Research article

Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications

  • Received: 13 July 2020 Accepted: 16 September 2020 Published: 18 September 2020
  • MSC : 26A33, 39A12, 49K05

  • There is a strong connection between convexity and inequalities. So, techniques from each concept applies to the other due to the strong correlation between them; specifically, in the past few years. In this attempt, we consider the Hermite-Hadamard inequality and related inequalities for the class of functions whose absolute value of the third derivative are quasi-convex functions. Finally, the applications of our findings for special functions and particular functions are pointed out.

    Citation: Pshtiwan Othman Mohammed, Miguel Vivas-Cortez, Thabet Abdeljawad, Yenny Rangel-Oliveros. Integral inequalities of Hermite-Hadamard type for quasi-convex functions with applications[J]. AIMS Mathematics, 2020, 5(6): 7316-7331. doi: 10.3934/math.2020468

    Related Papers:

  • There is a strong connection between convexity and inequalities. So, techniques from each concept applies to the other due to the strong correlation between them; specifically, in the past few years. In this attempt, we consider the Hermite-Hadamard inequality and related inequalities for the class of functions whose absolute value of the third derivative are quasi-convex functions. Finally, the applications of our findings for special functions and particular functions are pointed out.


    加载中


    [1] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, J. Optim. Theory Appl., 102 (1999), 439-450.
    [2] G. Cristescu, L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic Publishers, Dordrecht, 2002.
    [3] G. D. Anderson, M. K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl., 335 (2007), 1294-1308.
    [4] M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, et al. Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 1936461 (2020), 15 pages.
    [5] D. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, Annal. Univ. Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87.
    [6] O. Mangasarian, Pseudo-Convex functions, SIAM. J. Control, 3 (1965), 281-290.
    [7] P. O. Mohammed, New integral inequalities for preinvex functions via generalized beta function, J. Interdiscip. Math., 22 (2019), 539-549.
    [8] B. Polyak, Existence theorems and convergence of minimizing sequences in extremum problems with restrictions, Soviet Math. Dokl., 7 (1966), 72-75.
    [9] D. Hyers, S. Ulam, Approximately convex functions, Proc. Amer. Math. Soc., 3 (1952), 821-828.
    [10] P. O. Mohammed, Some new Hermite-Hadamard type inequalities for MT-convex functions on differentiable coordinates, J. King Saud Univ. Sci., 30 (2018), 258-262.
    [11] F. Qi, P. O. Mohammed, J. C. Yao, et al. Generalized fractional integral inequalities of Hermite- Hadamard type for (α, m)-convex functions, J. Inequal. Appl., 2019 (2019), 135.
    [12] M. Bracamonte, J. Giménez, M. Vivas, Hermite-Hadamard-Féjer Type inequalities for strongly (s, m)-convex functions with modulus C, in the second sense, Appl. Math. Inf. Sci., 10 (2016), 2045-2053.
    [13] J. Viloria, M. Cortez, Hermite-Hadamard type inequalities for harmonically convex functions on n-coordinates, Appl. Math. Inf. Sci., 6 (2018), 1-6.
    [14] M. Vivas, J. Hernández, N. Merentes, New Hermite-Hadamard and Jensen type inequalities for h-convex functions on fractal sets, Rev. Colombiana Mat., 50 (2016), 145-164.
    [15] M. Vivas, Relative strongly h-convex functions and integral inequalities, Appl. Math. Inf. Sci., 4 (2016), 1055-1064.
    [16] J. Pecaric, F. Proschan, Y. Tong, Convex functions partial orderings and statistical applications, Academic Press, Boston, 1992.
    [17] J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure Appl., 58 (1893), 171-215.
    [18] D. Bainov, P. Simeonov, Integral Inequalities and Applications, Kluwer Academic, Dordrecht, 1992.
    [19] S. D. Borysenko, G. Iovane, About some new integral inequalities of Wendorff type for discontinuous functions, Nonlinear Anal., 66 (2007), 2190-2203.
    [20] P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148.
    [21] M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities, Appl. Math. Inf. Sci., 14 (2020), 809-816.
    [22] S. D. Borysenko, M. Ciarletta, G. Iovane, Integro-sum inequalities and motion stability of systems with impulse perturbations, Nonlinear Anal., 62 (2005), 417-428.
    [23] P. O. Mohammed, T. Abdeljawad, A. Kashuri, Fractional Hermite-Hadamard-Fejer inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function, Symmetry, 12 (2020), 1503.
    [24] T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for s-geometrically convex functions, Abst. Appl. Anal., 2012 (2012), 560586.
    [25] T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Matematiche, 68 (2013), 229-239.
    [26] D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of (α, m)-convex functions, Fract. Differ. Calc., 4 (2014), 31-43.
    [27] S. S. Dragomir, C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs; Victoria University: Footscray, Australia, 2000.
    [28] P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359.
    [29] D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 2020, doi: 10.1016/j.aej.2020.03.039.
    [30] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794-806.
    [31] P. O. Mohammed, T. Abdeljawad, S. Zeng, et al. Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485.
    [32] P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69.
    [33] P. O. Mohammed, I. Brevik, A New version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610, doi: 10.3390/sym12040610.
    [34] D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, et al. Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374.
    [35] T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357.
    [36] P. O. Mohammed, F. K. Hamasalh, New conformable fractional integral inequalities of Hermite-Hadamard type for convex functions, Symmetry, 2019 (11), 263.
    [37] P. O. Mohammed, M. Z. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740.
    [38] P. O. Mohammed, T. Abdeljawad, Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel, Adv. Differ. Equ., 2020 (2020), 363.
    [39] P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Meth. Appl. Sci., (2019), 1-11. doi: 10.1002/mma.5784.
    [40] P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595.
    [41] A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., (2020), 1-18, Available from: https://doi.org/10.1002/mma.6188.
    [42] M. Alomari, M. Darus, S. Dragomir, Inequalities of Hermite-Hadamard's type for functions whose derivatives absolute values are quasi-convex, RGMIA, 12 (2010), 353-359.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3803) PDF downloads(169) Cited by(15)

Article outline

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog