Processing math: 70%
Research article

Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space

  • Received: 14 November 2020 Accepted: 11 December 2020 Published: 21 December 2020
  • MSC : 35B65, 76W05

  • We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies u,bL((43)2,0;L3,q(B34)), q(3,) in Lorentz space, then (u,b) is Hölder continuous in the closure of the set Q12.

    Citation: Jae-Myoung Kim. Local interior regularity for the 3D MHD equations in nonendpoint borderline Lorentz space[J]. AIMS Mathematics, 2021, 6(3): 2440-2453. doi: 10.3934/math.2021148

    Related Papers:

    [1] Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16
    [2] Wenjuan Liu, Zhouyu Li . Global weighted regularity for the 3D axisymmetric non-resistive MHD system. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017
    [3] A. M. Alghamdi, S. Gala, M. A. Ragusa . A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565
    [4] Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451
    [5] Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687
    [6] Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang . Energy conservation for the compressible ideal Hall-MHD equations. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944
    [7] Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024
    [8] Xiaolei Dong . Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256
    [9] Volkan ALA, Ulviye DEMİRBİLEK, Khanlar R. MAMEDOV . An application of improved Bernoulli sub-equation function method to the nonlinear conformable time-fractional SRLW equation. AIMS Mathematics, 2020, 5(4): 3751-3761. doi: 10.3934/math.2020243
    [10] Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa . Regularity results for solutions of micropolar fluid equations in terms of the pressure. AIMS Mathematics, 2023, 8(9): 21208-21220. doi: 10.3934/math.20231081
  • We prove local regularity condition for a suitable weak solution to 3D MHD equations. Precisely, if a solution satisfies u,bL((43)2,0;L3,q(B34)), q(3,) in Lorentz space, then (u,b) is Hölder continuous in the closure of the set Q12.



    We study the three-dimensional incompressible magnetohydrodynamic (3D MHD) equations (see e.g. [5]):

    (MHD){utu+(u)u(b)b+π=0btb+(u)b(b)u=0div u=0anddiv b=0,u(x,0)=u0(x),b(x,0)=b0(x) in QT:=R3×[0,T), (1.1)

    Here u is the flow velocity vector, b is the magnetic vector and π=p+|b|22 is the scalar pressure. By suitable weak solutions we mean solutions that solves MHD in the sense of distribution and satisfy the local energy inequality (see Definition 2.1 in section 2 for details). For a point z=(0,0)R3×(0,T) by translation, we denote Br(x):=Br={yR3:|yx|<r},

    Qr(z):=Qr=Br×(r2,0),r<T.

    We say that solutions u and b are regular at zR3×(0,T) if u and b are bounded for some Qr, r>0. Otherwise, it is said that u and b are singular at z. The original paper where the weak solvability of the various boundary value problems was proved is Ladyženskaja and Solonnikov [9]. As in the Navier-Stokes equations, regularity problem remains open in dimension three. On the other hand, He and Xin proved in [8] a suitable weak solution to this equations using the construction arguments of a solution in [4]. Furthermore, they show that a suitable weak solution, (u,b) become regular in the presence of a certain type of scaling invariant local integral conditions for velocity and magnetic fields. Recently, in [14], Phuc give a new regularity condition, that is, uL(1,0;L3,q(B1)), a weak solution to the 3D Navier-Stokes equations are regular for q (cf [2]). In this paper, we give a criterion of local interior regularity as like Phuc's result for a suitable weak solution to the 3D MHD equations in Lorentz space which is still unknown (see e.g. [20,12] for the Naiver-Stokes equations). For proofs, we prove the ϵ- regularity criteria for this solution in Lorentz space (below Proposition 2.3)based on the ϵ-regularity criteria in Sobolev space. After that, using the standard blow-up argument(or contraction argument) and the unique continuation for parabolic equation, we show a solution is regular (see e.g. [1,3,6,7,13]). In summary, overall, our proof is followed the arguments in [14,2] which is mainly contained the arguments for the Naiver-Stokes equations. Now we are ready to state the first part of our main result.

    Theorem 1.1. Let a pair of functions u, b and π have the following differentiability properties:

    u,bL2,(Q2)W1,02(Q2),πL32(Q2)

    Suppose that (u,b,π) satisfy the 3D MHD equations in Q2 in the sense of distributions. Assume, in addition, that there exists 3<q< such that

    u,bL(4,0;L3,q(B2)).

    Then (u,b) is Hölder continuous in the closure of the set Q12.

    In this section we introduce some scaling invariant functionals and suitable weak solutions, and recall an estimation of the Stokes system.

    We first start with some notations. Let Ω be an open domain in R3 and I be a finite time interval. We denote by Lp,q(R3) with 1p, q the Lorentz space with the norm [21]

    φLp,q=(0tq(m(φ,t))q/p dtt)1/q<for  1q<,

    where m(φ,t) is the Lebesgue measure of the set {xR3:|φ(x)|>t}, i.e.

    m(φ,t):=m{xR3:|φ(x)|>t}.

    In particular, when q=,

    φLp,=supt0{t(m(φ,t))1p}<.

    The Lorentz space Lp, is also called weak Lp space. The norm is equivalent to the norm

    fLq,=sup0<|E|<|E|1/q1E|f(x)|dx.

    For a function f(x,t), we denote fLp,qx,t(Ω×I)=fLqt(I;Lpx(Ω))=fLpx(Ω)Lqt(I) and vector fields u,v we write (uivj)i,j=1,2,3 as uv. We denote by C=C(α,β,...) a constant depending on the prescribed quantities α,β,..., which may change from line to line. Next we recall suitable weak solutions for the MHD equations (1.1) in three dimensions.

    Definition 2.1. Let I=(0,T). A triple of (u,b,π) is a suitable weak solution to (1.1) if the following conditions are satisfied:

    (a) The functions u,b:QTR3 and π:QTR satisfy

    u,bL(I;L2(R3))L2(I;W1,2(R3)),πL32(QT),

    (b) (u,b,π) solves the MHD equations in QT in the sense of distributions.

    (c) u,b and π satisfy the local energy inequality

    B(|u(x,t)|2+|b(x,t)|2)ϕ(x,t)dx
    +2tt0B(|u(x,t)|2+|b(x,t)|2)ϕ(x,t)dxdt
    tt0B(|u|2+|b|2)(tϕ+Δϕ)dxdt+tt0B(|u|2+|b|2+2π)uϕdxdt
    2tt0B(bu)(bϕ)dxdt. (2.1)

    for all nonnegative function ϕC0(R3×R).

    The crucial regularity result in [8] and [22] ensures that

    Lemma 2.1. There exists ϵ>0 such that if (u,b,π) is a suitable weak solution of the 3D MHD equations and for r>0,

    1r2Qz,r|u(y,s)|3+|b(y,s)|3+|π(y,s)|32dyds<ϵ,

    then z is a regular point.

    Before a proof, we know some necessary results, which is crucial role for our analysis (see [2] and [14]). After then, using these result, we prove Theorem 1.1.

    Proposition 2.1. Suppose that the pair of functions (u,b,π) satisfies the 3D MHD equations in Q:=Q1(0,0)=B1(0)×(1,0) in the sense of distributions and has the following properties

    u, bL(1,0;L2(B1))L2(1,0;W1,2(B1)),
    πL2(1,0;L1(B1)).

    for some q(3,). Then (u,b,π) forms a suitable weak solution to the 3D MHD equations in Q56 with a generalized energy equality, uL4(Q), and πL2(Q56). Suppose further that

    uL(1,0;L3,q(B1)),bL(1,0;L3,q(B1)).

    In addition, the inequalities

    u(,t)L3,q(B34)uL((34)2,0; L3,q(B34)),

    and

    b(,t)L3,q(B34)bL((34)2,0; L3,q(B34))

    hold for all t((34)2,0), and the function

    tB34u(x,t)w(x)dx

    is continuous on [(34)2,0] for any wL32,qq1(B34). Here, it is clear that qq1=1 in the case q=.

    Proof. By Sobolev's inequality, we know uL2(1,0;L6(B1)). And also by the assumptions and interpolative inequality, we have

    uL4(B1)Cu12L3,qu12L6(B1), (2.2)

    which implies uL4(Q1). Similarly, we get bL4(Q1). Thus by Hölder's inequality, we obtain

    uu,bb,ub,buL43(Q1). (2.3)

    Decompose the pressure so that

    π=π1+π2,

    where π1:=RiRj(χBρ(uiuj+bibj)). Here Ri is Riesz operator and we adopt summation convention. It is not difficult to notice that in Bρ:

    Δπ2=0.

    By Calderón-Zygmund estimate we have

    π1L2(B1)C(u2L4(B1)+b2L4(B1)), (2.4)

    and thus (2.4), it holds

    π2L2(1,0;L(B56))Cπ2L2(1,0;L1(B1))=Cππ1L2(1,0;L1(B1))
    CπL2(1,0;L1(B1))+C(u2L4(Q)+b2L4(Q)). (2.5)

    Estimates (2.4) and (2.4) imply that the pressure πL2(Q56). With the energy class, estimate (2.2), (2.3) and (2.5), and the local interior regularity of Stokes systems, we have

    (uL4(Q34)+bL4(Q34))+
    (utL43(Q34)+btL43(Q34)+(2uL43(Q34)+2bL43(Q34)+πL43(Q34)<.

    It then follows that

    u,bC((34)2,0;L43(B34))

    and thus the function

    gφ(t):=B3/4u(x,t)φ(x)dx

    is continuous on [(34)2,0] for any φC0(B34). This yields

    |B3/4u(x,t)φ(x)dx|CφL32,qq1(B34)uL((43)2,0;L3,q(B34)).

    Thus by the density of C0(B34) in L32,qq1(B34) we see that

    uL3,q(B34)CuL((43)2,0;L3,q(B34)),t[(34)2,0].

    Then it can be seen, again by density, that the function gφ above is actually continuous on [(34)2,0] for any φL32,qq1(B34). Finally, using uL4(B1) and a standard mollification in R3+1 combined with a truncation in time of test functions, we obtain the local generalized energy equality in Q56.

    For simplicity, we write

    Φ(r):=Au(r)+Ab(r)+Eu(r)+Eb(r).

    where

    Au(r):=suptr2s<t1rBr|u(y,s)|2dy,Eu(r):=1rQr|u(y,s)|2dyds,
    Ab(r):=suptr2s<t1rBr|b(y,s)|2dy,Eb(r):=1rQr|b(y,s)|2dyds,

    Also, we introduce following the scale invariant functional : for 0<r<1,

    Cu(r)=1r20r2u(y,s)3L3,(Br)ds,Cb(r)=1r20r2b(y,s)3L3,(Br)ds.
    D(r)=1r20r2π(y,s)32L32,(Br)ds.

    Now, we begin with stating a well known algebraic Lemma, whose proof is omitted but found in [4].

    Lemma 2.2. Let I(s) be a bounded non negative function in the interval [R1,R2]. Assume that for every s,ρ[R1,R2] and s<ρ we have

    I(s)[A(ρs)α+B(ρs)β+C]+θI(ρ)

    with A,B,C0, α>β>0 and θ[0,1). Then there holds

    I(R1)c(α,θ)[A(R2R1)α+B(R2R1)β+C].

    Lemma 2.3. Let (u,b,π) be a suitable weak solution to 3D MHD equations. Then for 0<r the following holds

    Φ(r2)C(Cu(r)23+Cb(r)23+Cu(r)43+Cb(r)43+D(r)23).

    Proof. Without loss of generally, consider z0 to be the origin. Let 0<r2s<ρr<1. Let η1C0(B(ρ)) such that 0η11 in R3 and η1=1 on B(s). Furthermore for |α|2:

    |αη1|C(ρs)α.

    Let η2C0(ρ2,ρ2) such that 0η21 in R and η1=1 on [s2,s2].

    |η1|C(ρ2s2)Cr(ρs)C(ρs)2.

    Let ϕ(x,t):=η(t)η2(x). Hence:

    |ϕ|Cρs,|2ϕ|C(ρs)2,|ϕt|C(ρs)2.

    From the local energy inequality, we are known

    Br(|u(x,t)|2+|b(x,t)|2)ϕ(x,t)dx+20ρ2Br(|u(x,t)|2+|b(x,t)|2)ϕ(x,t)dxdt
    0ρ2Bρ(|u|2+|b|2)(tϕ+Δϕ)dxdt
    +0ρ2Bρ(|u|2+|b|2)uϕdxdt+20ρ2Bρπuϕdxdt20ρ2Bρ(bu)(bϕ)dxdt, (2.6)
    :=E1+E2+E3+E4

    for all tI=(1,0) and for all non-negative functions ϕC0(R3×R). Let us treat the term E1 first. By O'Neil's inequality in space, the property of ϕ, and then Hölder in time, we have

    E10ρ2(u2L3,(Bρ)+b2L3,(Bρ))Δϕ+tϕL3,1(Bρ)ds
    Cρ(ρs)20ρ2(u2L3,(Bρ)+b2L3,(Bρ))ds
    Cρ53(ρs)2[(0ρ2u3L3,(Bρ)ds)23+(0ρ2b3L3,(Bρ)ds)23]. (2.7)

    Lorentz spaces is characterization as interpolation space between L2 and L6 as follows:

    L3,1(Ω)=(L2(Ω),L6(Ω))12,1 (2.8)

    Before the term E3 is estimated, we note that

    uϕL3,1(Bρ)uϕ12L2(Bρ)uϕ12L6(Bρ)uϕ12L2(Bρ)(uϕ)12L2(Bρ)
    CuL2(Bρ)(ρs)32+Cu12L2(Bρ)u12L2(Bρ)ρs, (2.9)

    where we use the interpolation (2.8), Sobolev embedding and the property of ϕ. Set I(ρ)=ρΦ(ρ). Using O'Neil inequality and the estimate (2.9), the term E3 is estimated as follows: for ρr,

    E30ρ2uϕL3,1(Bρ)πL32,(Bρ)ds[C(ρs)32(0ρ2u3L2(Bρ)ds)13
    +Cρs(0ρ2u32L2(Bρ)u32L2(Bρ)ds)13]×(0ρ2π32L32,(Bρ)ds)23
    C(r23I(ρ)12(ρs)32+r16ρsI(ρ)12)(0ρ2π32L32,(Bρ)ds)23. (2.10)

    Similarly, we are obtained the following estimate as like E3:

    0ρ2Bρ2|u|2uϕdxdtC(r23I(ρ)12(ρs)32+r16ρsI(ρ)12)(0ρ2u3L3,(Bρ)ds)23, (2.11)
    0ρ2Bρ2|b|2uϕdxdtC(r23I(ρ)12(ρs)32+r16ρsI(ρ)12)(0ρ2b3L3,(Bρ)ds)23. (2.12)

    So thus, with the estimates (2.11) and (2.12), the term E2+E4 is estimated by

    E2+E4C(r23I(ρ)12(ρs)32+r16ρsI(ρ)12)[(0ρ2u3L3,(Bρ)ds)23+(0ρ2b3L3,(Bρ)ds)23]. (2.13)

    We combine with the estimate (2.7), (2.10) and (2.13) and Young's inequality to get

    I(ρ)r53(ρs)2[(0ρ2u3L3,(Bρ)ds)23+(0ρ2u3L3,(Bρ)ds)23]+12I(ρ)
    +(r43(ρs)3+r13(ρs)2)[(0ρ2u3L3,(Bρ)ds)43+(0ρ2b3L3,(Bρ)ds)43+(0ρ2π32L32,(Bρ)ds)43]

    Since r2s<ρr and by Lemma 2.2, we obtain

    Φ(r2)r13[(0ρ2u3L3,(Bρ)ds)23+(0ρ2u3L3,(Bρ)ds)23]
    +Cr53[(0ρ2u3L3,(Bρ)ds)43+(0ρ2b3L3,(Bρ)ds)43+(0ρ2π32L32,(Bρ)ds)43].

    Following the notation in [14], we suppose that z0:=(x0,t0)Q12(0,0) is a singular point. It means that there exists no neighborhood N of z0 such that (u,b) has a Hölder continuous representative on N[B1(0)×(1,0]). By Theorem 3.2 [13], there exist c0>0 and a sequence of numbers ϵk(0,1) such that ϵk 0 as k and

    supt0ϵkst01ϵkB(x0,ϵk)|u(x,s)|2dx+|b(x,s)|2dxc0, (2.14)

    for any kN. Moreover, by Proposition 2.1, we have in particular

    u(,t0)L3,q(B3/4(0)),b(,t0)L3,q(B3/4(0))

    Recall that we can decompose π=˜π+h, where h is harmonic in B1, and ˜π=RiRj[(uiuj+bibj)χB1]. For each Q=ω×(a,b), where ωR3 and <a<b0, we choose a large k0=k0(Q)1 so that for any kk0 there hold the implications xωx0+ϵkxB23, and t(a,b)t0+ϵkt((23)2,0), where the sequence ϵk is as in (4.7). Set Q=ω×(a,b), let us set

    uk(x,t)=ϵku(x0+ϵkx,t0+ϵ2kt),bk(x,t)=ϵkb(x0+ϵkx,t0+ϵ2kt),

    and

    πk(x,t)=ϵ2kkπ(x0+ϵkx,t0+ϵ2kt),
    ˜πk(x,t)=ϵ2k˜π(x0+ϵkx,t0+ϵ2kt),andhk(x,t)=ϵ2kh(x0+ϵkx,t0+ϵ2kt),

    for any (x,t)Q and kk0(Q).

    The following proposition is a key in the proof of Theorem 1.1, which says the properties in the limit.

    Proposition 2.2. Let 0<q< and Q=ω×(a,b) with ωR3, <a<b0. There exists a subsequence of (uk,bk,πk), still denoted by (uk,bk,πk), and a pair of functions

    (u, b,π)L(,0;L3,q(R3))×L(,0;L3,q(R3))×L(,0;L32,q2(R3))

    with \mathit{\text{div}} \ u^{\infty} = 0 and \mathit{\text{div}} \ b^{\infty} = 0 in { \mathbb{R} }^3\times (-\infty, 0) , such that for s\in (1, 3) ,

    \begin{equation} u^k \rightarrow u^{\infty} \ \mathit{\text{in}} \ C(a,b; L^s(\omega)), \end{equation} (2.15)
    \begin{equation} b^k \rightarrow b^{\infty} \ \mathit{\text{in}} \ C(a,b; L^s(\omega)), \end{equation} (2.16)
    \begin{equation} \pi^k \rightarrow \pi^{\infty} \ \mathit{\mbox{weakly}}^* \ \mathit{\text{in}} \ L^\infty(a,b; L^{\frac{3}{2},\frac{q}{2}}(\omega)), \end{equation} (2.17)

    Moreover

    \begin{equation} |u^{\infty}|^2, |b^{\infty}|^2, \nabla u^{\infty}, \nabla b^{\infty}\in L^2(Q), \end{equation} (2.18)
    \begin{equation} \partial_tu^{\infty}, \partial_tb^{\infty}, \nabla^2 u^{\infty}, \nabla^2 b^{\infty}, \nabla \pi^{\infty} \in L^{\frac{4}{3}}(Q), \end{equation} (2.19)

    and (u^{\infty}, b^{\infty}, \pi^{\infty}) satisfies a suitable weak solution to the 3D MHD equations in Q . Additionally, u^{\infty} and b^{\infty} satisfy the lower bound satisfies the lower bound

    \begin{equation} \int_Q(|u^{\infty}|^2+|b^{\infty}|^2)dz\geq \varepsilon_3. \end{equation} (2.20)

    Proof. For each Q = \omega \times (a, b) , where for \omega \subset { \mathbb{R} }^3 and t \in [a, b] with -\infty < a < b \leq 0 , we have

    \begin{equation} \|u_k(\cdot,t)\|_{L^{3,q}(\omega)}\leq \|u_k(\cdot,t_0+\epsilon_k^2t)\|_{L^{3,q}(B_{\frac{3}{4}})}\leq \|u\|_{L^{\infty}(-1,0);L^{3,q}(B_{1})}, \end{equation} (2.21)

    and

    \begin{equation} \|b_k(\cdot,t)\|_{L^{3,q}(\omega)}\leq \|b\|_{L^{\infty}(-1,0);L^{3,q}(B_{1})}, \end{equation} (2.22)

    By Calderón-Zygmund estimate, for a.e. t \in (a, b) there holds

    \begin{equation} \|\tilde{\pi}_k(\cdot,t)\|_{L^{\frac{3}{2},\frac{q}{2}}(\omega)}\leq \|\tilde{\pi}_k(\cdot,t_0+\epsilon_k^2t)\|_{L^{\frac{3}{2},\frac{q}{2}}(B_{\frac{3}{4}})}\leq C(\|u\|^2_{L^{\infty}(-1,0);L^{3,q}(B_{1})}+\|b\|^2_{L^{\infty}(-1,0);L^{3,q}(B_{1})}). \end{equation} (2.23)

    On the other hand, by harmonicity we have

    \begin{equation} \int_a^b \sup\limits_{x\in \omega}|h_k(x,t)|^{\frac{3}{2}}dt\leq \epsilon_k\int_{-(3/4)^2} \sup\limits_{x\in \omega}|h_k(x_0+\epsilon_kx,s)|^{\frac{3}{2}}ds\leq \epsilon_k \|h\|^{\frac{3}{2}}_{L^{\frac{3}{2}}(-1,0);L^{\infty}(B_{\frac{3}{4}})} \end{equation} (2.24)
    \leq C\epsilon_k(\|u\|^3_{L^{\infty}((-1,0);L^{3,q}(B_{1}))}+\|b\|^3_{L^{\infty}((-1,0);L^{3,q}(B_{1}))}+\|\pi\|_{L^{\frac{3}{2}}(Q_{1})})

    Thus each (u_k, b_k) is a suitable solution in Q . Then, from the energy estimate follows that

    \begin{equation} \|u_k\|_{L^{\infty}(a,b;L^2(\omega))} +\|b_k\|_{L^{\infty}(a,b;L^2(\omega))}+ \|\nabla b_k\|_{L^2(Q)}+\|\nabla u_k\|_{L^2(Q)} \leq C. \end{equation} (2.25)

    Using (2.25) and Sobolev embedding, we have \|u_k\|_{L^{2}(a, b;L^6(\omega))}\leq C , which by (4.12), interpolation, and Hölder's inequality gives for

    \|u_k\|_{L^4(Q)}+\|b_k\|_{L^4(Q)}+\|(u_k\cdot \nabla)u_k\|_{L^{\frac{4}{3}}(Q)}+\|(b_k\cdot \nabla)u_k\|_{L^{\frac{4}{3}}(Q)}\leq C.

    From the bounds (2.23) and (2.24), we also have

    \begin{equation} \|\pi_k\|_{L^s(Q)} \leq C\|\pi_k\|_{L^2(a,b;L^{\frac{3}{2},\frac{q}{2}}(\omega))} \leq C, \quad s \in (0, \frac{3}{2}). \end{equation} (2.26)

    Using the estimate (2.25)–(2.26), it follows from the local interior regularity of solutions to non-stationary Stokes equations we find

    \begin{equation} \|\partial_tu_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla^2u_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla \pi_k\|_{L^{\frac{4}{3}}(Q)}\leq C. \end{equation} (2.27)

    Furthermore, we can easily check the as following:

    \begin{equation} \|\partial_tu_k\|_{L^{\frac{4}{3}}(Q)}+\|\partial_tb_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla^2u_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla^2b_k\|_{L^{\frac{4}{3}}(Q)}+\|\nabla \pi_k\|_{L^{\frac{4}{3}}(Q)}\leq C. \end{equation} (2.28)

    Using estimates (2.21)–(2.23), we may get that

    u_k \rightharpoonup^{*} u^{\infty} \quad \mbox{in}\ L^{\infty}(-\infty, 0; L^{3,q}( { \mathbb{R} }^3)).
    b_k \rightharpoonup^{*} b^{\infty} \quad \mbox{in}\ L^{\infty}(-\infty, 0; L^{3,q}( { \mathbb{R} }^3)).
    \tilde{\pi}_k \rightharpoonup^{*} \tilde{\pi}^{\infty} \quad \mbox{in}\ L^{\infty}(-\infty, 0; L^{\frac{3}{2},\frac{q}{2}}( { \mathbb{R} }^3)).

    Estimates (2.25) and (2.27) yield

    \begin{equation} u_k \rightharpoonup^{*} u^{\infty} \quad \mbox{in}\ C(-\infty, 0; L^{\frac{4}{3}}(Q)), \end{equation} (2.29)
    \begin{equation} b_k \rightharpoonup^{*} b^{\infty} \quad \mbox{in}\ C(-\infty, 0; L^{\frac{4}{3}}(Q)). \end{equation} (2.30)

    For any s\in (1, 3) , the uniform bound (2.21) and the interpolation inequality

    \|u_k(\cdot, t)- u_k(\cdot, t^{\prime})\|_{L^s}\leq \|u_k(\cdot, t)- u_k(\cdot, t^{\prime})\|^{\frac{12}{5}\Big(\frac{1}{s}-\frac{1}{3}\Big)}_{L^{\frac{4}{3}}}\|u_k(\cdot, t)- u_k(\cdot, t^{\prime})\|^{\frac{12}{5}\Big(\frac{3}{4}-\frac{1}{s}\Big)}_{L^s}

    imply that each u_k \in C([a, b]; L^s(\omega)) . Thus by using (2.29) and interpolating we obtain (2.15) for any s\in (1, 3) . On the other hand, by (2.24), we have

    h_k \rightarrow 0 \ \text{strongly in} \ L^2(a, b;L^{\infty}(\omega)),

    Now (2.18)–(2.19) follows from (2.29), (2.30), (2.25) and (2.27) via an argument as in the proof of Proposition 2.1. Finally, note that by (2.14) and a change of variables we have

    \sup\limits_{-1\leq t\leq 0}\int_{B(0,1)} |u_k(x, t)|^2dx = \sup\limits_{t_0-\epsilon_k^2\leq t\leq r_0}\frac{1}{\epsilon_k}\int_{B(0,1)} |u_k(y, s)|^2dy\geq C_0.

    Similarly, \sup_{-1\leq t\leq 0}\int_{B(0, 1)} |u_k(x, t)|^2dx \geq C_0 . Thus using the convergences (2.15) and (2.16) with s = 2 we obtain the lower bound (2.20).

    Before proving the main statement we introduce some notation

    C_u(r): = \frac{1}{r^2}\int_{Q_r}|u|^3dz,\quad C_b(r): = \frac{1}{r^2}\int_{Q_r}|b|^3dz,\quad D(r): = \frac{1}{r^2}\int_{Q_r}|\pi|^{\frac{3}{2}}dz.

    Now, we prove the \epsilon - regularity criteria for a suitable weak solution to the 3D MHD equations under our circumstance.

    Proposition 2.3. Let (u, b, \pi) be a suitable weak solution to 3D MHD equations. Then there exists a universal constants c_0 and c_{0k}(\epsilon_0) (with k = 1, 2, \cdots) with the following property. Assume

    \begin{equation} C^u_{\infty}(1)+C^b_{\infty}(1)+D_{\infty}(1)\leq \epsilon_0, \end{equation} (2.31)

    then for any natural number k , \nabla^{k-1}u is Hölder continuous in \tilde{Q}_{1/8} and the following bound is valid:

    \sup\limits_{\tilde{Q}_{1/8}}\Big(|\nabla^{k-1}u(z)|+|\nabla^{k-1}b(z)|\Big) < c_{0k}(\epsilon_0).

    Proof. From Lemma 2.3 and assumptions (2.31), it follows that

    \begin{equation} A_u(\frac{1}{2})+A_b(\frac{1}{2})+E_u(\frac{1}{2})+E_b(\frac{1}{2})\leq C(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}}. \end{equation} (2.32)

    By interpolation and Sobolev embedding theorem one can show that

    C_u(\frac{1}{2}) \leq C[A_u(\frac{1}{2})^{\frac{3}{4}}E_u(\frac{1}{2})^{\frac{3}{4}} + A_u(\frac{1}{2})^{\frac{3}{2}}].

    Thus, by (2.32) we have

    \begin{equation} C_u(\frac{1}{2}) \leq C(\epsilon_0+\epsilon_0^2). \end{equation} (2.33)

    Similarly, we have

    \begin{equation} C_b(\frac{1}{2}) \leq C(\epsilon_0+\epsilon_0^2). \end{equation} (2.34)

    For similar reasons it is not so difficult to see that

    \|\nabla \cdot (u\times u)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C[A_u(\frac{1}{2}) + A_u(\frac{1}{2})^{\frac{1}{3}}B_u(\frac{1}{2})^{\frac{2}{3}}].

    Thus,

    \begin{equation} \|\nabla \cdot (u\times u)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}}. \end{equation} (2.35)

    Similarly, we have

    \begin{equation} \|\nabla \cdot (b\times b)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}}. \end{equation} (2.36)

    On the other hand, by Hölder's inequality, it is obvious that

    \begin{equation} \|u\|_{W^{1,0}_{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(A_u(\frac{1}{2})+B_u(\frac{1}{2}))\leq C(\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}. \end{equation} (2.37)

    Similarly, we have

    \begin{equation} \|b\|_{W^{1,0}_{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}\leq C(\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}. \end{equation} (2.38)

    Using O'Neil's inequality, we have

    \int_{B(\frac{1}{2})}|\pi(x,t)|^{\frac{9}{8}}dx\leq C\|\pi^{\frac{9}{8}}\|_{L^{\frac{8}{3},\infty}} = C\|\pi\|^{\frac{9}{8}}_{L^{3,\infty}}

    Hence,

    \begin{equation} \|\pi(x,t)\|_{L^{\frac{9}{8},\frac{3}{2}}}\leq C\epsilon_0^{\frac{2}{3}}. \end{equation} (2.39)

    Using the local interior regularity theory for Stokes equation, we have

    \|u_t\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}+\|\nabla^2 u\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}+\|\nabla \pi\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}
    \leq C(\|\nabla \cdot (u\times u)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}+\|\nabla \cdot (b\times b)\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})})
    +\|u\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})} +\|\nabla u\|_{L^{\frac{9}{8},\frac{3}{2}}Q_{\frac{1}{2}}}+\|\pi\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{2}})}.

    Note that a suitable weak solution (u, b, \pi) implies that

    u,b \in W^{2,1}_{\frac{9}{8}, \frac{3}{2}}(Q_2) \cap W^{1,0}_{\frac{4}{3}} (Q_2), \quad \pi \in W^{1,0}_{\frac{9}{8}, \frac{3}{2}}(Q_2) \cap L^{\frac{4}{3}}(Q_2).

    (see e.g. [18,19]). Using this together with the estimates (2.35)–(2.39), we obtain that

    \|\nabla \pi\|_{L^{\frac{9}{8},\frac{3}{2}}(Q_{\frac{1}{4}})}\leq c[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})].

    Thus, by the Poincaré inequality, we have

    \|\pi-[\pi]\|_{L^{\frac{3}{2}}(Q_{\frac{1}{4}})}\leq c[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})].

    Therefore, we conclude

    \begin{equation} \|\pi\|_{L^{\frac{3}{2}}(Q_{\frac{1}{4}})}\leq c[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})] \end{equation} (2.40)

    This along with (2.33), (2.34) and (2.40) gives

    \begin{equation} C_u(\frac{1}{2})+C_b(\frac{1}{2})+D(\frac{1}{2})\leq C[((\epsilon_0+\epsilon_0^2)^{\frac{1}{3}}+(\epsilon_0+\epsilon_0^2)^{\frac{2}{3}})] \end{equation} (2.41)

    Choosing \epsilon_0 sufficiently small, the estimate (2.14) satisfies the conditions of Theorem 3.3 in [13] and so we complete the proof.

    Proof of Theorem 1.1. The proof is similar to the argument in [13, Theorem 1.1] We now fix such numbers M and N and let z_1 = (x_1, t_1) \in ({ \mathbb{R} }^3 \backslash \bar{B}_{2N}(0)) \times (-\frac{M}{2}, 0] . Due to C^{u^{\infty}}_{\infty}(1)+C^{b^{\infty}}_{\infty}(1)+D_{\infty}(1)\leq \epsilon_0 , we obtain, by Proposition 2.3

    \max\limits_{z\in \bar{Q}_{\frac{1}{2}}(z_1)}|\nabla^k u^\infty(z)|\leq C(k), \quad \max\limits_{z\in \bar{Q}_{\frac{1}{2}}(z_1)}|\nabla^k b^\infty(z)|\leq C(k),\quad k = 1, 2,\cdots.

    On the other hand, on the set ({ \mathbb{R} }^3 \backslash \bar{B}_{2N}(0)) \times (-\frac{M}{2}, 0] , we have that there exists M > 0 such that

    |\partial_tW -\Delta W| \leq M(|W| + |\nabla W|), \quad \text{and} \quad |W| \leq C,

    for the (15-component) vector-valued function W = (b^{\infty}, w^{\infty}, {b^{\infty}}_{, 1}, {b^{\infty}}_{, 2}, {b^{\infty}}_{, 3}) where w^{\infty} = \nabla \times u^{\infty} given in [13, pp.2922-2923]. Then

    W = 0 \ \text{on} \ ( { \mathbb{R} }^3 \setminus \overline{B_{4N}}(0)) \times (-\frac{M}{4}, 0].

    Using the theory of unique continuation for parabolic equation (see [6, Theorem 5]), we see W(\cdot, t) = 0 in { \mathbb{R} }^3 for a.e. t \in (-\frac{M}{4}, 0) . Thus u^{\infty}(\cdot, t) = 0 is globally harmonic, and using Liouville theorem, it follows that u^{\infty}(\cdot, t) = 0 for a.e. t \in (-\frac{M}{4}, 0) . This yields to a contradiction to the lower bound (2.20) and hence completes the proof of Theorem 1.1.

    In this paper, we investigete some local regularity condition for a suitable weak solution to 3D MHD equations in Lorentz space. However, it remains an open question to obtain the local regularity condition for only velocity vector u .

    The author thank the very knowledgeable referee very much for his/her valuable comments and helpful suggestions. Jae-Myoung Kim's work is supported by a Research Grant of Andong National University and NRF-2020R1C1C1A01006521.

    The authors declare that they have no conflicts of interest



    [1] R. P. Agarwal, S. Gala, M. A. Ragusa, A regularity criterion in weak spaces to Boussinesq Equations, Mathematics, 8 (2020), 920. doi: 10.3390/math8060920
    [2] T. Barker, Local boundary regularity for the Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Sci.(N.Y.), 224 (2017), 391-413. doi: 10.1007/s10958-017-3424-2
    [3] S. Benbernou, S. Gala, M. A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space, Math. Methods Appl. Sci., 37 (2014), 2320-2325. doi: 10.1002/mma.2981
    [4] L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations, Comm. Pure Appl. Math., 35 (1982), 771-831. doi: 10.1002/cpa.3160350604
    [5] P. A. Davidson, An introduction to magnetohydrodynamics, Cambridge University Press, Cambridge, 2001.
    [6] L. Escauriaza, G. Seregin, V. Šverák, L^{3, \infty}-solutions of Navier-Stokes equations and backward uniqueness, Uspekhi Mat. Nauk, 58 (2003), 211-250.
    [7] N. S. Khan, Mixed convection in MHD second grade nanofluid flow through a porous medium containing nanoparticles and gyrotactic microorganisms with chemical reaction, Filomat, 33 (2019), 4627-4653. doi: 10.2298/FIL1914627K
    [8] C. He, Z. Xin, Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations, J. Funct. Anal., 227 (2005), 113-152. doi: 10.1016/j.jfa.2005.06.009
    [9] O. A. Ladyženskaja, V. A. Solonnikov, Solution of some non-stationary problems of magnetohydrodynamics for a viscous incompressible fluid, Trudy Mat. Inst. Steklov., Acad. Sci. USSR, Moscow-Leningrad, 59 (1960), 115-173.
    [10] O. A. Ladyženskaja, G. A. Seregin, On partial regularity of suitable weak solutions to the three-dimensional Navier-Stokes equations, J. Math. Fluid Mech., 1 (1999), 356-387. doi: 10.1007/s000210050015
    [11] F. Lin, A new proof of the Caffarelli-Kohn-Nirenberg theorem, Comm. Pure Appl. Math., 51 (1998), 241-257. doi: 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO;2-A
    [12] Y. Luo, T. P. Tsai, Regularity criteria in weak L^3 for 3D incompressible Navier-Stokes equations, Funccialaj Ekvacioj, Comm. Pure Appl. Math., 58 (2015), 387-404.
    [13] A. Mahalov, A. Nicolaenko, A. Shilkin, L^{3, \infty}-solutions to the MHD equations, J. Math. Sci. (N. Y.), 143 (2007), 2911-2923. doi: 10.1007/s10958-007-0175-5
    [14] N. C. Phuc, The Navier-Stokes equations in nonendpoint borderline Lorentz spaces, J. Math. Fluid Mech., 17 (2015), 741-760. doi: 10.1007/s00021-015-0229-2
    [15] M. Sermange, R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664. doi: 10.1002/cpa.3160360506
    [16] G. A. Seregin, Local regularity of suitable weak solutions to the Navier-Stokes equations near the boundary, J. Math. Fluid Mech., 4 (2002), 1-29. doi: 10.1007/s00021-002-8533-z
    [17] G. A. Seregin, Some estimates near the boundary for solutions to the non-stationary linearized Navier-Stokes equations, J. Math. Sci. (N. Y.), 115 (2003), 2820-2831. doi: 10.1023/A:1023330105200
    [18] G. A. Seregin, On smoothness of L_{3, \infty}-solutions to the Navier-Stokes equations up to boundary, Math. Ann., 332 (2005), 219-238. doi: 10.1007/s00208-004-0625-z
    [19] G. A. Seregin, A note on local boundary regularity for the Stokes system, J. Math. Sci. (N.Y.), 166 (2010), 86-90. doi: 10.1007/s10958-010-9847-7
    [20] S. Takahashi, On interior regularity criteria for weak solutions of the Navier-Stokes equations, Manuscripta Math., 69 (1990), 237-254. doi: 10.1007/BF02567922
    [21] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag. Basel-Boston, (1983).
    [22] V. Vyalov, T. Shilkin, Partial regularity of solutions to the magnetohydrodynamic equations, J. Math. Sci. (N. Y.), 150 (2008), 1771-1786. doi: 10.1007/s10958-008-0095-z
    [23] W. Wang, Z. Zhang, Limiting case for the regularity criterion to the 3-D magneto-hydrodynamics equations, J. Differential Equations, 252 (2012), 5751-5762. doi: 10.1016/j.jde.2012.01.043
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1574) PDF downloads(36) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog