() |
[11] |
F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
![]() |
[12] | Y. Luo, T. P. Tsai, Regularity criteria in weak L^3 for 3D incompressible Navier-Stokes equations, Funccialaj Ekvacioj, Comm. Pure Appl. Math., 58 (2015), 387-404. |
[13] |
A. Mahalov, A. Nicolaenko, A. Shilkin, L^{3, \infty}-solutions to the MHD equations, J. Math. Sci. (N. Y.), 143 (2007), 2911-2923. doi: 10.1007/s10958-007-0175-5
![]() |
[14] |
N. C. Phuc, The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760. doi: 10.1007/s00021-015-0229-2
![]() |
[15] |
M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664. doi: 10.1002/cpa.3160360506
![]() |
[16] |
G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29. doi: 10.1007/s00021-002-8533-z
![]() |
[17] |
G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, J. Math. Sci. (N. Y.), 115 (2003), 2820-2831. doi: 10.1023/A:1023330105200
![]() |
[18] |
G. A. Seregin, On smoothness of L_{3, \infty}-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238. doi: 10.1007/s00208-004-0625-z
![]() |
[19] |
G. A. Seregin, A note on local boundary regularity for the Stokes system, J. Math. Sci. (N.Y.), 166 (2010), 86-90. doi: 10.1007/s10958-010-9847-7
![]() |
[20] |
S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237-254. doi: 10.1007/BF02567922
![]() |
[21] | H. Triebel, Theory of Function Spaces, Birkhäuser Verlag. Basel-Boston, (1983). |
[22] |
V. Vyalov, T. Shilkin, Partial regularity of solutions to the magnetohydrodynamic equations, J. Math. Sci. (N. Y.), 150 (2008), 1771-1786. doi: 10.1007/s10958-008-0095-z
![]() |
[23] |
W. Wang, Z. Zhang, Limiting case for the regularity criterion to the 3-D magneto-hydrodynamics equations, J. Differential Equations, 252 (2012), 5751-5762. doi: 10.1016/j.jde.2012.01.043
![]() |