In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where (t,x)∈(0,T)×Td(d≥1). By exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for the regularity of the weak solutions for energy conservation. Our main strategy relies on commutator estimates.
Citation: Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang. Energy conservation for the compressible ideal Hall-MHD equations[J]. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944
[1] | Sadek Gala . A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system. AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282 |
[2] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[3] | A. M. Alghamdi, S. Gala, M. A. Ragusa . A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565 |
[4] | Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321 |
[5] | Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687 |
[6] | Mingyu Zhang . On the Cauchy problem of compressible Micropolar fluids subjected to Hall current. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627 |
[7] | Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810 |
[8] | Tariq Mahmood . The zero-energy limit and quasi-neutral limit of scaled Euler-Maxwell system and its corresponding limiting models. AIMS Mathematics, 2019, 4(3): 910-927. doi: 10.3934/math.2019.3.910 |
[9] | Mingyu Zhang . Regularity and uniqueness of 3D compressible magneto-micropolar fluids. AIMS Mathematics, 2024, 9(6): 14658-14680. doi: 10.3934/math.2024713 |
[10] | Xiaolei Dong . Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256 |
In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where (t,x)∈(0,T)×Td(d≥1). By exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for the regularity of the weak solutions for energy conservation. Our main strategy relies on commutator estimates.
In this work, we consider the energy conservation for weak solutions of the compressible ideal Hall-magnetohydrodynamic (Hall-MHD) equations
{∂t(ρu)+div(ρu⊗u)+∇p−j×b=0,∂tb+dI∇×(j×bρ)−∇×(u×b)=0,∂tρ+div(ρu)=0,divb=0, | (1.1) |
where ρ>0 is the fluid density, u is the velocity field, p is the pressure and b is the magnetic field. ρ and p are scalars, dI represents the Hall coefficient and j=∇×b.
The energy conservation of weak solutions of the Euler equations and the MHD equations is a hot topic in recent decades. For the 3D Euler equations, Onsager [22] put forward famous Onsager's conjecture in 1949, that is, the weak solution with Hölder continuity of exponent δ>13 can guarantee the conservation of energy, but the weak solution of δ≤13 is not necessary. In 1994, Eyink [12] proved the first part of this conjecture by means of Fourier series expansion. Constantin et al. [7] considered the conservation of energy when u∈Bα3,∞,α>13 in the periodic domain. In 2008, Cheskidov et al. [6] improved the previous results by using Littlewood-Paley decomposition. Concerning the second part of conjecture, the first proof of the existence of a square summable weak solution that does not preserve the energy is due to Scheffer in his pioneering paper [24]. A different proof was later given by Shnirelman in [23]. Recently, non-conservation solutions for the 3D incompressible Euler equations have been constructed up to the critical 13 regularity in [5,17]. For the compressible and incompressible Euler equations and Navier-Stokes equations, we can refer to Feireisl [14], Chen and Yu [9] and Akramov et al. [1] etc. The energy conservation for the incompressible Euler equations in bounded domains can be referred to [2,3,11,21].
Concerning the energy conservation for the MHD equations, there have been a few results. Recently, Gao et al. [16] considered the local energy equation of weak solutions for the incompressible MHD equations. Guo and Tan [15] studied the energy conservation equation of the 3D incompressible MHD equations from the longitudinal and transverse terms on the basis of the energy dissipation method. Wu and Tan [27] showed that the regularity of weak solutions of the nonhomogeneous incompressible MHD equations in Besov space is sufficient to ensure the total energy conservation. Wang and Liu [25] obtained the energy conservation for weak solutions of the compressible non-resistive magnetohydrodynamic flows in a bounded domain Ω⊂R3. For the ideal MHD equations, Caflisch et al. [8] proved the energy conservation in a periodic domain with no boundary effect. Kang and Lee [18] obtained the energy and cross-helicity conservation to the ideal MHD equations in the whole space. Later on, Yu [28] improved the pervious results by using the special structure of the nonlinear terms in the ideal MHD equations. Wang and Zuo [26] and Zhang [29] proved the energy conservation of weak solutions to the 3D case in a bounded domain. Bie et al. [4] studied the energy conservation of the compressible ideal MHD equations in periodic domain by using commutator estimation.
The energy conservation for the Hall-MHD equations has also attracted the attention of many researchers. Dumas and Sueur [10] studied the energy identity and magneto-helicity identity for the incompressible Hall-MHD equations in the whole space R3. Kang et al. [19] obtained the energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations in the periodic domain Td. Recently, Kang et al. [20] further considered the energy conservation of impressible Hall-MHD equations in a bounded domain.
A natural question then is when the energy conservation holds true for the compressible ideal Hall-MHD Eq (1.1). Compared with the compressible Euler equations, the ideal Hall-MHD equations have higher nonlinearity in view of the coupling of the velocity field u and the magnetic field b. Moreover, the handling of the Hall term dI∇×(j×bρ) brings us some difficulties. Specifically, we need to deal with the following item
∫T0∫Tdφ(u×b)ϵ⋅jϵdxdt |
(see (3.8) below for details). In this paper, by using the commutator estimation similar to that used in [7] and the regularization method used in [14], we obtain sufficient conditions for energy conservation of system (1.1). Our result establishes local energy conservation for weak solutions to system (1.1) under the additional assumption that the velocity field u satisfies the condition divu∈L1.
Before giving the result of this paper, we define the pressure potential as
P(ρ)=ρ∫ρ1p(r)r2dr. | (1.2) |
The main result of this paper is stated as follows.
Theorem 1.1. Let the space dimension d≥1 and (ρ,u,p,b) be a solution of system (1.1) in the sense of distributions. Assume
u,b∈Bα,∞3((0,T)×Td),ρ,ρu,j∈Bβ,∞3((0,T)×Td),0<ρ_≤ρ≤¯ρa.e.in(0,T)×Td |
for some constants ρ_,¯ρ such that
β>max{1−2α,12(1−α)}. |
Assume further that
divu∈L1((0,T)×Td),p∈C[ρ_,¯ρ]. | (1.3) |
Then the energy is locally conserved, that is
∂t(12ρ|u|2+12|b|2+P(ρ))+div[12ρ|u|2+P(ρ)+p(ρ))]−div[(u×b)×b]+div[dI(j×bρ×b)]=0 | (1.4) |
in the sense of distributions on (0,T)×Td.
In this section, we firstly recall some properties of the Besov space Bα,∞p(Ω), where α∈(0,1) and Ω=(0,T)×Td. The said Besov space comprises those functions ω for which the norm
‖ω‖Bα,∞p(Ω):=‖ω‖Lp(Ω)+supξ∈Ω‖ω(⋅+ξ)−ω‖Lp(Ω∩(Ω−ξ))|ξ|α | (2.1) |
is finite (here Ω−ξ={x−ξ:x∈Ω}).
Let J∈C∞c(RN) for N=d or N=d+1 (according to the choice of Ω) be a standard mollifying kernel and set
Jϵ(x)=1ϵNJ(xϵ), |
with the notation ωϵ=Jϵ∗ω.
Next, we introduce two lemmas about the properties of mollifiers.
Lemma 2.1. ([13]) If 1≤p<∞ and f∈Lploc(R+×Ω), then we get
fϵ→finLploc(R+×Ω). |
Lemma 2.2. ([27]) Let ω∈Bα,∞p(Ω) with 1≤p≤∞, and α≥0. Then we have
‖ωϵ−ω‖Lp(Ω)≤Cϵα‖ω‖Bα,∞p(Ω) | (2.2) |
and
‖∇ωϵ‖Lp(Ω)≤Cϵα−1‖ω‖Bα,∞p(Ω). | (2.3) |
Finally, let us recall the following two commonly used formulas for curl, that is,
∇×(A×B)=(B⋅∇)A−(A⋅∇)B+(∇⋅B)A−(∇⋅B)A, | (2.4) |
div(A×B)=B⋅(∇×A)−A⋅(∇×B). | (2.5) |
We mollify the momentum Eq (1.1)1 in time and space, and the corresponding symbols are described in Section 2,
∂t(ρu)ϵ+div(ρu⊗u)ϵ+∇pϵ(ρ)−(j×b)ϵ=0. | (3.1) |
Take a sequence pδ∈C∞[ρ_,¯ρ] which converges uniformly to p∈C[ρ_,¯ρ], that is, for each δ>0,
‖p−pδ‖L∞≤δ. |
According to the definition of P in (1.2), we give the definition of Pδ as follows,
Pδ=ρ∫ρ1pδ(r)r2dr. | (3.2) |
It follows from (3.1) that
∂t(ρu)ϵ+div(ρu⊗u)ϵ+∇(pϵδ(ρ))−(j×b)ϵ=∇[pϵδ(ρ)−pϵ(ρ)]. |
Let φ∈C∞0((0,T)×Td) be a test function. Multiplying with φuϵ and integrating in time and space give
∫T0∫Td∂t(ρu)ϵ⋅φuϵdxdt+∫T0∫Tddiv(ρu⊗u)ϵ⋅φuϵdxdt−∫T0∫Td(j×b)ϵ⋅φuϵdxdt+∫T0∫Td∇(pϵδ(ρ))⋅φuϵdxdt=∫T0∫Td∇[pϵδ(ρ)−pϵ(ρ)]⋅φuϵdxdt. | (3.3) |
Take ϵ>0 small enough so that suppφ∈(ϵ,T−ϵ)×Td. We use an appropriate commutator, as
∫T0∫Td∂t(ρϵuϵ)⋅φuϵdxdt+∫T0∫Tddiv((ρu)ϵ⊗uϵ)⋅φuϵdxdt+∫T0∫Tdφ(u×b)ϵ⋅jϵdxdt+∫T0∫Td∇(pδ(ρϵ))⋅φuϵdxdtdef=Iϵ1+Iϵ2+Iϵ3+Iϵ4+Iϵ5, | (3.4) |
where
Iϵ1=∫T0∫Td∂t(ρϵuϵ−(ρu)ϵ)⋅φuϵdxdt,Iϵ2=∫T0∫Tddiv((ρu)ϵ⊗uϵ−(ρu⊗u)ϵ)⋅φuϵdxdt,Iϵ3=∫T0∫Td[(j×b)ϵ⋅uϵ+(u×b)ϵ⋅jϵ]φdxdt,Iϵ4=∫T0∫Td∇[pδ(ρϵ)−pϵδ(ρ)]⋅φuϵdxdt,Iϵ5=∫T0∫Td∇[pϵδ(ρ)−pϵ(ρ)]⋅φuϵdxdt. |
In what follows, we handle each item in (3.4). For the first integral term of the left hand side of (3.4), it follows that
∫T0∫Td∂t(ρϵuϵ)⋅φuϵdxdt=∫T0∫Td(φρϵt|uϵ|2+12φρϵ∂t(|uϵ|2))dxdt. | (3.5) |
For the second term, we mollify the continuity Eq (1.1)3 as
∂tρϵ+div(ρu)ϵ=0, | (3.6) |
and compute
∫T0∫Tddiv((ρu)ϵ⊗uϵ)⋅φuϵdxdt=−∫T0∫Td((ρu)ϵ⊗uϵ):∇(φuϵ)dxdt=−∫T0∫Tdφ((ρu)ϵ⊗uϵ):∇(uϵ)dxdt−∫T0∫Td((ρu)ϵ⊗uϵ):(∇φ⊗uϵ)dxdt=−12∫T0∫Tdφ(ρu)ϵ⋅∇(|uϵ|2)dxdt−∫T0∫Td((ρu)ϵ⋅∇φ)|uϵ|2dxdt=12∫T0∫Tddiv(φ(ρu)ϵ)|uϵ|2dxdt−∫T0∫Td((ρu)ϵ⋅∇φ)|uϵ|2dxdt=12∫T0∫Td(∇φ⋅(ρu)ϵ+φdiv(ρu)ϵ)|uϵ|2dxdt−∫T0∫Td((ρu)ϵ⋅∇φ)|uϵ|2dxdt=−12∫T0∫Tdφρϵt|uϵ|2dxdt−12∫T0∫Td(∇φ⋅(ρu)ϵ)|uϵ|2dxdt. | (3.7) |
For the third integral of the left hand side of (3.4), we first mollify the Eq (1.1)2 and multiply bϵ as
12∂t(|bϵ|2)+dI∇×(j×bρ)ϵ⋅bϵ−∇×(u×b)ϵ⋅bϵ=0. |
Then using (2.5), we get
∫T0∫Tdφ(u×b)ϵ⋅jϵdxdt=∫T0∫Tdφ∇×(u×b)ϵ⋅bϵdxdt−∫T0∫Tdφdiv((u×b)ϵ×bϵ)dxdt=∫T0∫Tdφ∇×(u×b)ϵ⋅bϵdxdt+∫T0∫Td∇φ⋅((u×b)ϵ×bϵ)dxdt=12∫T0∫Tdφ∂t(|bϵ|2)dxdt+∫T0∫TdφdI∇×(j×bρ)ϵ⋅bϵdxdt+∫T0∫Td∇φ⋅[(u×b)ϵ×bϵ]dxdt=−12∫T0∫Tdφt|bϵ|2dxdt+∫T0∫Td∇φ⋅[(u×b)ϵ×bϵ]dxdt+∫T0∫TdφdI[div((j×bρ)ϵ×bϵ)]dxdt+∫T0∫TdφdI(j×bρ)ϵ⋅jϵdxdt=−12∫T0∫Tdφt|bϵ|2dxdt+∫T0∫Td∇φ⋅[(u×b)ϵ×bϵ]dxdt−∫T0∫TddI((j×bρ)ϵ×bϵ)⋅∇φdxdt+∫T0∫TdφdI(j×bρ)ϵ⋅jϵdxdt. | (3.8) |
For the fourth integral, due to the chain rule and the mollified mass Eq (3.6), we observe that
∂tPδ(ρϵ)+uϵ∇Pδ(ρϵ)+P′δ(ρϵ)ρϵdivuϵ=P′δ(ρϵ)div(ρϵuϵ−(ρu)ϵ). |
By the definition of Pδ in (3.2), we have
ρϵP′δ(ρϵ)=Pδ(ρϵ)+pδ(ρϵ), |
After these preparations, we can compute the fourth integral as
∫T0∫Tdφuϵ⋅∇pδ(ρϵ)dxdt=−∫T0∫Td∇φ⋅uϵpδ(ρϵ)dxdt−∫T0∫Tdφpδ(ρϵ)divuϵdxdt=−∫T0∫Td∇φ⋅uϵpδ(ρϵ)dxdt−∫T0∫Tdφ[ρϵP′δ(ρϵ)−Pδ(ρϵ)]divuϵdxdt=−∫T0∫Td∇φ⋅uϵpδ(ρϵ)dxdt+∫T0∫Tdφ[∂tPδ(ρϵ)+uϵ⋅∇Pδ(ρϵ)+Pδ(ρϵ)divuϵ]dxdt−∫T0∫TdφP′δ(ρϵ)div(ρϵuϵ−(ρu)ϵ)dxdt=−∫T0∫Td∇φ⋅uϵpδ(ρϵ)dxdt−∫T0∫TdφtPδ(ρϵ)dxdt−∫T0∫Td∇φ⋅Pδ(ρϵ)uϵdxdt−∫T0∫TdφP′δ(ρϵ)div(ρϵuϵ−(ρu)ϵ)dxdt. | (3.9) |
Thus, combining (3.4), (3.5) and (3.7)–(3.9) yields
∫T0∫Tdφt(12ρϵ|uϵ|2+12|bϵ|2+Pδ(ρϵ))dxdt+∫T0∫Td∇φ⋅[12(ρu)ϵ|uϵ|2+pδ(ρϵ)uϵ+Pδ(ρϵ)uϵ]dxdt−∫T0∫Td∇φ⋅[(u×b)ϵ×bϵ]dxdt+∫T0∫Td∇φ⋅dI[(j×bρ)ϵ×bϵ]dxdt=−5∑i=1Iϵi−∫T0∫TdφP′δ(ρϵ)div(ρϵuϵ−(ρu)ϵ)dxdt+∫T0∫TdφdI(j×bρ)ϵ⋅jϵdxdt. | (3.10) |
To prove Theorem 1.1, we need to show that the left side of (3.10) converges to the left side of (1.4) as first ϵ and then δ tend to zero. In fact, for each fixed δ>0, when ϵ→0, using the standard properties of mollification, we have the following limit:
∫T0∫Tdφt(12ρϵ|uϵ|2+12|bϵ|2+Pδ(ρϵ))dxdt+∫T0∫Td∇φ⋅[12(ρu)ϵ|uϵ|2+pδ(ρϵ)uϵ+Pδ(ρϵ)uϵ]dxdt−∫T0∫Td∇φ⋅[(u×b)ϵ×bϵ]dxdt+∫T0∫Td∇φ⋅dI[(j×bρ)ϵ×bϵ]dxdt→∫T0∫Tdφt(12ρ|u|2+12|b|2+Pδ(ρ))dxdt+∫T0∫Td∇φ⋅[12ρ|u|2+pδ(ρ)+Pδ(ρ)]udxdt−∫T0∫Td∇φ⋅[(u×b)×b]dxdt+∫T0∫Td∇φ⋅dI[(j×bρ)×b]dxdt. | (3.11) |
Here, we only give the proof of the following limit :
∫T0∫Td∇φ⋅Pδ(ρϵ)uϵdxdt→∫T0∫Td∇φ⋅Pδ(ρ)udxdt | (3.12) |
as ϵ→0. To prove (3.12), by the definition of Pδ in (3.2), we set
g′(r)=pδ(r)r2. |
By pδ(ρ)∈C∞[ρ_,¯ρ], we can obtain
g′(r)∈C(0,¯ρ],g(r)∈C(0,¯ρ] |
and
Pδ(ρ)=ρ(g(ρ)−g(1)), |
Pδ(ρϵ)=ρϵ(g(ρϵ)−g(1)). |
So,
Pδ(ρϵ)uϵ−Pδ(ρ)u=(Pδ(ρϵ)−Pδ(ρ))uϵ+Pδ(ρ)(uϵ−u)=[ρϵ(g(ρϵ)−g(1))−ρ(g(ρ)−g(1))]uϵ+Pδ(ρ)(uϵ−u)=[ρϵ(g(ρϵ)−g(ρ))+g(ρ)(ρϵ−ρ)+g(1)(ρ−ρϵ)]uϵ+Pδ(ρ)(uϵ−u)=[g′(ξ)(ρϵ−ρ)ρϵ+g(ρ)(ρϵ−ρ)+g(1)(ρ−ρϵ)]uϵ+Pδ(ρ)(uϵ−u), | (3.13) |
we use the differential mean value theorem in the last equation, where ξ is a function between ρ and ρϵ. According to (3.13), we get
|∫T0∫Td∇φ⋅Pδ(ρϵ)uϵdxdt−∫T0∫Td∇φ⋅Pδ(ρ)udxdt|≤∫T0∫Td|∇φ(Pδ(ρϵ)uϵ−Pδ(ρ)u)|dxdt≤C(ρ_,¯ρ,T,Td)‖φ‖C1(‖ρϵ−ρ‖L3‖ρϵ‖L3‖uϵ‖L3+‖ρϵ−ρ‖L3‖uϵ‖L3+‖ρϵ−ρ‖L3‖uϵ‖L3+‖uϵ−u‖L3)≤C(ρ_,¯ρ,T,Td)‖φ‖C1(ϵβ‖ρ‖2Bβ,∞3‖u‖Bα,∞3+ϵβ‖ρ‖Bβ,∞3‖u‖Bα,∞3+ϵβ‖ρ‖Bβ,∞3‖u‖Bα,∞3+ϵα‖u‖Bα,∞3)→0 |
as ϵ→0, which completes the proof of (3.12).
Next, we will show that the right hand side of (3.11) converges to
∫T0∫Tdφt(12ρ|u|2+12|b|2+P(ρ))dxdt+∫T0∫Td∇φ⋅[12ρ|u|2+p(ρ)+P(ρ)]udxdt−∫T0∫Td∇φ⋅[(u×b)×b]dxdt+∫T0∫Td∇φ⋅dI[(j×bρ)×b]dxdt | (3.14) |
as δ→0.
From the choice of pδ, we have
|∫T0∫Td∇φ⋅(pδ(ρ)−p(ρ))udxdt|≤C‖φ‖C1‖pδ−p‖L∞‖u‖L3≤C(φ,u)δ. | (3.15) |
For the terms containing Pδ(ρ), notice that
|Pδ(ρ)−P(ρ)|≤ρ∫ρ1|pδ(r)−p(r)|r2dr≤‖pδ−p‖L∞ρ|∫ρ11r2dr|≤(1+ρ)δ. |
Hence we can estimate
|∫T0∫Tdφt(Pδ(ρ)−P(ρ))dxdt|≤C‖φ‖C1(1+‖ρ‖L1)δ≤C(φ)δ, | (3.16) |
|∫T0∫Td∇φ⋅(Pδ(ρ)−P(ρ))udxdt|≤C‖φ‖C1‖1+ρ‖L∞‖u‖L3δ≤C(φ,u)δ. | (3.17) |
Combining with (3.15)–(3.17), when δ→0, we obtain the right side of (3.11) converges to (3.14). Thus, according to (3.10), we need to show that
Iϵi(i=1,2,3,4,5),∫T0∫TdφP′δ(ρϵ)div(ρϵuϵ−(ρu)ϵ)dxdt |
and
∫T0∫TdφdI(j×bρ)ϵ⋅jϵdxdt |
converge to zero as first ϵ and then δ tend to zero.
First it is easy to check
∫T0∫TdφdI(j×bρ)ϵ⋅jϵdxdt→∫T0∫TdφdI(j×bρ)⋅jdxdt=0 | (3.18) |
as ϵ→0. For Iϵ1, we observe that
ρϵuϵ−(ρu)ϵ=(ρϵ−ρ)(uϵ−u)−∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)(ρ(t−τ,x−ξ)−ρ(t,x))(u(t−τ,x−ξ)−u(t,x))dξdτdef=Iϵ11+Iϵ12. | (3.19) |
Therefore,
Iϵ1=∫T0∫Td∂tIϵ11⋅φuϵdxdt+∫T0∫Td∂tIϵ12⋅φuϵdxdt. | (3.20) |
Applying (2.2), (2.3), integration by parts and Hölder inequality, we get
|∫T0∫Td∂tIϵ11⋅φuϵdxdt|=|∫T0∫Td∂t[(ρϵ−ρ)(uϵ−u)]⋅φuϵdxdt|≤∫T0∫Td|φt(ρϵ−ρ)(uϵ−u)⋅uϵ|dxdt+∫T0∫Td|φ(ρϵ−ρ)(uϵ−u)⋅∂tuϵ|dxdt≤‖φ‖C1‖ρϵ−ρ‖L3(Ω)⋅‖uϵ−u‖L3(Ω)⋅‖uϵ‖L3(Ω)+‖φ‖C0‖ρϵ−ρ‖L3(Ω)⋅‖uϵ−u‖L3(Ω)⋅‖∇uϵ‖L3(Ω)≤C‖φ‖C1ϵβϵα‖ρ‖Bβ,∞3‖u‖2Bα,∞3+C‖φ‖C0ϵβϵαϵα−1‖ρ‖Bβ,∞3‖u‖2Bα,∞3→0 | (3.21) |
as ϵ→0 for any 2α+β>1.
For the second integral of the right hand side of (3.20), using Fubini theorem, (2.2) and (2.3), Hölder inequality and integration by parts, we estimate
|∫T0∫Td∂tIϵ12⋅φuϵdxdt|=|∫T0∫Td∂t[∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)(ρ(t−τ,x−ξ)−ρ(t,x))(u(t−τ,x−ξ)−u(t,x))dξdτ]⋅φuϵdxdt|=|∫T0∫Td∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)(ρ(t−τ,x−ξ)−ρ(t,x))(u(t−τ,x−ξ)−u(t,x))⋅∂t(φ(t,x)uϵ(t,x))dξdτdxdt|≤∫ϵ−ϵ∫Td∩B(0,ϵ)∫T0∫Td|Jϵ(τ,ξ)(ρ(t−τ,x−ξ)−ρ(t,x))(u(t−τ,x−ξ)−u(t,x))⋅φt(t,x)uϵ(t,x)|dxdtdξdτ+∫ϵ−ϵ∫Td∩B(0,ϵ)∫T0∫Td|Jϵ(τ,ξ)(ρ(t−τ,x−ξ)−ρ(t,x))(u(t−τ,x−ξ)−u(t,x))⋅φ(t,x)∂tuϵ(t,x)|dxdtdξdτ≤‖φ‖C1CϵN∫ϵ−ϵ∫Td∩B(0,ϵ)‖(ρ(t−τ,x−ξ)−ρ(t,x))‖L3(V)×‖u(t−τ,x−ξ)−u(t,x)‖L3(V)‖uϵ(t,x)‖L3(V)dξdτ+‖φ‖C0CϵN∫ϵ−ϵ∫Td∩B(0,ϵ)‖(ρ(t−τ,x−ξ)−ρ(t,x))‖L3(V)×‖u(t−τ,x−ξ)−u(t,x)‖L3(V)‖∂tuϵ(t,x)‖L3(V)dξdτ≤C‖φ‖C1ϵβϵα‖ρ‖Bβ,∞3‖u‖2Bα,∞3+C‖φ‖C0ϵβϵαϵα−1‖ρ‖Bβ,∞3‖u‖2Bα,∞3→0 | (3.22) |
as ϵ→0 for any 2α+β>1, where V=Ω∩(Ω+(τ,ξ)),|(τ,ξ)|<ϵ.
The estimate for Iϵ2 is similar,
(ρu)ϵ⊗uϵ−(ρu⊗u)ϵ=((ρu)ϵ−(ρu))⊗(uϵ−u)−∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)((ρu)(t−τ,x−ξ)−(ρu)(t,x))⊗(u(t−τ,x−ξ)−u(t,x))dξdτdef=Iϵ21+Iϵ22. |
Thus,
Iϵ2=∫T0∫Tddiv(Iϵ21)⋅φuϵdxdt+∫T0∫Tddiv(Iϵ22)⋅φuϵdxdt. | (3.23) |
Thanks to (2.2), (2.3), integration by parts and Hölder inequality, we get
|∫T0∫Tddiv(Iϵ21)⋅φuϵdxdt|=|∫T0∫Tddiv[((ρu)ϵ−ρu)⊗(uϵ−u)]⋅φuϵdxdt|≤∫T0∫Td|((ρu)ϵ−ρu)⊗(uϵ−u)uϵ⋅∇φ|dxdt+∫T0∫Td|φ((ρu)ϵ−ρu)⊗(uϵ−u):∇uϵ|dxdt≤C‖φ‖C1ϵβϵα‖ρu‖Bβ,∞3‖u‖2Bα,∞3+C‖φ‖C0ϵβϵαϵα−1‖ρu‖Bβ,∞3‖u‖2Bα,∞3→0 | (3.24) |
as ϵ→0 for any 2α+β>1.
For the second integral of the right hand side of (3.23), we have
|∫T0∫Tddiv(Iϵ22)⋅φuϵdxdt|=|∫T0∫Tddiv[∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)((ρu)(t−τ,x−ξ)−(ρu)(t,x))⊗(u(t−τ,x−ξ)−u(t,x))dξdτ]⋅φuϵdxdt|≤C‖φ‖C1ϵβϵα‖ρu‖Bβ,∞3‖u‖2Bα,∞3+C‖φ‖C0ϵβϵαϵα−1‖ρu‖Bβ,∞3‖u‖2Bα,∞3→0 | (3.25) |
asϵ→0 for any 2α+β>1.
Next we deal with Iϵ3. Denote
g1=(j×b)ϵ⋅uϵ−(jϵ×bϵ)⋅uϵ,g2=(u×b)ϵ⋅jϵ−(uϵ×bϵ)⋅jϵ. |
Thus, one writes
Iϵ3=∫T0∫Tdφg1dxdt+∫T0∫Tdφg2dxdtdef=Iϵ31+Iϵ32. |
Let us calculate Iϵ31 first, and Iϵ32 the same way. Similar to the estimate of Iϵ1 and Iϵ2, we derive
jϵ×bϵ−(j×b)ϵ=(jϵ−j)×(bϵ−b)−∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)j(t−τ,x−ξ)−j(t,x))×(b(t−τ,x−ξ)−b(t,x))dξdτdef=Rϵ1+Rϵ2. |
So,
Iϵ31=−∫T0∫TdRϵ1⋅φuϵdxdt−∫T0∫TdRϵ2⋅φuϵdxdt. | (3.26) |
Using (2.2) and Hölder inequality, we get
|∫T0∫TdRϵ1⋅φuϵdxdt|=|∫T0∫Td[(jϵ−j)×(bϵ−b)]⋅φuϵdxdt|≤C‖φ‖C0ϵβϵα‖j‖Bβ,∞3‖b‖Bα,∞3‖u‖Bα,∞3→0 | (3.27) |
as ϵ→0.
For the second integral of the right hand side of (3.26), we use (2.2), Hölder inequality and Fubini theorem to get that
|∫T0∫TdRϵ2⋅φuϵdxdt|=|∫T0∫Td∫ϵ−ϵ∫Td∩B(0,ϵ)Jϵ(τ,ξ)(j(t−τ,x−ξ)−j(t,x))×(b(t−τ,x−ξ)−b(t,x))dξdτ⋅φuϵdxdt|≤C‖φ‖C0ϵβϵα‖j‖Bβ,∞3‖b‖Bα,∞3‖u‖Bα,∞3→0 | (3.28) |
as ϵ→0.
For Iϵ4, we observe that if pδ∈C∞[ρ_,¯ρ], then
|pδ(h)−pδ(h0)−p′δ(h0)(h−h0)|≤C(h−h0)2 |
for any h,h0∈[ρ_,¯ρ]. Note that the constant C can be chosen independently of h,h0. Therefore
|pδ(ρϵ(t,x))−pδ(ρ(t,x))−p′δ(ρ(t,x))(ρϵ(t,x)−ρ(t,x))|≤C(ρϵ(t,x)−ρ(t,x))2, | (3.29) |
and similarly,
|pδ(ρ(t,y))−pδ(ρ(t,x))−p′δ(ρ(t,x))(ρ(t,y)−ρ(t,x))|≤C(ρ(t,y)−ρ(t,x))2. | (3.30) |
Applying convolution with respect to y to (3.30) we get, after invoking Jensen's inequality:
|pϵδ(ρ(t,x))−pδ(ρ(t,x))−p′δ(ρ(t,x))(ρϵ(t,x)−ρ(t,x))|≤C(ρ(t,y)−ρ(t,x))2∗yJϵ, | (3.31) |
where |x−y|≤ϵ. According to (3.29) and (3.31), one gets
|pδ(ρϵ(t,x))−pϵδ(ρ(t,x))|≤C(ρϵ(t,x)−ρ(t,x))2+C(ρ(t,y)−ρ(t,x))2∗yJϵ. | (3.32) |
We estimate
|Iϵ4|=|∫T0∫Td∇[pδ(ρϵ)−pϵδ(ρ)]⋅φuϵdxdt|≤∫T0∫Td|φ[pδ(ρϵ)−pϵδ(ρ)]divuϵ|dxdt+∫T0∫Td|[pδ(ρϵ)−pϵδ(ρ)]uϵ⋅∇φ|dxdt≤C‖φ‖C0ϵ2βϵα−1‖ρ‖2Bβ,∞3‖u‖Bα,∞3+C‖φ‖C1ϵ2βϵα‖ρ‖2Bβ,∞3‖u‖Bα,∞3→0 | (3.33) |
as ϵ→0 for any 2β+α>1. Next, we show that Iϵ5 converges to zero as first ϵ and then δ tend to zero,
|Iϵ5|≤|∫T0∫Td∇[pϵδ(ρ)−pϵ(ρ)]φuϵdxdt|≤∫T0∫Td|[pϵδ(ρ)−pϵ(ρ)]φdivuϵ|dxdt+∫T0∫Td|[pϵδ(ρ)−pϵ(ρ)]∇φuϵ|dxdt≤C‖φ‖C0‖(pδ−p)ϵ‖L∞‖divuϵ‖L1+C‖φ‖C1‖(pδ−p)ϵ‖L∞‖uϵ‖L1≤C‖φ‖C0‖pδ−p‖L∞‖divu‖L1+C‖φ‖C1‖pδ−p‖L∞‖u‖L1≤2Cδ→0 | (3.34) |
as δ→0. Finally, let us estimate
∫T0∫TdφP′δ(ρϵ)div(ρϵuϵ−(ρu)ϵ)dxdt. | (3.35) |
We use (3.19) to split (3.35) into two parts, so we can estimate the first part as
|∫T0∫TdφP′δ(ρϵ)divIϵ11dxdt|=|∫T0∫TdφP′δ(ρϵ)div[(ρϵ−ρϵ)(uϵ−uϵ)]dxdt|≤∫T0∫Td|∇φ(ρϵ−ρϵ)(uϵ−uϵ)P′δ(ρϵ)|dxdt+∫T0∫Td|φ(ρϵ−ρϵ)(uϵ−uϵ)P″δ(ρϵ)∇ρϵ|dxdt≤C‖φ‖C0ϵβϵα‖ρ‖Bβ,∞3‖u‖Bα,∞3+C‖φ‖C1ϵβϵαϵβ−1‖ρ‖2Bβ,∞3‖u‖Bα,∞3→0 | (3.36) |
when ϵ→0 for any 2β+α>1. The second part is estimated similarly. Thus, combining (3.18)–(3.28) and (3.33)–(3.36), we have
∫T0∫Tdφt(12ρ|u|2+12|b|2+P(ρ))dxdt+∫T0∫Td∇φ⋅[(12ρ|u|2+p(ρ)+P(ρ))u]dxdt−∫T0∫Td∇φ⋅[(u×b)×b]dxdt+∫T0∫Td∇φ⋅dI((j×bρ)×b)dxdt=0 |
as ϵ→0, which completes the proof of Theorem 1.1.
In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-MHD equations, where (t,x)∈(0,T)×Td(d≥1). Compared with the compressible Euler equations, the ideal Hall-MHD equations have higher nonlinearity in view of the coupling of the velocity field u and the magnetic field b. Then, by exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for energy conservation under the additional assumption that the velocity field u satisfies the condition divu∈L1. Our main strategy relies on commutator estimates.
This work was sponsored by the NNSF of China (Nos. 11871305, 11901346) and Research Fund for Excellent Dissertation of China Three Gorges University. The authors thank the referees for careful reading and valuable suggestions.
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
[1] |
I. Akramov, T. Debiec, J. Skipper, E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789–811. http://dx.doi.org/10.2140/apde.2020.13.789 doi: 10.2140/apde.2020.13.789
![]() |
[2] |
C. Bardos, E. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Rational Mech. Anal., 228 (2018), 197–207. https://doi.org/10.1007/s00205-017-1189-x doi: 10.1007/s00205-017-1189-x
![]() |
[3] |
C. Bardos, E. Titi, E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Commun. Math. Phys., 370 (2019), 291–310. https://doi.org/10.1007/s00220-019-03493-6 doi: 10.1007/s00220-019-03493-6
![]() |
[4] |
Q. Bie, L. Kang, Q. Wang, Z. Yao, Regularity and energy conservation for the compressible MHD equations (in Chinese), Sci. Sin. Math., 52 (2022), 741. https://doi.org/10.1360/SSM-2020-0339 doi: 10.1360/SSM-2020-0339
![]() |
[5] |
T. Buckmaster, C. De Lellis, L. Szekelyhidi Jr, V. Vicol, Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., 72 (2019), 229–274. https://doi.org/10.1002/cpa.21781 doi: 10.1002/cpa.21781
![]() |
[6] |
A. Cheskidov, P. Constantin, S. Friedlander, R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233–1252. https://doi.org/10.1088/0951-7715/21/6/005 doi: 10.1088/0951-7715/21/6/005
![]() |
[7] |
P. Constantin, E. Weinan, E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207–209. https://doi.org/10.1007/BF02099744 doi: 10.1007/BF02099744
![]() |
[8] |
R. Caflisch, I. Klapper, G. Steele, Remarks on singularities, dimension and energy disspation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184 (1997), 443–455. https://doi.org/10.1007/s002200050067 doi: 10.1007/s002200050067
![]() |
[9] |
R. Chen, C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pure. Appl., 131 (2019), 1–16. https://doi.org/10.1016/j.matpur.2019.02.003 doi: 10.1016/j.matpur.2019.02.003
![]() |
[10] |
E. Dumas, F. Sueur, On the weak solutions to the Maxwell-Landsu-Lifshitz equations and to the Hall-Magneto-Hydrodynamic equations, Commun. Math. Phys., 330 (2014), 1179–1225. https://doi.org/10.1007/s00220-014-1924-1 doi: 10.1007/s00220-014-1924-1
![]() |
[11] |
T. Drivas, H. Nguyen, Onsager's conjecture and anomalous disspation on domains with boundary, SIAM J. Math. Anal., 50 (2018), 4785–4811. https://doi.org/10.1137/18M1178864 doi: 10.1137/18M1178864
![]() |
[12] |
G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222–240. https://doi.org/10.1016/0167-2789(94)90117-1 doi: 10.1016/0167-2789(94)90117-1
![]() |
[13] | L. Evans, Partial differential equations, Providence: American Mathematical Society, 1998. |
[14] |
E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, E. Widemann, Regularity and energy conservation for the compressible Euler equations, Arch. Rational Mech. Anal., 261 (2017), 1375–1395. https://doi.org/10.1007/s00205-016-1060-5 doi: 10.1007/s00205-016-1060-5
![]() |
[15] |
S. Guo, Z. Tan, Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD Equations, Z. Angew. Math. Phys., 67 (2016), 147. https://doi.org/10.1007/s00033-016-0736-x doi: 10.1007/s00033-016-0736-x
![]() |
[16] |
Z. Gao, Z. Tan, G. Wu, Energy dissipation for weak solution of incompressible MHD equations, Acta Math. Sci., 33 (2013), 865–871. https://doi.org/10.1016/S0252-9602(13)60046-6 doi: 10.1016/S0252-9602(13)60046-6
![]() |
[17] |
P. Isett, A proof of Onsager's conjecture, Ann. Math., 188 (2018), 871–963. https://doi.org/10.4007/annals.2018.188.3.4 doi: 10.4007/annals.2018.188.3.4
![]() |
[18] |
E. Kang, J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681–2689. https://doi.org/10.1088/0951-7715/20/11/011 doi: 10.1088/0951-7715/20/11/011
![]() |
[19] |
L. Kang, X. Deng, Q. Bie, Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations, J. Math. Phys., 62 (2021), 031506. https://doi.org/10.1063/5.0042696 doi: 10.1063/5.0042696
![]() |
[20] |
L. Kang, X. Deng, Y. Zhou, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations in a bounded domain, Results Appl. Math., 12 (2021), 100178. https://doi.org/10.1016/J.RINAM.2021.100178 doi: 10.1016/J.RINAM.2021.100178
![]() |
[21] |
Q. Nguyen, P. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207–213. https://doi.org/10.1007/s00332-018-9483-9 doi: 10.1007/s00332-018-9483-9
![]() |
[22] |
L. Onsager, Statistical hydrodynamics, Nuovo Cim., 6 (1949), 279–287. https://doi.org/10.1007/bf02780991 doi: 10.1007/bf02780991
![]() |
[23] |
A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Commun. Pure Appl. Math., 50 (1997), 1261–1286. https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6 doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
![]() |
[24] |
V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343–401. https://doi.org/10.1007/BF02921318 doi: 10.1007/BF02921318
![]() |
[25] |
X. Wang, S. Liu, Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain, Nonlinear Anal. Real, 62 (2021), 103359. https://doi.org/10.1016/J.NONRWA.2021.103359 doi: 10.1016/J.NONRWA.2021.103359
![]() |
[26] |
Y. Wang, B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differ. Equations, 268 (2020), 4079–4101. https://doi.org/10.1016/j.jde.2019.10.045 doi: 10.1016/j.jde.2019.10.045
![]() |
[27] |
Z. Wu, Z. Tan, Regularity and energy dissipation for the nonhomogeneous incompressible MHD equations (in Chinese), Sci. Sin. Math., 49 (2019), 1967–1978. https://doi.org/10.1360/SSM-2019-0203 doi: 10.1360/SSM-2019-0203
![]() |
[28] |
X. Yu, A note on the energy conservation of the ideal MHD equation, Nonlinearity, 22 (2009), 913–922. https://doi.org/10.1088/0951-7715/22/4/012 doi: 10.1088/0951-7715/22/4/012
![]() |
[29] |
Z. Zhang, Energy conservation for the weak solutions to the ideal inhomogeneous magnetohydrodynamic equations in a bounded domain, Nonlinear Anal. Real, 63 (2022), 103397. https://doi.org/10.1016/j.nonrwa.2021.103397 doi: 10.1016/j.nonrwa.2021.103397
![]() |