Research article

The zero-energy limit and quasi-neutral limit of scaled Euler-Maxwell system and its corresponding limiting models

  • Received: 08 May 2019 Accepted: 10 July 2019 Published: 26 July 2019
  • MSC : Primary: 34E05, 35Q35, 35L60; Secondary: 35Q61

  • In this paper, we apply a new scaling for Euler-Maxwell system. As a result, zero-energy limit is introduced, combining it with quasi-neutral limit, we obtain a complete system of the limiting models for Euler-Maxwell system. The asymptotic analysis and a weighted energy method are used to rigorously justify the zero-energy limit for e-MHD, which is the limiting model of Euler-Maxwell system as the Debye length tends to zero. For other limits, we provide a formal derivation and obtain an approximate asymptotic expansion.

    Citation: Tariq Mahmood. The zero-energy limit and quasi-neutral limit of scaled Euler-Maxwell system and its corresponding limiting models[J]. AIMS Mathematics, 2019, 4(3): 910-927. doi: 10.3934/math.2019.3.910

    Related Papers:

  • In this paper, we apply a new scaling for Euler-Maxwell system. As a result, zero-energy limit is introduced, combining it with quasi-neutral limit, we obtain a complete system of the limiting models for Euler-Maxwell system. The asymptotic analysis and a weighted energy method are used to rigorously justify the zero-energy limit for e-MHD, which is the limiting model of Euler-Maxwell system as the Debye length tends to zero. For other limits, we provide a formal derivation and obtain an approximate asymptotic expansion.


    加载中


    [1] S. I. Braginskii, Transport processes in a plasma, Reviews of Plasma Physics, Vol. 1, New York: Consultants Bureau, 1965.
    [2] Y. Brenier, N. Mauser and M. Puel, Incompressible Euler and e-MHD as scaling limits of the Vlasov-Maxwell system, Commun. Math. Sci., 1 (2003), 437-447. doi: 10.4310/CMS.2003.v1.n3.a4
    [3] S. Cordier and E. Grenier, Quasineutral limit of an Euler-Poisson system arising from plasma physics, Commun. Part. Diff. Eq., 25 (2000), 1099-1113. doi: 10.1080/03605300008821542
    [4] F. Chen, Introduction to Plasma Physics and Controlled Fusion, Vol. 1, New York: Plenum Press, 1984.
    [5] P. Degond, F. Deluzet and D. Savelief, Numerical approximation of the Euler-Maxwell model in the quasineutral limit, J. Comput. Phys., 231 (2012), 1917-1946. doi: 10.1016/j.jcp.2011.11.011
    [6] R. J. Duan, Global smooth flows for the compressible Euler-Maxwell system: Relaxation case, J. Hyperbol. Differ. Eq., 8 (2011), 375-413. doi: 10.1142/S0219891611002421
    [7] L. Hsiao, P. A. Markowich and S. Wang, The asymptotic behavior of globally smooth solutions of the multidimensional isentropic hydrodynamic model for semiconductors, J. Differ. Eq., 192 (2003), 111-133. doi: 10.1016/S0022-0396(03)00063-9
    [8] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Ration. Mech. An., 58 (1975), 181-205. doi: 10.1007/BF00280740
    [9] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., 34 (1981), 481-524. doi: 10.1002/cpa.3160340405
    [10] P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1, Incompressible Models, Oxford Lecture, Ser. Math. Appl., New York: Oxford University Press, 1996.
    [11] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Math. Sci., Vol. 53, New York: Springer-Verlag, 1984.
    [12] Y. J. Peng and Y. G. Wang, Convergence of compressible Euler-Poisson equations to incompressible type Euler equations, Asymptotic Anal., 41 (2005), 141-160.
    [13] Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to compressible Euler-Poisson equations, Chinese Ann. Math. B, 28 (2007), 583-602. doi: 10.1007/s11401-005-0556-3
    [14] Y. J. Peng and S. Wang, Rigorous derivation of incompressible e-MHD equations from compressible Euler-Maxwell equations, SIAM J. Math. Anal., 40 (2008), 540-565. doi: 10.1137/070686056
    [15] Y. J. Peng and S. Wang, Convergence of compressible Euler-Maxwell equations to incompressible Euler equations, Commun. Part. Diff. Eq., 33 (2008), 349-376. doi: 10.1080/03605300701318989
    [16] Y. J. Peng, S. Wang and Q. Gu, Relaxation limit and global existence of smooth solutions of compressible Euler-Maxwell equations, SIAM J. Math. Anal., 43 (2011), 944-970. doi: 10.1137/100786927
    [17] H. Rishbeth and O. K. Garriott, Introduction to Ionospheric Physics, International geophysics series, Academic Press, 1969.
    [18] M. Slemrod and N. Sternberg, Quasi-neutral limit for the Euler-Poisson system, J. Nonlinear Sci., 11 (2001), 193-209. doi: 10.1007/s00332-001-0004-9
    [19] B. Texier , WKB asymptotics for the Euler-Maxwell equations, Asymptotic Anal., 42 (2005), 211-250.
    [20] B. Texier, Derivation of the Zakharov equations, Arch. Ration. Mech. An., 184 (2007), 121-183. doi: 10.1007/s00205-006-0034-4
    [21] J. Xu, Global classical solutions to the compressible Euler-Maxwell equations, SIAM J. Math. Anal., 43 (2011), 2688-2718. doi: 10.1137/100812768
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3284) PDF downloads(449) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog