Citation: M. A. Habib, H. M. Shahadat Ali, M. Mamun Miah, M. Ali Akbar. The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs[J]. AIMS Mathematics, 2019, 4(3): 896-909. doi: 10.3934/math.2019.3.896
[1] | M. Wang, Y. Zhou, Z. Li, Application of homogeneous balance method to exact solutions of non-linear equations in mathematical physics, Phys. Lett. A, 216 (1996), 67-75. doi: 10.1016/0375-9601(96)00283-6 |
[2] | M. Younis, A. Zafar, The modified simple equation method for solving the non-linear Phi-four equation, Int. J. Innov. Appl. Stud., 2 (2013), 661-664. |
[3] | W. W. Li, Y. Tian, Z. Zhang, F-expansion method and its application for finding new exact solutions to the Sine-Gordon and Sinh-Gordon equations, Appl. Math. Comput., 219 (2012), 1135-1143. |
[4] | S. Zhang, T. Xia, An improved generalized F-expansion method and its application to the (2+1) dimensional KdV equations, Commun. Nonlinear Sci., 13 (2008), 1294-1301. doi: 10.1016/j.cnsns.2006.12.008 |
[5] | H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dynam., 86 (2016), 177-183. doi: 10.1007/s11071-016-2880-4 |
[6] | C. Cattani, T. A. Sulaiman, H. M. Baskonus, et al. Solitons in an inhomogeneous Murnaghan's rod, Eur. Phys. J. Plus, 133 (2018), 228. |
[7] | C. Cattani, T. A. Sulaiman, H. M. Baskonus, et al. On the soliton solutions to the Nizhnik-Novikov-Veselov and the Drinfel's-Sokolov systems, Opt. Quant. Electron., 50 (2018), 138. |
[8] | O. A. Ilhan, A. Esen, H. Bulut, et al. Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves, Results Phys., 12 (2019), 1712-1715. doi: 10.1016/j.rinp.2019.01.059 |
[9] | A. M. Wazwaz, Multiple soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192 (2007), 479-486. |
[10] | A. M. Wazwaz, The tanh method for traveling wave solutions of non-linear equations, Appl. Math. Comput., 154 (2004), 713-723. |
[11] | A. Bekir, New exact traveling wave solutions of some complex nonlinear equations, Commun. Nonlinear Sci., 14 (2009), 1069-1077. doi: 10.1016/j.cnsns.2008.05.007 |
[12] | M. Mirzazadeh, M. E. Slami, E. Zerrad, et al. Optical solitons in nonlinear directional couplers by sine-cosine function method and Bernoulli's equation approach, Nonlinear Dynam., 81 (2015), 1933-1949. doi: 10.1007/s11071-015-2117-y |
[13] | M. Kaplan, A. Bekir, M. N. Ozer, Solving non-linear evolution equation system using two different methods, Open Phys., 13 (2015), 383-388. |
[14] | M. M. Miah, H. M. S. Ali, M. A. Ali, et al. Some applications of the (G′/G, 1/G)-expansion method to find new exact solutions of NLEEs, Eur. Phys. J. Plus, 132 (2017), 252. |
[15] | M. M. Miah, H. M. S. Ali, M. A. Ali, An investigation of abundant traveling wave solutions of complex nonlinear evolution equations: The perturbed nonlinear Schrodinger equation and the cubic-quintic Ginzburg-Landau equation, Cog. Math., 3 (2016), 1277506. |
[16] | A. Neirameh, New analytical solutions for the coupled nonlinear Maccari's system, Alex. Eng. J., 55 (2016), 2839-2847. doi: 10.1016/j.aej.2016.07.007 |
[17] | A. J. M. Jawad, M. J. Abu-Alshaeer, A. Biswas, et al. Hamiltonian perturbation of optical solitons with parabolic law non-linearity using three integration methodologies, Optik, 160 (2018), 248-254. doi: 10.1016/j.ijleo.2018.01.104 |
[18] | X. Lu, S. T. Chen, W. X. Ma, Constructing lump solutions to a generalized Kadomtsev-Petviashvili-Boussinesq equation, Nonlinear Dynam., 86 (2016), 523-534. doi: 10.1007/s11071-016-2905-z |
[19] | X. Lu, W. X. Ma, Y. Zhou, et al. Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation, Comput. Math. Appl., 71 (2016), 1560-1567. doi: 10.1016/j.camwa.2016.02.017 |
[20] | X. Lu, W. X. Ma, S. T. Chen, et al. A note on rational solutions to a Hirota-Satsuma-like equation, Appl. Math. Lett., 58 (2016), 13-18. doi: 10.1016/j.aml.2015.12.019 |
[21] | J. H. He, M. A. Abdou, New periodic solutions for nonlinear evolution equations using Exp-function method, Chaos Soliton. Fract., 34 (2007), 1421-1429. doi: 10.1016/j.chaos.2006.05.072 |
[22] | Y. Y. Wang, Y. P. Zhang, C. Q. Dai, RE-study on localized structures based on variable separation solutions from the modified tanh-function method, Nonlinear Dynam., 83 (2016), 1331-1339. doi: 10.1007/s11071-015-2406-5 |
[23] | E. Fan, Extended Tanh-Function method and its applications to nonlinear equations, Phys. Lett. A, 277 (2000), 212-218. doi: 10.1016/S0375-9601(00)00725-8 |
[24] | J. Manafian, M. F. Aghdaei, M. Khalilian, et al. Application of the generalized (G′/G) expansion method for non-linear PDEs to obtaining soliton wave solution, Optik, 135 (2017), 395-406. doi: 10.1016/j.ijleo.2017.01.078 |
[25] | L. N. Gao, X. Y. Zhao, Y. Y. Zi, et al. Resonant behavior of multiple wave solutions to a Hirota bilinear equation, Comput. Math. Appl., 72 (2016), 1225-1229. doi: 10.1016/j.camwa.2016.06.008 |
[26] | L. N. Gao, Y. Y. Zi, Y. H. Yin, et al. Backlund transformation, multiple wave solutions and lump solutions to a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dynam., 89 (2017), 2233-2240. doi: 10.1007/s11071-017-3581-3 |
[27] | Y. H. Yin, W. X. Ma, J. G. Liu, et al. Diversity of exact solutions to a (3+1)-dimensional nonlinear evolution equation and its reduction, Comput. Math. Appl., 76 (2018), 1275-1283. doi: 10.1016/j.camwa.2018.06.020 |
[28] | M. Kaplan, K. Hosseini, Investigation of exact solutions for the Tzitzéica type equations in nonlinear optics, Optik, 154 (2018), 393-397. doi: 10.1016/j.ijleo.2017.08.116 |
[29] | A. R. Adem, B. Muatjetjeja, Conservation laws and exact solutions for a 2D Zakharov-Kuznetsov equation, Appl. Math. Lett., 48 (2015), 109-117. doi: 10.1016/j.aml.2015.03.019 |
[30] | H. Naher, F. A. Abdullah, M. A. Akbar, Generalized and improved (G′/G)-expansion method for (3+1) dimensional modified KdV-Zakharov-Kuznetsev equation, PLOS One, 8 (2013), 64618. |
[31] | H. M. Baskonus, Complex Soliton Solutions to the Gilson-Pickering Model, Axioms, 8 (2019), 18. |
[32] | H. M. Baskonus, New complex and hyperbolic function solutions to the generalized double combined Sinh-Cosh-Gordon equation, AIP Conference Proceedings, 1798 (2017), 020018. |
[33] | H. Naher, F. A. Abdullah, New traveling wave solutions by the extended generalized Riccati equation mapping method of the (2+1)-dimensional evolution equation, J. Appl. Math., 2012 (2012), 486458. |
[34] | A. Yokus, Comparison of Caputo and conformable derivatives for time-fractional Korteweg-de Vries equation via the finite difference method, Int. J. Mod. Phys. B, 32 (2018), 1850365. |
[35] | A. Yokus, Numerical solution for space and time fractional order Burger type equation, Alex. Eng. J., 57 (2018), 2085-2091. doi: 10.1016/j.aej.2017.05.028 |
[36] | A. Yokus, H. Bulut, On the numerical investigations to the Cahn-Allen equation by using finite difference method, An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 9 (2018), 18-23. |
[37] | K. Hosseini, D. Kumar, M. Kaplan, et al. New exact traveling wave solutions of the unstable nonlinear Schrodinger equations, Commun. Theor. Phys., 68 (2017), 761-767. doi: 10.1088/0253-6102/68/6/761 |
[38] | S. M. Ege, E. Misirli, The modified Kudryashov method for solving some Fractional-order nonlinear equations, Adv. Differ. Equ-Ny, 2014 (2014), 135. |
[39] | K. Hosseini, P. Mayeli, D. Kumar, New exact solutions of the coupled Sine-Gordon equations in nonlinear optics using the modified Kudryashov method, J. Mod. Optic., 65 (2018), 361-364. doi: 10.1080/09500340.2017.1380857 |
[40] | K. Hosseini, P. Mayeli, R. Ansari, Modified Kudryashov method for solving the conformable Time-Fractional Klein-Gordon equations with Quadratic and cubic nonlinearities, Optik, 130 (2017), 737-742. doi: 10.1016/j.ijleo.2016.10.136 |
[41] | A. Korkmaz, K. Hosseini, Exact solutions of a nonlinear conformable Time-Fractional parabolic equation with Exponential nonlinearity using reliable methods, Opt. Quant. Electron., 49 (2017), 278. |
[42] | K. Hosseini, E. Y. Bejarbaneh, A. Bekir, et al. New exact solutions of some nonlinear evolution equations of pseudo parabolic type, Opt. Quant. Electron., 49 (2017), 241. |
[43] | F. Mahmud, M. Samsuzzoha, M. A. Akbar, The generalized kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation, Results Phys., 7 (2017), 4296-4302. doi: 10.1016/j.rinp.2017.10.049 |
[44] | S. Bibi, N. Ahmed, U. Khan, et al. Some new exact solitary wave solutions of the van der Walls model arising in nature, Results Phys., 9 (2018), 648-655. doi: 10.1016/j.rinp.2018.03.026 |
[45] | M. Kaplan, A. Bekir, A. Akbulut, A generalized kudryashov method to some nonlinear evolution equations in mathematical physics, Nonlinear Dynam., 85 (2016), 2843-2850. doi: 10.1007/s11071-016-2867-1 |
[46] | S. T. Demiray, Y. Pandir, H. Bulut, Generalized Kudryashov method for Time-fractional differential equations, Abstr. Appl. Anal., 2014 (2014), 901540. |
[47] | K. A. Gepreel, T. A. Nofal, A. A. Alasmari, Exact solutions for nonlinear integro-partial differential equations using the generalized Kudryashov method, Journal of the Egyptian Mathematical Society, 25 (2017), 438-444. doi: 10.1016/j.joems.2017.09.001 |
[48] | M. Koparan, M. Kaplan, A. Bekir, et al. A novel generalized Kudryashov method for exact solutions of nonlinear evolution equations, AIP Conference Proceedings, 1798 (2017), 020082. |
[49] | H. Kheiri, M. R. Moghaddam, V. Vafaei, Application of the (G'/G)-expansion method for the Burgers, Burgers-Huxley and modified Burgers-KdV equations, Pramana, 76 (2011), 831-842. doi: 10.1007/s12043-011-0070-y |
[50] | M. L. Wang, X. Li, J. Wang, The (G'/G)-expansion method and traveling wave solutions of nonlinear evolutions in mathematical physics, Phys. Lett. A, 372 (2008), 417-423. doi: 10.1016/j.physleta.2007.07.051 |
[51] | A. K. M. Kazi Sazzad Hossain, M. A. Akbar, Closed-form solutions of two nonlinear equations via the enhanced (G'/G)-expansion method, Cog. Math., 4 (2017), 1355958. |
[52] | A. M. Wazwaz, Analytic study on Burgers, Fisher, Huxley equations and combined forms of these equations, Appl. Math. Comput., 195 (2008), 754-761. |