Loading [MathJax]/jax/output/SVG/jax.js
Research article

Energy conservation for the compressible ideal Hall-MHD equations

  • Received: 13 May 2022 Revised: 03 July 2022 Accepted: 18 July 2022 Published: 21 July 2022
  • MSC : 35B65, 35D30, 35Q35, 76W05

  • In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where (t,x)(0,T)×Td(d1). By exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for the regularity of the weak solutions for energy conservation. Our main strategy relies on commutator estimates.

    Citation: Yanping Zhou, Xuemei Deng, Qunyi Bie, Lingping Kang. Energy conservation for the compressible ideal Hall-MHD equations[J]. AIMS Mathematics, 2022, 7(9): 17150-17165. doi: 10.3934/math.2022944

    Related Papers:

    [1] Sadek Gala . A note on the Liouville type theorem for the smooth solutions of the stationary Hall-MHD system. AIMS Mathematics, 2016, 1(3): 282-287. doi: 10.3934/Math.2016.3.282
    [2] Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307
    [3] A. M. Alghamdi, S. Gala, M. A. Ragusa . A regularity criterion of smooth solution for the 3D viscous Hall-MHD equations. AIMS Mathematics, 2018, 3(4): 565-574. doi: 10.3934/Math.2018.4.565
    [4] Hui Fang, Yihan Fan, Yanping Zhou . Energy equality for the compressible Navier-Stokes-Korteweg equations. AIMS Mathematics, 2022, 7(4): 5808-5820. doi: 10.3934/math.2022321
    [5] Ruihong Ji, Ling Tian . Stability of the 3D incompressible MHD equations with horizontal dissipation in periodic domain. AIMS Mathematics, 2021, 6(11): 11837-11849. doi: 10.3934/math.2021687
    [6] Mingyu Zhang . On the Cauchy problem of compressible Micropolar fluids subjected to Hall current. AIMS Mathematics, 2024, 9(12): 34147-34183. doi: 10.3934/math.20241627
    [7] Li Lu . One new blow-up criterion for the two-dimensional full compressible magnetohydrodynamic equations. AIMS Mathematics, 2023, 8(7): 15876-15891. doi: 10.3934/math.2023810
    [8] Tariq Mahmood . The zero-energy limit and quasi-neutral limit of scaled Euler-Maxwell system and its corresponding limiting models. AIMS Mathematics, 2019, 4(3): 910-927. doi: 10.3934/math.2019.3.910
    [9] Mingyu Zhang . Regularity and uniqueness of 3D compressible magneto-micropolar fluids. AIMS Mathematics, 2024, 9(6): 14658-14680. doi: 10.3934/math.2024713
    [10] Xiaolei Dong . Local existence of solutions to the 2D MHD boundary layer equations without monotonicity in Sobolev space. AIMS Mathematics, 2024, 9(3): 5294-5329. doi: 10.3934/math.2024256
  • In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-magnetohydrodynamic (Hall-MHD) system, where (t,x)(0,T)×Td(d1). By exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for the regularity of the weak solutions for energy conservation. Our main strategy relies on commutator estimates.



    In this work, we consider the energy conservation for weak solutions of the compressible ideal Hall-magnetohydrodynamic (Hall-MHD) equations

    {t(ρu)+div(ρuu)+pj×b=0,tb+dI×(j×bρ)×(u×b)=0,tρ+div(ρu)=0,divb=0, (1.1)

    where ρ>0 is the fluid density, u is the velocity field, p is the pressure and b is the magnetic field. ρ and p are scalars, dI represents the Hall coefficient and j=×b.

    The energy conservation of weak solutions of the Euler equations and the MHD equations is a hot topic in recent decades. For the 3D Euler equations, Onsager [22] put forward famous Onsager's conjecture in 1949, that is, the weak solution with Hölder continuity of exponent δ>13 can guarantee the conservation of energy, but the weak solution of δ13 is not necessary. In 1994, Eyink [12] proved the first part of this conjecture by means of Fourier series expansion. Constantin et al. [7] considered the conservation of energy when uBα3,,α>13 in the periodic domain. In 2008, Cheskidov et al. [6] improved the previous results by using Littlewood-Paley decomposition. Concerning the second part of conjecture, the first proof of the existence of a square summable weak solution that does not preserve the energy is due to Scheffer in his pioneering paper [24]. A different proof was later given by Shnirelman in [23]. Recently, non-conservation solutions for the 3D incompressible Euler equations have been constructed up to the critical 13 regularity in [5,17]. For the compressible and incompressible Euler equations and Navier-Stokes equations, we can refer to Feireisl [14], Chen and Yu [9] and Akramov et al. [1] etc. The energy conservation for the incompressible Euler equations in bounded domains can be referred to [2,3,11,21].

    Concerning the energy conservation for the MHD equations, there have been a few results. Recently, Gao et al. [16] considered the local energy equation of weak solutions for the incompressible MHD equations. Guo and Tan [15] studied the energy conservation equation of the 3D incompressible MHD equations from the longitudinal and transverse terms on the basis of the energy dissipation method. Wu and Tan [27] showed that the regularity of weak solutions of the nonhomogeneous incompressible MHD equations in Besov space is sufficient to ensure the total energy conservation. Wang and Liu [25] obtained the energy conservation for weak solutions of the compressible non-resistive magnetohydrodynamic flows in a bounded domain ΩR3. For the ideal MHD equations, Caflisch et al. [8] proved the energy conservation in a periodic domain with no boundary effect. Kang and Lee [18] obtained the energy and cross-helicity conservation to the ideal MHD equations in the whole space. Later on, Yu [28] improved the pervious results by using the special structure of the nonlinear terms in the ideal MHD equations. Wang and Zuo [26] and Zhang [29] proved the energy conservation of weak solutions to the 3D case in a bounded domain. Bie et al. [4] studied the energy conservation of the compressible ideal MHD equations in periodic domain by using commutator estimation.

    The energy conservation for the Hall-MHD equations has also attracted the attention of many researchers. Dumas and Sueur [10] studied the energy identity and magneto-helicity identity for the incompressible Hall-MHD equations in the whole space R3. Kang et al. [19] obtained the energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations in the periodic domain Td. Recently, Kang et al. [20] further considered the energy conservation of impressible Hall-MHD equations in a bounded domain.

    A natural question then is when the energy conservation holds true for the compressible ideal Hall-MHD Eq (1.1). Compared with the compressible Euler equations, the ideal Hall-MHD equations have higher nonlinearity in view of the coupling of the velocity field u and the magnetic field b. Moreover, the handling of the Hall term dI×(j×bρ) brings us some difficulties. Specifically, we need to deal with the following item

    T0Tdφ(u×b)ϵjϵdxdt

    (see (3.8) below for details). In this paper, by using the commutator estimation similar to that used in [7] and the regularization method used in [14], we obtain sufficient conditions for energy conservation of system (1.1). Our result establishes local energy conservation for weak solutions to system (1.1) under the additional assumption that the velocity field u satisfies the condition divuL1.

    Before giving the result of this paper, we define the pressure potential as

    P(ρ)=ρρ1p(r)r2dr. (1.2)

    The main result of this paper is stated as follows.

    Theorem 1.1. Let the space dimension d1 and (ρ,u,p,b) be a solution of system (1.1) in the sense of distributions. Assume

    u,bBα,3((0,T)×Td),ρ,ρu,jBβ,3((0,T)×Td),0<ρ_ρ¯ρa.e.in(0,T)×Td

    for some constants ρ_,¯ρ such that

    β>max{12α,12(1α)}.

    Assume further that

    divuL1((0,T)×Td),pC[ρ_,¯ρ]. (1.3)

    Then the energy is locally conserved, that is

    t(12ρ|u|2+12|b|2+P(ρ))+div[12ρ|u|2+P(ρ)+p(ρ))]div[(u×b)×b]+div[dI(j×bρ×b)]=0 (1.4)

    in the sense of distributions on (0,T)×Td.

    In this section, we firstly recall some properties of the Besov space Bα,p(Ω), where α(0,1) and Ω=(0,T)×Td. The said Besov space comprises those functions ω for which the norm

    ωBα,p(Ω):=ωLp(Ω)+supξΩω(+ξ)ωLp(Ω(Ωξ))|ξ|α (2.1)

    is finite (here Ωξ={xξ:xΩ}).

    Let JCc(RN) for N=d or N=d+1 (according to the choice of Ω) be a standard mollifying kernel and set

    Jϵ(x)=1ϵNJ(xϵ),

    with the notation ωϵ=Jϵω.

    Next, we introduce two lemmas about the properties of mollifiers.

    Lemma 2.1. ([13]) If 1p< and fLploc(R+×Ω), then we get

    fϵfinLploc(R+×Ω).

    Lemma 2.2. ([27]) Let ωBα,p(Ω) with 1p, and α0. Then we have

    ωϵωLp(Ω)CϵαωBα,p(Ω) (2.2)

    and

    ωϵLp(Ω)Cϵα1ωBα,p(Ω). (2.3)

    Finally, let us recall the following two commonly used formulas for curl, that is,

    ×(A×B)=(B)A(A)B+(B)A(B)A, (2.4)
    div(A×B)=B(×A)A(×B). (2.5)

    We mollify the momentum Eq (1.1)1 in time and space, and the corresponding symbols are described in Section 2,

    t(ρu)ϵ+div(ρuu)ϵ+pϵ(ρ)(j×b)ϵ=0. (3.1)

    Take a sequence pδC[ρ_,¯ρ] which converges uniformly to pC[ρ_,¯ρ], that is, for each δ>0,

    ppδLδ.

    According to the definition of P in (1.2), we give the definition of Pδ as follows,

    Pδ=ρρ1pδ(r)r2dr. (3.2)

    It follows from (3.1) that

    t(ρu)ϵ+div(ρuu)ϵ+(pϵδ(ρ))(j×b)ϵ=[pϵδ(ρ)pϵ(ρ)].

    Let φC0((0,T)×Td) be a test function. Multiplying with φuϵ and integrating in time and space give

    T0Tdt(ρu)ϵφuϵdxdt+T0Tddiv(ρuu)ϵφuϵdxdtT0Td(j×b)ϵφuϵdxdt+T0Td(pϵδ(ρ))φuϵdxdt=T0Td[pϵδ(ρ)pϵ(ρ)]φuϵdxdt. (3.3)

    Take ϵ>0 small enough so that suppφ(ϵ,Tϵ)×Td. We use an appropriate commutator, as

    T0Tdt(ρϵuϵ)φuϵdxdt+T0Tddiv((ρu)ϵuϵ)φuϵdxdt+T0Tdφ(u×b)ϵjϵdxdt+T0Td(pδ(ρϵ))φuϵdxdtdef=Iϵ1+Iϵ2+Iϵ3+Iϵ4+Iϵ5, (3.4)

    where

    Iϵ1=T0Tdt(ρϵuϵ(ρu)ϵ)φuϵdxdt,Iϵ2=T0Tddiv((ρu)ϵuϵ(ρuu)ϵ)φuϵdxdt,Iϵ3=T0Td[(j×b)ϵuϵ+(u×b)ϵjϵ]φdxdt,Iϵ4=T0Td[pδ(ρϵ)pϵδ(ρ)]φuϵdxdt,Iϵ5=T0Td[pϵδ(ρ)pϵ(ρ)]φuϵdxdt.

    In what follows, we handle each item in (3.4). For the first integral term of the left hand side of (3.4), it follows that

    T0Tdt(ρϵuϵ)φuϵdxdt=T0Td(φρϵt|uϵ|2+12φρϵt(|uϵ|2))dxdt. (3.5)

    For the second term, we mollify the continuity Eq (1.1)3 as

    tρϵ+div(ρu)ϵ=0, (3.6)

    and compute

    T0Tddiv((ρu)ϵuϵ)φuϵdxdt=T0Td((ρu)ϵuϵ):(φuϵ)dxdt=T0Tdφ((ρu)ϵuϵ):(uϵ)dxdtT0Td((ρu)ϵuϵ):(φuϵ)dxdt=12T0Tdφ(ρu)ϵ(|uϵ|2)dxdtT0Td((ρu)ϵφ)|uϵ|2dxdt=12T0Tddiv(φ(ρu)ϵ)|uϵ|2dxdtT0Td((ρu)ϵφ)|uϵ|2dxdt=12T0Td(φ(ρu)ϵ+φdiv(ρu)ϵ)|uϵ|2dxdtT0Td((ρu)ϵφ)|uϵ|2dxdt=12T0Tdφρϵt|uϵ|2dxdt12T0Td(φ(ρu)ϵ)|uϵ|2dxdt. (3.7)

    For the third integral of the left hand side of (3.4), we first mollify the Eq (1.1)2 and multiply bϵ as

    12t(|bϵ|2)+dI×(j×bρ)ϵbϵ×(u×b)ϵbϵ=0.

    Then using (2.5), we get

    T0Tdφ(u×b)ϵjϵdxdt=T0Tdφ×(u×b)ϵbϵdxdtT0Tdφdiv((u×b)ϵ×bϵ)dxdt=T0Tdφ×(u×b)ϵbϵdxdt+T0Tdφ((u×b)ϵ×bϵ)dxdt=12T0Tdφt(|bϵ|2)dxdt+T0TdφdI×(j×bρ)ϵbϵdxdt+T0Tdφ[(u×b)ϵ×bϵ]dxdt=12T0Tdφt|bϵ|2dxdt+T0Tdφ[(u×b)ϵ×bϵ]dxdt+T0TdφdI[div((j×bρ)ϵ×bϵ)]dxdt+T0TdφdI(j×bρ)ϵjϵdxdt=12T0Tdφt|bϵ|2dxdt+T0Tdφ[(u×b)ϵ×bϵ]dxdtT0TddI((j×bρ)ϵ×bϵ)φdxdt+T0TdφdI(j×bρ)ϵjϵdxdt. (3.8)

    For the fourth integral, due to the chain rule and the mollified mass Eq (3.6), we observe that

    tPδ(ρϵ)+uϵPδ(ρϵ)+Pδ(ρϵ)ρϵdivuϵ=Pδ(ρϵ)div(ρϵuϵ(ρu)ϵ).

    By the definition of Pδ in (3.2), we have

    ρϵPδ(ρϵ)=Pδ(ρϵ)+pδ(ρϵ),

    After these preparations, we can compute the fourth integral as

    T0Tdφuϵpδ(ρϵ)dxdt=T0Tdφuϵpδ(ρϵ)dxdtT0Tdφpδ(ρϵ)divuϵdxdt=T0Tdφuϵpδ(ρϵ)dxdtT0Tdφ[ρϵPδ(ρϵ)Pδ(ρϵ)]divuϵdxdt=T0Tdφuϵpδ(ρϵ)dxdt+T0Tdφ[tPδ(ρϵ)+uϵPδ(ρϵ)+Pδ(ρϵ)divuϵ]dxdtT0TdφPδ(ρϵ)div(ρϵuϵ(ρu)ϵ)dxdt=T0Tdφuϵpδ(ρϵ)dxdtT0TdφtPδ(ρϵ)dxdtT0TdφPδ(ρϵ)uϵdxdtT0TdφPδ(ρϵ)div(ρϵuϵ(ρu)ϵ)dxdt. (3.9)

    Thus, combining (3.4), (3.5) and (3.7)–(3.9) yields

    T0Tdφt(12ρϵ|uϵ|2+12|bϵ|2+Pδ(ρϵ))dxdt+T0Tdφ[12(ρu)ϵ|uϵ|2+pδ(ρϵ)uϵ+Pδ(ρϵ)uϵ]dxdtT0Tdφ[(u×b)ϵ×bϵ]dxdt+T0TdφdI[(j×bρ)ϵ×bϵ]dxdt=5i=1IϵiT0TdφPδ(ρϵ)div(ρϵuϵ(ρu)ϵ)dxdt+T0TdφdI(j×bρ)ϵjϵdxdt. (3.10)

    To prove Theorem 1.1, we need to show that the left side of (3.10) converges to the left side of (1.4) as first ϵ and then δ tend to zero. In fact, for each fixed δ>0, when ϵ0, using the standard properties of mollification, we have the following limit:

    T0Tdφt(12ρϵ|uϵ|2+12|bϵ|2+Pδ(ρϵ))dxdt+T0Tdφ[12(ρu)ϵ|uϵ|2+pδ(ρϵ)uϵ+Pδ(ρϵ)uϵ]dxdtT0Tdφ[(u×b)ϵ×bϵ]dxdt+T0TdφdI[(j×bρ)ϵ×bϵ]dxdtT0Tdφt(12ρ|u|2+12|b|2+Pδ(ρ))dxdt+T0Tdφ[12ρ|u|2+pδ(ρ)+Pδ(ρ)]udxdtT0Tdφ[(u×b)×b]dxdt+T0TdφdI[(j×bρ)×b]dxdt. (3.11)

    Here, we only give the proof of the following limit :

    T0TdφPδ(ρϵ)uϵdxdtT0TdφPδ(ρ)udxdt (3.12)

    as ϵ0. To prove (3.12), by the definition of Pδ in (3.2), we set

    g(r)=pδ(r)r2.

    By pδ(ρ)C[ρ_,¯ρ], we can obtain

    g(r)C(0,¯ρ],g(r)C(0,¯ρ]

    and

    Pδ(ρ)=ρ(g(ρ)g(1)),
    Pδ(ρϵ)=ρϵ(g(ρϵ)g(1)).

    So,

    Pδ(ρϵ)uϵPδ(ρ)u=(Pδ(ρϵ)Pδ(ρ))uϵ+Pδ(ρ)(uϵu)=[ρϵ(g(ρϵ)g(1))ρ(g(ρ)g(1))]uϵ+Pδ(ρ)(uϵu)=[ρϵ(g(ρϵ)g(ρ))+g(ρ)(ρϵρ)+g(1)(ρρϵ)]uϵ+Pδ(ρ)(uϵu)=[g(ξ)(ρϵρ)ρϵ+g(ρ)(ρϵρ)+g(1)(ρρϵ)]uϵ+Pδ(ρ)(uϵu), (3.13)

    we use the differential mean value theorem in the last equation, where ξ is a function between ρ and ρϵ. According to (3.13), we get

    |T0TdφPδ(ρϵ)uϵdxdtT0TdφPδ(ρ)udxdt|T0Td|φ(Pδ(ρϵ)uϵPδ(ρ)u)|dxdtC(ρ_,¯ρ,T,Td)φC1(ρϵρL3ρϵL3uϵL3+ρϵρL3uϵL3+ρϵρL3uϵL3+uϵuL3)C(ρ_,¯ρ,T,Td)φC1(ϵβρ2Bβ,3uBα,3+ϵβρBβ,3uBα,3+ϵβρBβ,3uBα,3+ϵαuBα,3)0

    as ϵ0, which completes the proof of (3.12).

    Next, we will show that the right hand side of (3.11) converges to

    T0Tdφt(12ρ|u|2+12|b|2+P(ρ))dxdt+T0Tdφ[12ρ|u|2+p(ρ)+P(ρ)]udxdtT0Tdφ[(u×b)×b]dxdt+T0TdφdI[(j×bρ)×b]dxdt (3.14)

    as δ0.

    From the choice of pδ, we have

    |T0Tdφ(pδ(ρ)p(ρ))udxdt|CφC1pδpLuL3C(φ,u)δ. (3.15)

    For the terms containing Pδ(ρ), notice that

    |Pδ(ρ)P(ρ)|ρρ1|pδ(r)p(r)|r2drpδpLρ|ρ11r2dr|(1+ρ)δ.

    Hence we can estimate

    |T0Tdφt(Pδ(ρ)P(ρ))dxdt|CφC1(1+ρL1)δC(φ)δ, (3.16)
    |T0Tdφ(Pδ(ρ)P(ρ))udxdt|CφC11+ρLuL3δC(φ,u)δ. (3.17)

    Combining with (3.15)–(3.17), when δ0, we obtain the right side of (3.11) converges to (3.14). Thus, according to (3.10), we need to show that

    Iϵi(i=1,2,3,4,5),T0TdφPδ(ρϵ)div(ρϵuϵ(ρu)ϵ)dxdt

    and

    T0TdφdI(j×bρ)ϵjϵdxdt

    converge to zero as first ϵ and then δ tend to zero.

    First it is easy to check

    T0TdφdI(j×bρ)ϵjϵdxdtT0TdφdI(j×bρ)jdxdt=0 (3.18)

    as ϵ0. For Iϵ1, we observe that

    ρϵuϵ(ρu)ϵ=(ρϵρ)(uϵu)ϵϵTdB(0,ϵ)Jϵ(τ,ξ)(ρ(tτ,xξ)ρ(t,x))(u(tτ,xξ)u(t,x))dξdτdef=Iϵ11+Iϵ12. (3.19)

    Therefore,

    Iϵ1=T0TdtIϵ11φuϵdxdt+T0TdtIϵ12φuϵdxdt. (3.20)

    Applying (2.2), (2.3), integration by parts and Hölder inequality, we get

    |T0TdtIϵ11φuϵdxdt|=|T0Tdt[(ρϵρ)(uϵu)]φuϵdxdt|T0Td|φt(ρϵρ)(uϵu)uϵ|dxdt+T0Td|φ(ρϵρ)(uϵu)tuϵ|dxdtφC1ρϵρL3(Ω)uϵuL3(Ω)uϵL3(Ω)+φC0ρϵρL3(Ω)uϵuL3(Ω)uϵL3(Ω)CφC1ϵβϵαρBβ,3u2Bα,3+CφC0ϵβϵαϵα1ρBβ,3u2Bα,30 (3.21)

    as ϵ0 for any 2α+β>1.

    For the second integral of the right hand side of (3.20), using Fubini theorem, (2.2) and (2.3), Hölder inequality and integration by parts, we estimate

    |T0TdtIϵ12φuϵdxdt|=|T0Tdt[ϵϵTdB(0,ϵ)Jϵ(τ,ξ)(ρ(tτ,xξ)ρ(t,x))(u(tτ,xξ)u(t,x))dξdτ]φuϵdxdt|=|T0TdϵϵTdB(0,ϵ)Jϵ(τ,ξ)(ρ(tτ,xξ)ρ(t,x))(u(tτ,xξ)u(t,x))t(φ(t,x)uϵ(t,x))dξdτdxdt|ϵϵTdB(0,ϵ)T0Td|Jϵ(τ,ξ)(ρ(tτ,xξ)ρ(t,x))(u(tτ,xξ)u(t,x))φt(t,x)uϵ(t,x)|dxdtdξdτ+ϵϵTdB(0,ϵ)T0Td|Jϵ(τ,ξ)(ρ(tτ,xξ)ρ(t,x))(u(tτ,xξ)u(t,x))φ(t,x)tuϵ(t,x)|dxdtdξdτφC1CϵNϵϵTdB(0,ϵ)(ρ(tτ,xξ)ρ(t,x))L3(V)×u(tτ,xξ)u(t,x)L3(V)uϵ(t,x)L3(V)dξdτ+φC0CϵNϵϵTdB(0,ϵ)(ρ(tτ,xξ)ρ(t,x))L3(V)×u(tτ,xξ)u(t,x)L3(V)tuϵ(t,x)L3(V)dξdτCφC1ϵβϵαρBβ,3u2Bα,3+CφC0ϵβϵαϵα1ρBβ,3u2Bα,30 (3.22)

    as ϵ0 for any 2α+β>1, where V=Ω(Ω+(τ,ξ)),|(τ,ξ)|<ϵ.

    The estimate for Iϵ2 is similar,

    (ρu)ϵuϵ(ρuu)ϵ=((ρu)ϵ(ρu))(uϵu)ϵϵTdB(0,ϵ)Jϵ(τ,ξ)((ρu)(tτ,xξ)(ρu)(t,x))(u(tτ,xξ)u(t,x))dξdτdef=Iϵ21+Iϵ22.

    Thus,

    Iϵ2=T0Tddiv(Iϵ21)φuϵdxdt+T0Tddiv(Iϵ22)φuϵdxdt. (3.23)

    Thanks to (2.2), (2.3), integration by parts and Hölder inequality, we get

    |T0Tddiv(Iϵ21)φuϵdxdt|=|T0Tddiv[((ρu)ϵρu)(uϵu)]φuϵdxdt|T0Td|((ρu)ϵρu)(uϵu)uϵφ|dxdt+T0Td|φ((ρu)ϵρu)(uϵu):uϵ|dxdtCφC1ϵβϵαρuBβ,3u2Bα,3+CφC0ϵβϵαϵα1ρuBβ,3u2Bα,30 (3.24)

    as ϵ0 for any 2α+β>1.

    For the second integral of the right hand side of (3.23), we have

    |T0Tddiv(Iϵ22)φuϵdxdt|=|T0Tddiv[ϵϵTdB(0,ϵ)Jϵ(τ,ξ)((ρu)(tτ,xξ)(ρu)(t,x))(u(tτ,xξ)u(t,x))dξdτ]φuϵdxdt|CφC1ϵβϵαρuBβ,3u2Bα,3+CφC0ϵβϵαϵα1ρuBβ,3u2Bα,30 (3.25)

    asϵ0 for any 2α+β>1.

    Next we deal with Iϵ3. Denote

    g1=(j×b)ϵuϵ(jϵ×bϵ)uϵ,g2=(u×b)ϵjϵ(uϵ×bϵ)jϵ.

    Thus, one writes

    Iϵ3=T0Tdφg1dxdt+T0Tdφg2dxdtdef=Iϵ31+Iϵ32.

    Let us calculate Iϵ31 first, and Iϵ32 the same way. Similar to the estimate of Iϵ1 and Iϵ2, we derive

    jϵ×bϵ(j×b)ϵ=(jϵj)×(bϵb)ϵϵTdB(0,ϵ)Jϵ(τ,ξ)j(tτ,xξ)j(t,x))×(b(tτ,xξ)b(t,x))dξdτdef=Rϵ1+Rϵ2.

    So,

    Iϵ31=T0TdRϵ1φuϵdxdtT0TdRϵ2φuϵdxdt. (3.26)

    Using (2.2) and Hölder inequality, we get

    |T0TdRϵ1φuϵdxdt|=|T0Td[(jϵj)×(bϵb)]φuϵdxdt|CφC0ϵβϵαjBβ,3bBα,3uBα,30 (3.27)

    as ϵ0.

    For the second integral of the right hand side of (3.26), we use (2.2), Hölder inequality and Fubini theorem to get that

    |T0TdRϵ2φuϵdxdt|=|T0TdϵϵTdB(0,ϵ)Jϵ(τ,ξ)(j(tτ,xξ)j(t,x))×(b(tτ,xξ)b(t,x))dξdτφuϵdxdt|CφC0ϵβϵαjBβ,3bBα,3uBα,30 (3.28)

    as ϵ0.

    For Iϵ4, we observe that if pδC[ρ_,¯ρ], then

    |pδ(h)pδ(h0)pδ(h0)(hh0)|C(hh0)2

    for any h,h0[ρ_,¯ρ]. Note that the constant C can be chosen independently of h,h0. Therefore

    |pδ(ρϵ(t,x))pδ(ρ(t,x))pδ(ρ(t,x))(ρϵ(t,x)ρ(t,x))|C(ρϵ(t,x)ρ(t,x))2, (3.29)

    and similarly,

    |pδ(ρ(t,y))pδ(ρ(t,x))pδ(ρ(t,x))(ρ(t,y)ρ(t,x))|C(ρ(t,y)ρ(t,x))2. (3.30)

    Applying convolution with respect to y to (3.30) we get, after invoking Jensen's inequality:

    |pϵδ(ρ(t,x))pδ(ρ(t,x))pδ(ρ(t,x))(ρϵ(t,x)ρ(t,x))|C(ρ(t,y)ρ(t,x))2yJϵ, (3.31)

    where |xy|ϵ. According to (3.29) and (3.31), one gets

    |pδ(ρϵ(t,x))pϵδ(ρ(t,x))|C(ρϵ(t,x)ρ(t,x))2+C(ρ(t,y)ρ(t,x))2yJϵ. (3.32)

    We estimate

    |Iϵ4|=|T0Td[pδ(ρϵ)pϵδ(ρ)]φuϵdxdt|T0Td|φ[pδ(ρϵ)pϵδ(ρ)]divuϵ|dxdt+T0Td|[pδ(ρϵ)pϵδ(ρ)]uϵφ|dxdtCφC0ϵ2βϵα1ρ2Bβ,3uBα,3+CφC1ϵ2βϵαρ2Bβ,3uBα,30 (3.33)

    as ϵ0 for any 2β+α>1. Next, we show that Iϵ5 converges to zero as first ϵ and then δ tend to zero,

    |Iϵ5||T0Td[pϵδ(ρ)pϵ(ρ)]φuϵdxdt|T0Td|[pϵδ(ρ)pϵ(ρ)]φdivuϵ|dxdt+T0Td|[pϵδ(ρ)pϵ(ρ)]φuϵ|dxdtCφC0(pδp)ϵLdivuϵL1+CφC1(pδp)ϵLuϵL1CφC0pδpLdivuL1+CφC1pδpLuL12Cδ0 (3.34)

    as δ0. Finally, let us estimate

    T0TdφPδ(ρϵ)div(ρϵuϵ(ρu)ϵ)dxdt. (3.35)

    We use (3.19) to split (3.35) into two parts, so we can estimate the first part as

    |T0TdφPδ(ρϵ)divIϵ11dxdt|=|T0TdφPδ(ρϵ)div[(ρϵρϵ)(uϵuϵ)]dxdt|T0Td|φ(ρϵρϵ)(uϵuϵ)Pδ(ρϵ)|dxdt+T0Td|φ(ρϵρϵ)(uϵuϵ)Pδ(ρϵ)ρϵ|dxdtCφC0ϵβϵαρBβ,3uBα,3+CφC1ϵβϵαϵβ1ρ2Bβ,3uBα,30 (3.36)

    when ϵ0 for any 2β+α>1. The second part is estimated similarly. Thus, combining (3.18)–(3.28) and (3.33)–(3.36), we have

    T0Tdφt(12ρ|u|2+12|b|2+P(ρ))dxdt+T0Tdφ[(12ρ|u|2+p(ρ)+P(ρ))u]dxdtT0Tdφ[(u×b)×b]dxdt+T0TdφdI((j×bρ)×b)dxdt=0

    as ϵ0, which completes the proof of Theorem 1.1.

    In this paper, we study the regularity and energy conservation of the weak solutions for compressible ideal Hall-MHD equations, where (t,x)(0,T)×Td(d1). Compared with the compressible Euler equations, the ideal Hall-MHD equations have higher nonlinearity in view of the coupling of the velocity field u and the magnetic field b. Then, by exploring the special structure of the nonlinear terms in the model, we obtain the sufficient conditions for energy conservation under the additional assumption that the velocity field u satisfies the condition divuL1. Our main strategy relies on commutator estimates.

    This work was sponsored by the NNSF of China (Nos. 11871305, 11901346) and Research Fund for Excellent Dissertation of China Three Gorges University. The authors thank the referees for careful reading and valuable suggestions.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] I. Akramov, T. Debiec, J. Skipper, E. Wiedemann, Energy conservation for the compressible Euler and Navier-Stokes equations with vacuum, Anal. PDE, 13 (2020), 789–811. http://dx.doi.org/10.2140/apde.2020.13.789 doi: 10.2140/apde.2020.13.789
    [2] C. Bardos, E. Titi, Onsager's conjecture for the incompressible Euler equations in bounded domains, Arch. Rational Mech. Anal., 228 (2018), 197–207. https://doi.org/10.1007/s00205-017-1189-x doi: 10.1007/s00205-017-1189-x
    [3] C. Bardos, E. Titi, E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, Commun. Math. Phys., 370 (2019), 291–310. https://doi.org/10.1007/s00220-019-03493-6 doi: 10.1007/s00220-019-03493-6
    [4] Q. Bie, L. Kang, Q. Wang, Z. Yao, Regularity and energy conservation for the compressible MHD equations (in Chinese), Sci. Sin. Math., 52 (2022), 741. https://doi.org/10.1360/SSM-2020-0339 doi: 10.1360/SSM-2020-0339
    [5] T. Buckmaster, C. De Lellis, L. Szekelyhidi Jr, V. Vicol, Onsager's conjecture for admissible weak solutions, Commun. Pure Appl. Math., 72 (2019), 229–274. https://doi.org/10.1002/cpa.21781 doi: 10.1002/cpa.21781
    [6] A. Cheskidov, P. Constantin, S. Friedlander, R. Shvydkoy, Energy conservation and Onsager's conjecture for the Euler equations, Nonlinearity, 21 (2008), 1233–1252. https://doi.org/10.1088/0951-7715/21/6/005 doi: 10.1088/0951-7715/21/6/005
    [7] P. Constantin, E. Weinan, E. Titi, Onsager's conjecture on the energy conservation for solutions of Euler's equation, Commun. Math. Phys., 165 (1994), 207–209. https://doi.org/10.1007/BF02099744 doi: 10.1007/BF02099744
    [8] R. Caflisch, I. Klapper, G. Steele, Remarks on singularities, dimension and energy disspation for ideal hydrodynamics and MHD, Commun. Math. Phys., 184 (1997), 443–455. https://doi.org/10.1007/s002200050067 doi: 10.1007/s002200050067
    [9] R. Chen, C. Yu, Onsager's energy conservation for inhomogeneous Euler equations, J. Math. Pure. Appl., 131 (2019), 1–16. https://doi.org/10.1016/j.matpur.2019.02.003 doi: 10.1016/j.matpur.2019.02.003
    [10] E. Dumas, F. Sueur, On the weak solutions to the Maxwell-Landsu-Lifshitz equations and to the Hall-Magneto-Hydrodynamic equations, Commun. Math. Phys., 330 (2014), 1179–1225. https://doi.org/10.1007/s00220-014-1924-1 doi: 10.1007/s00220-014-1924-1
    [11] T. Drivas, H. Nguyen, Onsager's conjecture and anomalous disspation on domains with boundary, SIAM J. Math. Anal., 50 (2018), 4785–4811. https://doi.org/10.1137/18M1178864 doi: 10.1137/18M1178864
    [12] G. Eyink, Energy dissipation without viscosity in ideal hydrodynamics I. Fourier analysis and local energy transfer, Phys. D, 78 (1994), 222–240. https://doi.org/10.1016/0167-2789(94)90117-1 doi: 10.1016/0167-2789(94)90117-1
    [13] L. Evans, Partial differential equations, Providence: American Mathematical Society, 1998.
    [14] E. Feireisl, P. Gwiazda, A. Świerczewska-Gwiazda, E. Widemann, Regularity and energy conservation for the compressible Euler equations, Arch. Rational Mech. Anal., 261 (2017), 1375–1395. https://doi.org/10.1007/s00205-016-1060-5 doi: 10.1007/s00205-016-1060-5
    [15] S. Guo, Z. Tan, Local 4/5-law and energy dissipation anomaly in turbulence of incompressible MHD Equations, Z. Angew. Math. Phys., 67 (2016), 147. https://doi.org/10.1007/s00033-016-0736-x doi: 10.1007/s00033-016-0736-x
    [16] Z. Gao, Z. Tan, G. Wu, Energy dissipation for weak solution of incompressible MHD equations, Acta Math. Sci., 33 (2013), 865–871. https://doi.org/10.1016/S0252-9602(13)60046-6 doi: 10.1016/S0252-9602(13)60046-6
    [17] P. Isett, A proof of Onsager's conjecture, Ann. Math., 188 (2018), 871–963. https://doi.org/10.4007/annals.2018.188.3.4 doi: 10.4007/annals.2018.188.3.4
    [18] E. Kang, J. Lee, Remarks on the magnetic helicity and energy conservation for ideal magneto-hydrodynamics, Nonlinearity, 20 (2007), 2681–2689. https://doi.org/10.1088/0951-7715/20/11/011 doi: 10.1088/0951-7715/20/11/011
    [19] L. Kang, X. Deng, Q. Bie, Energy conservation for the nonhomogeneous incompressible ideal Hall-MHD equations, J. Math. Phys., 62 (2021), 031506. https://doi.org/10.1063/5.0042696 doi: 10.1063/5.0042696
    [20] L. Kang, X. Deng, Y. Zhou, Energy conservation for the nonhomogeneous incompressible Hall-MHD equations in a bounded domain, Results Appl. Math., 12 (2021), 100178. https://doi.org/10.1016/J.RINAM.2021.100178 doi: 10.1016/J.RINAM.2021.100178
    [21] Q. Nguyen, P. Nguyen, Onsager's conjecture on the energy conservation for solutions of Euler equations in bounded domains, J. Nonlinear Sci., 29 (2019), 207–213. https://doi.org/10.1007/s00332-018-9483-9 doi: 10.1007/s00332-018-9483-9
    [22] L. Onsager, Statistical hydrodynamics, Nuovo Cim., 6 (1949), 279–287. https://doi.org/10.1007/bf02780991 doi: 10.1007/bf02780991
    [23] A. Shnirelman, On the nonuniqueness of weak solution of the Euler equation, Commun. Pure Appl. Math., 50 (1997), 1261–1286. https://doi.org/10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6 doi: 10.1002/(SICI)1097-0312(199712)50:12<1261::AID-CPA3>3.0.CO;2-6
    [24] V. Scheffer, An inviscid flow with compact support in space-time, J. Geom. Anal., 3 (1993), 343–401. https://doi.org/10.1007/BF02921318 doi: 10.1007/BF02921318
    [25] X. Wang, S. Liu, Energy conservation for the weak solutions to the 3D compressible magnetohydrodynamic equations of viscous non-resistive fluids in a bounded domain, Nonlinear Anal. Real, 62 (2021), 103359. https://doi.org/10.1016/J.NONRWA.2021.103359 doi: 10.1016/J.NONRWA.2021.103359
    [26] Y. Wang, B. Zuo, Energy and cross-helicity conservation for the three-dimensional ideal MHD equations in a bounded domain, J. Differ. Equations, 268 (2020), 4079–4101. https://doi.org/10.1016/j.jde.2019.10.045 doi: 10.1016/j.jde.2019.10.045
    [27] Z. Wu, Z. Tan, Regularity and energy dissipation for the nonhomogeneous incompressible MHD equations (in Chinese), Sci. Sin. Math., 49 (2019), 1967–1978. https://doi.org/10.1360/SSM-2019-0203 doi: 10.1360/SSM-2019-0203
    [28] X. Yu, A note on the energy conservation of the ideal MHD equation, Nonlinearity, 22 (2009), 913–922. https://doi.org/10.1088/0951-7715/22/4/012 doi: 10.1088/0951-7715/22/4/012
    [29] Z. Zhang, Energy conservation for the weak solutions to the ideal inhomogeneous magnetohydrodynamic equations in a bounded domain, Nonlinear Anal. Real, 63 (2022), 103397. https://doi.org/10.1016/j.nonrwa.2021.103397 doi: 10.1016/j.nonrwa.2021.103397
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1596) PDF downloads(83) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog