Processing math: 100%
Research article Special Issues

Periodic traveling wave, bright and dark soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods

  • In this paper, the (2+1)-dimensional complex modified Korteweg-de Vries (cmKdV) equations are studied using the sine-cosine method, the tanh-coth method, and the Kudryashov method. As a result, analytical solutions in the form of dark solitons, bright solitons, and periodic wave solutions are obtained. Finally, the dynamic behavior of the solutions is illustrated by choosing the appropriate parameters using 2D and 3D plots. The obtained results show that the proposed methods are straightforward and powerful and can provide more forms of traveling wave solutions, which are expected to be useful for the study of the theory of traveling waves in physics.

    Citation: Gaukhar Shaikhova, Bayan Kutum, Ratbay Myrzakulov. Periodic traveling wave, bright and dark soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries system of equations by using three different methods[J]. AIMS Mathematics, 2022, 7(10): 18948-18970. doi: 10.3934/math.20221043

    Related Papers:

    [1] Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud . $ M- $truncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. AIMS Mathematics, 2021, 6(9): 9207-9221. doi: 10.3934/math.2021535
    [2] Ghazala Akram, Maasoomah Sadaf, Mirfa Dawood, Muhammad Abbas, Dumitru Baleanu . Solitary wave solutions to Gardner equation using improved tan$ \left(\frac{\Omega(\Upsilon)}{2}\right) $-expansion method. AIMS Mathematics, 2023, 8(2): 4390-4406. doi: 10.3934/math.2023219
    [3] Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086
    [4] Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian . The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons. AIMS Mathematics, 2021, 6(9): 9568-9581. doi: 10.3934/math.2021556
    [5] Naher Mohammed A. Alsafri, Hamad Zogan . Probing the diversity of kink solitons in nonlinear generalised Zakharov-Kuznetsov-Benjamin-Bona-Mahony dynamical model. AIMS Mathematics, 2024, 9(12): 34886-34905. doi: 10.3934/math.20241661
    [6] Ghazala Akram, Saima Arshed, Maasoomah Sadaf, Hajra Mariyam, Muhammad Nauman Aslam, Riaz Ahmad, Ilyas Khan, Jawaher Alzahrani . Abundant solitary wave solutions of Gardner's equation using three effective integration techniques. AIMS Mathematics, 2023, 8(4): 8171-8184. doi: 10.3934/math.2023413
    [7] Aly R. Seadawy, Bayan Alsaedi . Contraction of variational principle and optical soliton solutions for two models of nonlinear Schrödinger equation with polynomial law nonlinearity. AIMS Mathematics, 2024, 9(3): 6336-6367. doi: 10.3934/math.2024309
    [8] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278
    [9] Yazid Alhojilan, Islam Samir . Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776
    [10] Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib . Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211
  • In this paper, the (2+1)-dimensional complex modified Korteweg-de Vries (cmKdV) equations are studied using the sine-cosine method, the tanh-coth method, and the Kudryashov method. As a result, analytical solutions in the form of dark solitons, bright solitons, and periodic wave solutions are obtained. Finally, the dynamic behavior of the solutions is illustrated by choosing the appropriate parameters using 2D and 3D plots. The obtained results show that the proposed methods are straightforward and powerful and can provide more forms of traveling wave solutions, which are expected to be useful for the study of the theory of traveling waves in physics.



    Nonlinear partial differential equations (NPDEs) are generally applied to model nonlinear processes in many domains of physics, mathematical biology, and chemistry [1,2,3,4,5]. For example, the (1+1)-dimensional Korteweg–de Vries (KdV) equation [6,7] and the (1+1)-dimensional modified Korteweg–de Vries (mKdV) equation [8,9,10] define the evolution of small amplitude dispersive waves that occur in the shallow water. The (1+1)-dimensional complex modified Korteweg-de Vries (cmKdV) equation is completely integrable and has been suggested as a model for the nonlinear evolution of plasma waves [11,12,13,14,15,16]. The nonlinear Schrodinger (NLS) equation is a universal model, that describes the evolution of quasi-monochromatic and weakly nonlinear wave trains in media with cubic nonlinearities. In optics, the NLS equation is the main model that characterises the propagation of optical waves in Kerr media [17].

    Due to the interest in these problems, various analytical solution methods as the Exp-function method [18,19], the Darboux transformation [20,21], the Hirota method [22,23,24,25], the variational approach [26,27,28], the sine-cosine method [29,30,31], the tanh method [32,33,34], and so on were developed.

    The great interest in physics and mathematics is the study of the nonlinear excitations of the spin models [35,36,37,38,39]. In this motivation, Myrzakulov et.al had been presented various integrable spin systems in (2 + 1) dimensions by proposing the interaction of the spin field with vector potential or scalar potential in Ref. [39]. Researchers obtained Lax pairs and various interesting reductions in (1+1) and (2+1) dimensions.

    In the current work, we mainly study the (2+1)-dimensional cmKdV system of equations that is given by [39]

    qt+qxxy+iqv+(qw)x=0,vx+2iδ(qqxyqxyq)=0,wx2δ(|q|2)y=0, (1.1)

    where q(x,y,t) is a complex function, q(x,y,t) is a complex conjugate function, v(x,y,t), w(x,y,t) are real functions, δ=±1, and subscripts denote the partial derivatives with respect to the variables x,y,t. This model is a generalization of the cmKdV equation in the (2+1)-dimension and has great importance for applied ferromagnetism and nanomagnetism [39]. In several articles Eqs (1.1) are studied by Darboux transformation (DT). The one-soliton and two-soliton solutions are obtained from DT starting from the zero seed in Ref. [40]. The deformed solitons are obtained by n-fold DT in [41]. Periodic line wave solutions and breather solutions are obtained by starting with a plane wave seed in [42]. The order-n breather solutions are derived in Ref. [43]. Nonlocal (2+1)-dimensional cmKdV equations are presented in [44]. However, traveling wave solutions for Eqs (1.1) have not been found in other studies, which will be our main focus of this paper.

    We investigate the (2+1)-dimensional cmKdV equations (1.1) using the sine-cosine method, the tanh-coth method and the Kudryashov method. These methods have been widely applied to nonlinear dispersive and dissipative equations to obtain different types of solutions. For example, the sine-cosine method was used for the Camassa–Holm–KP equation [45], the fifth-order KdV equation [46], the two-dimensional nonlinear Schrodinger equation [47], the coupled Maccari's system [48], and other. The authors found solutions in the form solitary waves, periodic solutions. As for the tanh-coth method, it leads to a broader class traveling wave solutions such as bright and dark solitons, kink and anti-kink type solitons, traveling wave, periodic solitary wave, trigonometric functions solutions. The researchers were applied the tanh-coth method to the fifth-order KdV equation [49], the coupled Konno-Oono equation [50], the system of ion sound and Langmuir waves [51], the generalized nonlinear Schrodinger equations [52] and so on. The Kudryashov method was applied for the generalized Kuramoto–Sivashinsky equation, the Burgers-Korteweg-de Vries equation, the Bretherton equation, the Kawahara equation, and others in Refs. [53,54,55,56].

    The paper is organized as follows. Lax pair for the (2+1)-dimensional cmKdV equations are given in Sect. 2. Then the three methods are used to construct the exact solutions in Sect. 3–Sect. 5. The physical interpretation is presented in Sect. 6. Finally, we present concluding remarks in Sect. 7.

    The corresponding Lax pair for Eqs (1.1) is

    Ψx=UΨ,Ψt=4λ2Ψy+VΨ, (2.1)

    where

    U=λJ+U0,V=λV1+V0, (2.2)

    with

    J=(i00i),U0=(0qr0),V1=(iw2iqy2iryiw),V0=(iv2qxywqrxy+wriv2),Ψ=(ψ1(λ,x,y,t)ψ2(λ,x,y,t)).

    The compatibility condition

    UtVx+UVVU4λ2Uy=0 (2.3)

    infers the following (2+1)-dimensional coupled cmKdV equations:

    qt+qxxy+ivq+(wq)x=0,rt+rxxyivr+(wr)x=0,vx+2i(rqxyrxyq)=0,wx2(qr)y=0, (2.4)

    where q,r are complex functions, v,w are real functions. By setting r=δq Eqs (2.4) reduce to the (2+1)-dimensional cmKdV equations (1.1).

    We use the sine-cosine method to obtain sine and cosine solutions for the (2+1)-dimensional cmKdV system of equations (1.1). The description of the method used in the following subsection is given in [4].

    According to method the partial differential equation (PDE)

    F(Qt,Qxx,Qxxx,...)=0, (3.1)

    can be transformed to ordinary differential equation (ODE)

    G(cQ,Q,Q,...)=0, (3.2)

    by applying a wave variable

    Q(x,y,t)=Q(ξ),  where  ξ=x+y+ct.

    As long as all terms contain derivatives Eq (3.2) is integrated. The solutions of ODE (3.2) can be presented in the form

    Q(x,y,t)=αcosβ(μξ), (3.3)

    or

    Q(x,y,t)=αsinβ(μξ), (3.4)

    where ξ=x+y+ct and the parameters β,μ and α will be defined, c, μ are constants. The derivatives of Eq (3.3) are

    (Qn)=nβμαncosnβ1(μξ)sin(μξ), (3.5)
    (Qn)=n2μ2β2αncosnβ(μξ)+nμ2αnβ(nβ1)cosnβ2(μξ), (3.6)

    and the derivatives of Eq (3.4) become

    (Qn)=nβμαnsinnβ1(μξ)cos(μξ), (3.7)
    (Qn)=n2μ2β2αnsinnβ(μξ)+nμ2αnβ(nβ1)sinnβ2(μξ), (3.8)

    and so on for the other derivatives.

    Applying (3.3)–(3.8) into the reduced ODE (3.2) yields a trigonometric equation of cosK(μξ) or sinK(μξ) terms. Thereafter, we define the parameters by first balancing exponents of each pair of sine or cosine to determine K. Further, all coefficients of the identical power in cosk(μξ) or sink(μξ) are collected, where these coefficients have to vanish. Then, a system of algebraic equations with the unknown α,μ,β will be obtained and from that coefficients can be determined.

    For applying the sine-cosine method, we have to reduce Eqs. (1.1) to ODE. By taking transformation

    q(x,y,t)=ei(ax+by+dt)Q(x,y,t), (3.9)

    where a,b,d are real constants and Q(x,y,t) is the real valued function, Eqs (1.1) are reduced to the following system

    Qt2abQxa2Qy+Qxxy+Qxw+Qwx+ (3.10)
    +i((da2b)Q+2aQxy+bQxx+aQw+Qv)=0,vx4δ(bQQx+aQQy)=0, (3.11)
    wx2δ(Q2)y=0. (3.12)

    Substituting the wave transformation

    Q(x,y,t)=Q(ξ)=Q(x+y+ct), (3.13)
    v(x,y,t)=v(ξ)=v(x+y+ct), (3.14)
    w(x,y,t)=w(ξ)=w(x+y+ct), (3.15)

    into system of Eqs (3.10)–(3.12), we obtain that

    (c2aba2)Q+Q+Qw+Qw+ (3.16)
    +i((da2b)Q+(2a+b)Q+aQw+Qv)=0,v4δ(b+a)QQ=0, (3.17)
    w2δ(Q2)=0. (3.18)

    Integrating Eqs (3.17)–(3.18) once, with respect to ξ and taking constants of integration is zero, we obtain

    v=2δ(b+a)Q2,w=2δQ2. (3.19)

    Substituting Eq (3.19) into Eq (3.16), we derive the following ODE

    (c2aba2)Q+Q+2δ(Q3)+i((da2b)Q+(2a+b)Q+2δ(2a+b)Q3)=0, (3.20)

    where prime denotes the derivation with respect to ξ. By separating real and imaginary parts in Eq (3.20), we get the ordinary differential equations:

    (c2aba2)Q+Q+2δ(Q3)=0, (3.21)
    (da2b)(2a+b)Q+Q+2δQ3=0. (3.22)

    Integrating Eq (3.21) once, with respect to ξ, gives

    (c2aba2)Q+Q+2δQ3=L, (3.23)

    where L is a constant of integration. As the same function Q(ξ) satisfies both Eqs (3.22) and (3.23), we have the next constraint condition:

    c2aba2=da2b(2a+b),L=0. (3.24)

    By using condition (3.24), we have

    c=2ab+a2+da2b2a+b. (3.25)

    We rewrite Eq (3.22) as

    Q+(da2b)(2a+b)Q+2δQ3=0. (3.26)

    In the next subsection, we solve Eq (3.26) by the sine-cosine method.

    According to method the solution of Eq (3.26) can be found by transformation

    Q(x,y,t)=αsinβ(μξ). (3.27)

    To find the sine solution we use Eq (3.27) and its second order derivative

    Q=μ2β2αsinβ(μξ)+μ2αβ(β1)sinβ2(μξ). (3.28)

    Substitute (3.27) and (3.28) into (3.26) we get

    μ2β2αsinβ(μξ)+μ2αβ(β1)sinβ2(μξ)++(da2b)(2a+b)αsinβ(μξ)+2δα3sin3β(μξ)=0. (3.29)

    Applying the balance method, by equating the exponents of sin(μξ), from (3.29) we determine β:

    β10,3β=β2β=1. (3.30)

    Substituting Eq (3.30) into Eq (3.29) to get

    sin3(μξ)[2μ2α+2δα3]+sin1(μξ)[(da2b)(2a+b)αμ2α]=0. (3.31)

    We equate exponents and coefficients of each pair of the sin(μξ) functions and obtain a system of algebraic equations

    sin3(μξ):2μ2α+2δα3=0, (3.32)
    sin1(μξ):(da2b)(2a+b)αμ2α=0. (3.33)

    By solving the system (3.32)–(3.33), we obtain:

    α=±1δ(da2b)(2a+b),μ=±(da2b)(2a+b). (3.34)

    By substituting Eq (3.34) into Eq (3.27) and then obtained result in Eq (3.19) and Eq (3.9) we derive the exact solutions for the (2+1)-dimensional cmKdV equations (1.1)

    q11(x,y,t)=±ei(ax+by+dt)1δ(da2b)(2a+b)× (3.35)
    ×csc((da2b)(2a+b)(x+y+ct)),(da2b)(2a+b)>0,v11(x,y,t)=±2δ(b+a)(1δ(da2b)(2a+b)× (3.36)
    ×csc((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)>0,w11(x,y,t)=±2δ(1δ(da2b)(2a+b)× (3.37)
    ×csc((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)>0,q12(x,y,t)=±ei(ax+by+dt)1δ(da2b)(2a+b)× (3.38)
    ×csch((da2b)(2a+b)(x+y+ct)),(da2b)(2a+b)<0,v12(x,y,t)=±2δ(b+a)(1δ(da2b)(2a+b)× (3.39)
    ×csch((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)<0,w12(x,y,t)=±2δ(1δ(da2b)(2a+b)××csch((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)<0, (3.40)

    where c=2ab+a2+da2b2a+b.

    The cosine solution of (3.26) can be found by transformation

    Q(x,y,t)=αcosβ(μξ). (3.41)

    To find the cosine solution we use Eq (3.41) and its second order derivative

    Q=μ2β2αcosβ(μξ)+μ2αβ(β1)cosβ2(μξ). (3.42)

    Substitute (3.41) and (3.42) into (3.26) we get

    μ2β2αcosβ(μξ)+μ2αβ(β1)cosβ2(μξ)++(da2b)(2a+b)αcosβ(μξ)+2δα3cos3β(μξ)=0. (3.43)

    Applying the balance method, by equating the exponents of cos(μξ), from Eq (3.43) we determine β:

    β10,3β=β2β=1. (3.44)

    Substituting Eq (3.44) into Eq (3.43) to get

    cos3(μξ)[2μ2α+2δα3]+cos1(μξ)[(da2b)(2a+b)αμ2α]=0. (3.45)

    We equate exponents and coefficients of each pair of the cos(μξ) functions and obtain a system of algebraic equations

    cos3(μξ):2μ2α+2δα3=0, (3.46)
    cos1(μξ):(da2b)(2a+b)αμ2α=0. (3.47)

    Next, by solving the system (3.46)–(3.47), we get:

    α=±1δ(da2b)(2a+b),μ=±(da2b)(2a+b). (3.48)

    By substituting Eq (3.48) into Eq (3.41) and then obtained expression in Eq (3.19) and Eq (3.9) we derive the exact solutions for the (2+1)-dimensional cmKdV equations (1.1)

    q21(x,y,t)=±ei(ax+by+dt)1δ(da2b)(2a+b)××sec((da2b)(2a+b)(x+y+ct)),(da2b)(2a+b)>0, (3.49)
    v21(x,y,t)=±2δ(b+a)(1δ(da2b)(2a+b)××sec((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)>0, (3.50)
    w21(x,y,t)=±2δ(1δ(da2b)(2a+b)××sec((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)>0, (3.51)
    q22(x,y,t)=±ei(ax+by+dt)1δ(da2b)(2a+b)××sech((da2b)(2a+b)(x+y+ct)),(da2b)(2a+b)<0, (3.52)
    v22(x,y,t)=±2δ(b+a)(1δ(da2b)(2a+b)××sech((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)<0, (3.53)
    w22(x,y,t)=±2δ(1δ(da2b)(2a+b)××sech((da2b)(2a+b)(x+y+ct)))2,(da2b)(2a+b)<0, (3.54)

    where c=2ab+a2+da2b2a+b.

    The solutions (3.35)–(3.41) and (3.51)–(3.57) are depicted in Figures 15.

    Figure 1.  Propagation of the solution q21 with the parameters a=1,b=1,d=2,δ=1.
    Figure 2.  Propagation of the solution v21 with the parameters a=1,b=1,d=2,δ=1.
    Figure 3.  Propagation of the solution q12 with the parameters a=1,b=1,d=2,δ=1.
    Figure 4.  Propagation of the solution v12 with the parameters a=1,b=1,d=2,δ=1.
    Figure 5.  Propagation of the solutions q22 (blue line); v22 (green line); w22 (red line) with the parameters a=1,b=1,d=2,δ=1,y=0.

    We apply the tanh-coth method to derive traveling wave solutions for the (2+1)-dimensional cmKdV system of equations. The first, the tanh method was presented by Malfliet [26,27,28] and then was expanded by Wazwaz [4,29] In the next subsection, the description of the method is given by [4].

    Partial differential equation (PDE)

    F(Qt,Qxx,Qxxx,...)=0, (4.1)

    can be transformed to an ordinary differential equation (ODE)

    G(cQ,Q,Q,...)=0, (4.2)

    by applying a wave variable

    Q(x,y,t)=Q(ξ),  where  ξ=x+y+ct,

    where c is a constant. As long as all terms contain derivatives Eq (4.2) is integrated. Applying a new independent variable

    Y=tanh(μξ),ξ=x+y+ct, (4.3)

    where μ is the wave number, we have the next change of derivatives:

    ddξ=μ(1Y2)ddY,d2dξ2=2μ2Y(1Y2)ddY+μ2(1Y2)d2dY2.

    The tanh-coth method allows the application of the finite expansion in the next form:

    Q(ξ)=Mn=0anYn+Mn=1bnYn, (4.4)

    where a0,a1,a2,...,aN, b1,b2,...,bN are unknown coefficients. Parameter M is defined by balancing nonlinear terms and the highest order derivative term in Eq (4.2). By substituting the value of Q(ξ) from (4.4) in Eq (4.2), and comparing the coefficient of Yn we can derive the coefficients a0,a1,a2,...,aN, b1,b2,...,bN.

    Let's study ODE (3.26)

    Q+(da2b)(2a+b)Q+2δQ3=0, (4.5)

    where prime denotes the derivation with respect to ξ. To find the value of M we balance the highest order derivative Q, which has the exponent M+2, with the nonlinear term Q3, which has the exponent 3M in Eq (4.5). It gives 3M=M+2 that yields M=1. Then, the tanh-coth method let to apply the substitution

    Q(ξ)=a0+a1Y+b1Y. (4.6)

    We substitute Eq (4.6) into Eq (4.5) and collect the coefficients of Yn, then we have a system of algebraic equations for μ,a0,a1,b1. By solving the obtained system with the aid of Maple, we get the next results:

    Result 1:

    a0=0,b1=0,a1=±da2b2δ(2a+b),μ=±22da2b2a+b. (4.7)

    Result 2:

    a0=0,a1=0,b1=±da2b2δ(2a+b),μ=±22da2b2a+b. (4.8)

    Result 3:

    a0=0,a1=12da2bδ(2a+b),b1=±12da2bδ(2a+b), (4.9)
    μ=±12da2b2a+b. (4.10)

    Result 4:

    a0=0,a1=±da2b8δ(2a+b),b1=±da2b8δ(2a+b), (4.11)
    μ=±24da2b2a+b. (4.12)

    By substituting Eq (4.6) into Eq (3.19) and Eq (3.9) we have solutions as

    q(x,y,t)=ei(ax+by+dt)(a0+a1tanh(μξ)+b1coth(μξ)), (4.13)
    v(x,y,t)=2δ(b+a)(a0+a1tanh(μξ)+b1coth(μξ))2, (4.14)
    w(x,y,t)=2δ(a0+a1tanh(μξ)+b1coth(μξ))2, (4.15)

    where ξ=x+y+ct with c=2ab+a2+da2b2a+b.

    Finally, applying the coefficients (4.7)–(4.12) into Eqs (4.13)–(4.15), we derive exact solutions for the (2+1)-dimensional cmKdV equations (1.1) in the next forms

    Result 1:

    q31(x,y,t)=±ei(ax+by+dt)(da2b2δ(2a+b)tanh(22da2b2a+bξ)), (4.16)
    v31(x,y,t)=±2δ(b+a)(da2b2δ(2a+b)tanh(22da2b2a+bξ))2, (4.17)
    w31(x,y,t)=±2δ(da2b2δ(2a+b)tanh(22da2b2a+bξ))2, (4.18)

    Result 2:

    q32(x,y,t)=±ei(ax+by+dt)(da2b2δ(2a+b)coth(22da2b2a+bξ)), (4.19)
    v32(x,y,t)=±2δ(b+a)(da2b2δ(2a+b)coth(22da2b2a+bξ))2, (4.20)
    w32(x,y,t)=±2δ(da2b2δ(2a+b)coth(22da2b2a+bξ))2, (4.21)

    Result 3:

    q33(x,y,t)=ei(ax+by+dt)(12da2bδ(2a+b)tanh(±12da2b2a+bξ)± (4.22)
    ±12da2bδ(2a+b)coth(±12da2b2a+bξ)),v33(x,y,t)=2δ(b+a)(12da2bδ(2a+b)tanh(±12da2b2a+bξ)± (4.23)
    ±12da2bδ(2a+b)coth(±12da2b2a+bξ))2,w33(x,y,t)=2δ(12da2bδ(2a+b)tanh(±12da2b2a+bξ)± (4.24)
    ±12da2bδ(2a+b)coth(±12da2b2a+bξ))2,

    Result 4:

    q34(x,y,t)=±ei(ax+by+dt)(da2b8δ(2a+b)tanh(24da2b2a+bξ)+ (4.25)
    +da2b8δ(2a+b)coth(24da2b2a+bξ)),v34(x,y,t)=±2δ(b+a)(da2b8δ(2a+b)tanh(24da2b2a+bξ)+ (4.26)
    +da2b8δ(2a+b)coth(24da2b2a+bξ))2,w34(x,y,t)=±2δ(da2b8δ(2a+b)tanh(24da2b2a+bξ)+ (4.27)
    +da2b8δ(2a+b)coth(24da2b2a+bξ))2,

    where ξ=x+y+ct, with c=2ab+a2+da2b2a+b.

    The solutions (4.16)–(4.27) are presented in Figures 614.

    Figure 6.  The time evolutions of the solutions q31 (red dashed line); v31 (black dotted line); w31 (green line). The parameters are: a=1;b=1;d=2;δ=1.
    Figure 7.  Dynamics of the solution q32 with the parameters a=1,b=1,d=2,δ=1.
    Figure 8.  Dynamics of the solution v32 with the parameters a=1,b=1,d=2,δ=1.
    Figure 9.  Dynamics of the solution q33 with the parameters a=1,b=1,d=2,δ=1.
    Figure 10.  Dynamics of the solution v33 with the parameters a=1,b=1,d=2,δ=1.
    Figure 11.  Dynamics of the solution q31 with the parameters a=1,b=1,d=2,δ=1.
    Figure 12.  Dynamics of the solution v31 with the parameters a=1,b=1,d=2,δ=1.
    Figure 13.  Dynamics of the solution q33 with the parameters a=1,b=1,d=2,δ=1.
    Figure 14.  Dynamics of the solution v33 with the parameters a=1,b=1,d=2,δ=1.

    Partial differential equation (PDE)

    F(Qt,Qxx,Qxxx,...)=0, (5.1)

    can be transformed to an ordinary differential equation (ODE)

    G(cQ,Q,Q,...)=0, (5.2)

    by applying a wave variable

    Q(x,y,t)=Q(ξ),  where  ξ=x+y+ct,

    where c is a constant. As long as all terms contain derivatives Eq (5.2) is integrated. To find dominant terms we substitute

    Q=ξp, (5.3)

    into all terms of equation (5.2). Then we ought to compare degrees of all terms of equations and choose two or more with the highest degree. The maximum value of p is called the pole of the equation (5.2) and we denote it as N. The method can be applied when N is integer. The exact solution of equation (5.2) is looked in the form

    Q=a0+a1R(ξ)+a2R(ξ)2+...+aNR(ξ)N, (5.4)

    where R(ξ) is the following function

    R(ξ)=11+eξ. (5.5)

    We can calculate number of derivatives by

    Qξ=Nn=0annRn(R1), (5.6)
    Qξξ=Nn=0annRn(R1)[(n+1)Rn], (5.7)
    Qξξξ=Nn=0annRn(R1)[(n2+3n+2)R2(2n2+3n+1)R+n2]. (5.8)

    Let's study ODE (3.26)

    Q+(da2b)(2a+b)Q+2δQ3=0,

    where prime denotes the derivation with respect to ξ. From Eq (3.26) we find N=1 then we look for the solution of Eq (3.26) in the form

    Q=a0+a1R(ξ). (5.9)

    The second derivative of Eq (5.9) is

    Qξξ=a1Q3a1Q2+2a1Q3. (5.10)

    Substituting (5.9)–(5.10) into (3.26) we obtain the system of algebraic equations. By solving it we find coefficients as

      a0=±14δ,  a1=214δ,  d=a2b+a+12b. (5.11)

    Substituting (5.11) in (5.9) and then obtained expressions in Eq (3.19) and Eq (3.9) we have solutions for Eqs (1.1) by the following form

    q41(x,y,t)=ei(ax+by+dt)(±14δ214δ11+eξ), (5.12)
    v41(x,y,t)=2δ(b+a)(±14δ214δ11+eξ)2, (5.13)
    w41(x,y,t)=2δ(±14δ214δ11+eξ)2, (5.14)

    where ξ=x+y+ct, with c=2ab+a2+da2b2a+b.

    In this section, we will give the physical explanation of the obtained exact solutions in Sect. 3–Sect. 4. In general, Eqs (1.1) have the parameter δ=±1, in our research we take case when δ=1. In order to analyze solutions (3.35)–(3.40) and (3.49)–(3.54), we consider two cases that can yield various solutions.

    In case (da2b)(2a+b)>0, δ=1 by taking the values as a=1,b=1,d=2,δ=1 in Eqs (3.34) and (3.50) we obtain that c=103,α=13,μ=13,(da2b)(2a+b)=13. With the above parameters in Figures 12 we present 3D plots of solutions q21,v21 (3.49)–(3.50) on the xy plane at t=2,t=0,t=2. We notice that solutions are obtained with the sine-cosine method gives the periodic solutions. To consider the case (da2b)(2a+b)<0,δ=1 we take the parameters as a=1,b=1,d=2,δ=1 in Eqs (3.34) and (3.50) and then obtain c=2,α=i,μ=i,(da2b)(2a+b)=1.The graphical representations of the solutions with complex α and μ are given in Figures 34. As we see, the solutions q12,v12 (3.38)-(3.39) can be soliton solutions. It can be seen that the bright one-soliton q12 and dark one-soliton v12 keep their directions, widths, and amplitudes invariant during the propagation on the xy plane. Figure 5 displays propagation of the bright soliton solutions q22,v22,w22 in 2D plot at y=0,t=2,t=0,t=2. It is well known that bright soliton is a pulse on a zero-intensity background. However, the dark soliton is featured as a localized intensity dip below a continuous-wave background.

    Figure 6 displays the time evolutions of the solutions (4.16)–(4.18) with the values a=1,b=1,d=2,δ=1,c=103,a0=0,a1=16,b1=0,μ=16,(da2b)(2a+b)=13,y=0. As we notice from 2D plots the solution q31 is dark soliton, v31,w31 are bright solitons. The evolution of the bright soliton q32 and dark solitons v32 in 3D at t=3,t=0,t=3 are displayed in Figures 78. It can be seen that the bright solitons and the dark solitons keep their directions invariant during the propagation on the x–y plane. Moreover, periodic type solutions q33,v33 at t=3,t=0, and t=3 are presented in Figures 910. The shape of solutions q34,v34,w34 are almost same as q32,v32,w32. It gives the soliton solutions. In case (da2b)(2a+b)<0,δ=1 we take the parameters as a=1,b=1,d=2,δ=1 in Eqs (4.16)–(4.18), then the solutions q31,v31 give the periodic solutions that are displayed in Figures 1112. But for q33,v33 the bright and dark soliton solutions can be derived that is Figures 1314. In case q33,v33 the values are taken as a=1,b=1,d=2,δ=1,c=2,a0=0,a1=12,b1=12,μ=12,(da2b)(2a+b)=1 within the interval 5x,y5 for t=3,t=0,t=3. The periodic solutions are obtained also for q32,v32,w32,q34,v34,w34.

    Thus, the considered above cases show that the different choices of the parameters a,b,d,c yield a number of waveforms such as periodic solutions, bright soliton, and dark soliton. Moreover, the tanh-coth method yields more solutions compared to solutions by the sine-cosine method, the Kudryashov method.

    In the paper, the (2+1)-dimensional cmKdV system of equations is studied using the sine-cosine method, the tanh-coth method, and the Kudryashov method. As a result, various types of exact solutions such as bright solitons, dark solitons, and periodic wave solutions are obtained. In addition, we have shown the graphical structures of some derived results in Figures 114 and then interpreted the nature of the profiles shown. The main advantage of the sine-cosine, tanh-coth and Kudryashov methods is that, unlike existing methods such as Hirota's bilinear method or the inverse scattering method, tedious algebra and guesswork can be avoided. By varying the choice of parameters, different waveforms can be generated, such as the bell shape, the anti-bell shape, and other forms of the solutions. The results obtained are new, as solutions for traveling waves have not been found before. Moreover, this work extends the work on the (2+1)-dimensional cmKdV equations [39–44] by deriving a variety of exact solutions. It is expected that the methods used in this work will open new horizons for the study of NPDEs arising in physics. Moreover, it will also be interesting to study the integrability properties such as the infinite number of conservation laws and geometry properties for Eqs (1.1). Related work is underway and results will be reported separately.

    The research work was prepared with the financial support of the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan, IRN project AP09057947.

    The authors declare no conflict of interest.



    [1] M. J. Ablowitz, P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scatetering, Cambridge University Press, Cambridge, UK, 1991. https://doi.org/10.1017/CBO9780511623998
    [2] A. Wazwaz, Partial Differential Equations and Solitary Waves Theory, Springer, Berlin, 2009. https://doi.org/10.1007/978-3-642-00251-9
    [3] J. G. Liu, M. S.Osman, Nonlinear dynamics for different nonautonomous wave structures solutions of a 3D variable-coefficient generalized shallow water wave equation. Chinese J. Phys., 77 (2022), 1618–1624. https://doi.org/10.1016/j.cjph.2021.10.026 doi: 10.1016/j.cjph.2021.10.026
    [4] J. G. Liu, H. Zhao. Multiple rogue wave solutions for the generalized (2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation, Chinese J. Phys., 77 (2022), 985–991. https://doi.org/10.1016/j.cjph.2021.10.010 doi: 10.1016/j.cjph.2021.10.010
    [5] W. H. Zhu, F. Y. Liu, J. G. Liu, Nonlinear dynamics for different nonautonomous wave structures solutions of a (4+1)-dimensional variable-coefficient Kadomtsev–Petviashvili equation in fluid mechanics, Nonlinear Dynam., 108 (2022), 4171–4180. https://doi.org/10.1515/phys-2022-0050 doi: 10.1515/phys-2022-0050
    [6] D. J. Korteweg, G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philosophical Magazine Series 5, 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739
    [7] R. M. Miura, C. S. Gardner, M. S. Kruskal, Korteweg-de Vries equation and generalizations. Ⅱ, Existence of conservation laws and constants of motion, J. Math. Phys., 9 (1968), 1204–1209. https://doi.org/10.1063/1.1664701 doi: 10.1063/1.1664701
    [8] R. Hirota, Exact solution of the modified Korteweg-de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., 22 (1972), 1456–1458. https://doi.org/10.1143/JPSJ.33.1456 doi: 10.1143/JPSJ.33.1456
    [9] M. Wadati, The exact solution of the modified Korteweg–de Vries equation, J. Phys. Soc. Jpn., 32 (1972), 1681–1681. https://doi.org/10.1143/JPSJ.32.1681. doi: 10.1143/JPSJ.32.1681
    [10] R. Hirota, Exact solution of the modified Korteweg–de Vries equation for multiple collisions of solitons, J. Phys. Soc. Jpn., 33 (1972), 1456–1458. https://doi.org/10.1143/JPSJ.33.1456 doi: 10.1143/JPSJ.33.1456
    [11] W. Liu, Y. S. Zhang, J. S. He, Dynamics of the smooth positons of the complex modified KdV equation, Wave. Random Complex, 28 (2018), 203–214. https://doi.org/10.1080/17455030.2017.1335916 doi: 10.1080/17455030.2017.1335916
    [12] A. M. Wazwaz, The tanh and the sine-cosine methods for the complex modified KdV and the generalized KdV equations, Comput. Math. Appl., 49 (2005), 1101–1112. https://doi.org/10.1016/j.camwa.2004.08.013 doi: 10.1016/j.camwa.2004.08.013
    [13] J. He, L. Wang, L. Li, K. Porseizian, R. Erdely, Few-cycle optical rogue waves: Compex modified Korteweg-de Vries equation, Phys. Rev. E, 89 (2014), 062917. https://doi.org/10.1103/PhysRevE.89.062917 doi: 10.1103/PhysRevE.89.062917
    [14] S. C. Anco, T. Ngatat, M. Willoughby, Interaction properties of complex modified Kortewe-de Vries (mKdV) solitons, Physica D, 240 (2011), 1378–1394. https://doi.org/10.1016/j.physd.2011.06.003 doi: 10.1016/j.physd.2011.06.003
    [15] J. S. He, L. H. Wang, L. J. Li, K. Porsezian, R. Erdelyi, Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation, Phys. Rev. E, 89 (2014), 062917. https://doi.org/10.1103/PhysRevE.89.062917 doi: 10.1103/PhysRevE.89.062917
    [16] T. X. Xu, Z. J. Qiao, Y. Li, Darboux transformation and shock solitons for complex mKdV equation, Pacific J. Appl. Math., 3 (2011), 137.
    [17] Y. Kivshar, G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Boston: Academic, 2003.
    [18] K. J. Wang, Traveling wave solutions of the Gardner equation in dusty plasmas, Results Phys., 33 (2022), 105207. https://doi.org/10.1016/j.rinp.2022.105207 doi: 10.1016/j.rinp.2022.105207
    [19] K. J. Wang, Abundant exact soliton solutions to the Fokas system, Optik, 249 (2022), 168265. https://doi.org/10.1016/j.ijleo.2021.168265 doi: 10.1016/j.ijleo.2021.168265
    [20] V. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer-Verlag, Berlin, Germany, 1991. http://dx.doi.org/10.1007/978-3-662-00922-2
    [21] K. Yesmakhanova, G. Bekova, G. Shaikhova, R. Myrzakulov, Soliton solutions of the (2+1)-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch equations, J. Phys.: Conference Series, 738 (2016), 012018. https://doi.org/10.1088/1742-6596/738/1/012018 doi: 10.1088/1742-6596/738/1/012018
    [22] W. H. Zhu, J. G. Liu, Stripe solitons and lump solutions to a generalized (3+1)-dimensional B-type Kadomtsev-Petviashvili equation with variable coefficients in fluid dynamics, J. Math. Anal. Appl., 502 (2021), 125198. https://doi.org/10.1016/j.jmaa.2021.125198 doi: 10.1016/j.jmaa.2021.125198
    [23] J. G. Liu, W. H. Zhu, Multiple rogue wave, breather wave and interaction solutions of a generalized (3 + 1)-dimensional variable-coefficient nonlinear wave equation, Nonlinear Dynam., 103 (2021), 1841–1850. https://doi.org/10.1007/s11071-020-06186-1 doi: 10.1007/s11071-020-06186-1
    [24] J. G. Liu, W. H. Zhu, M. S. Osman, W. X. Ma, An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo–Miwa model, Eur. Phys. J. Plus, 135 (2020), 412. https://doi.org/10.1140/epjp/s13360-020-00405-9 doi: 10.1140/epjp/s13360-020-00405-9
    [25] Y. Tian, J. G. Liu, Study on dynamical behavior of multiple lump solutions and interaction between solitons and lump wave, Nonlinear Dynam., 104 (2021), 1507–1517. https://doi.org/10.1007/s11071-021-06322-5 doi: 10.1007/s11071-021-06322-5
    [26] J. G. Liu, W. H. Zhu, Y. He, Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients, Zeitschrift für angewandte Mathematik und Physik, 72 (2021), 154. https://doi.org/10.1007/s00033-021-01584-w doi: 10.1007/s00033-021-01584-w
    [27] K. J. Wang, J. Si, Investigation into the Explicit Solutions of the Integrable (2+1)-Dimensional Maccari System via the Variational Approach, Axioms, 11 (2022), 234. https://doi.org/10.3390/axioms11050234 doi: 10.3390/axioms11050234
    [28] K. J. Wang, G. D. Wang, Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation in optics, Phys. Lett. A, 412 (2021), 127588. https://doi.org/10.1016/j.physleta.2021.127588 doi: 10.1016/j.physleta.2021.127588
    [29] A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559–576. https://doi.org/10.1016/j.amc.2003.08.136 doi: 10.1016/j.amc.2003.08.136
    [30] E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using Sine-Cosine method. Int. J. Comput. Math., 83 (2006), 915–924. https://doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
    [31] S. Albosaily, W. W. Mohammed, M. A. Aiyashi, M. A. Abdelrahman, Exact solutions of the (2 + 1)-dimensional stochastic chiral nonlinear Schrödinger equation, Mathematics, 8 (2020), 1889(1–12). https://doi.org/10.3390/sym12111874 doi: 10.3390/sym12111874
    [32] W. Malfliet, Solitary wave solutions of nonlinear wave equations, Am. J. Phys., 60 (1992), 650–654. https://doi.org/10.1119/1.17120 doi: 10.1119/1.17120
    [33] W. Malfliet, W. Hereman, The Tanh method: Ⅱ Perturbation technique for conservative systems, Phys. Scripta, 54 (1996), 569–575. https://doi.org/10.1088/0031-8949/54/6/004 doi: 10.1088/0031-8949/54/6/004
    [34] W. Malfliet, The tanh method: A tool for solving certain classes of nonlinear evolution and wave equations, J. Comput. Appl. Math., 164–165 (2004), 529–541. https://doi.org/10.1016/S0377-0427(03)00645-9 doi: 10.1016/S0377-0427(03)00645-9
    [35] N. B. Ivanov, J. Ummethum, J. Schnack, Phase diagram of the alternating-spin Heisenberg chain with extra isotropic three-body exchange interactions, Eur. Phys. J. B, 87 (2014), 1–13. https://doi.org/10.1140/epjb/e2014-50423-7 doi: 10.1140/epjb/e2014-50423-7
    [36] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, K. R. Yesmakhanova, M. Lakshmanan, Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations, Phys. Lett. A, 378 (2014), 2118–2123. https://doi.org/10.1016/j.physleta.2014.05.010 doi: 10.1016/j.physleta.2014.05.010
    [37] K. Yesmakhanova, G. Nugmanova, G. Shaikhova, G. Bekova, R. Myrzakulov, Coupled dispersionless and generalized Heisenberg ferromagnet equations with self-consistent sources: Geometry and equivalence, Int. J. Geom. Methods M., 17 (2020), 2050104. https://doi.org/10.1142/S0219887820501042 doi: 10.1142/S0219887820501042
    [38] K. Porsezian, M. Daniel, M. Lakshmanan, On the integrability aspects of the one-dimensional classical continuum isotropic Heisenberg spin chain, J. Math. Phys., 33 (1992), 1807–1816. https://doi.org/10.1063/1.529658 doi: 10.1063/1.529658
    [39] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, M. Lakshmanan, Integrable (2+1)-dimensional spin models with self-consistent potentials, Symmetry, 7 (2015), 1352–1375. https://doi.org/10.3390/sym7031352 doi: 10.3390/sym7031352
    [40] K. Yesmakhanova, G. Shaikhova, G. Bekova, R. Myrzakulov, Darboux transformation and soliton solution for the (2+1)-dimensional complex modified Korteweg-de Vries equations, J. Phys. Conf. Ser., 936 (2017), 012045. https://doi.org/10.1088/1742-6596/936/1/012045 doi: 10.1088/1742-6596/936/1/012045
    [41] F. Yuan, X. Zhu, Y. Wang, Deformed solitons of a typical set of (2+1)–dimensional complex modified Korteweg–de Vries equations, Int. J. Appl. Math. Comput. Sci., 30 (2020), 337–350. https://doi.org/10.34768/amcs-2020-0026 doi: 10.34768/amcs-2020-0026
    [42] F. Yuan, Y. Jiang, Periodic solutions of the (2 + 1)-dimensional complex modifed Korteweg-de Vries equation, Modern Phys. Lett. B, 34 (2020), 2050202(1-10). https://doi.org/10.1142/S0217984920502024 doi: 10.1142/S0217984920502024
    [43] F. Yuan, The order-n breather and degenerate breather solutions of the (2+1)-dimensional cmKdV equations, Int. J. Modern Phys. B, 35 (2021), 2150053. https://doi.org/10.1142/S021797922150053 doi: 10.1142/S021797922150053
    [44] G. N. Shaikhova, N. Serikbayev, K. Yesmakhanova, R. Myrzakulov, Nonlocal complex modified Korteweg-de Vries equations: Reductions and exact solutions, Proceedings of the Twenty-First International Conference on Geometry, Integrability and Quantization, (2020), 265–271. https://doi.org/10.7546/giq-21-2020-265-271
    [45] A. M. Wazwaz, The Camassa–Holm–KP equations with compact and noncompact travelling wave solutions, Appl. Math. Comput., 170 (2005), 347–360. https://doi.org/10.1016/j.amc.2004.12.002 doi: 10.1016/j.amc.2004.12.002
    [46] A. M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Appl. Math. Lett., 19 (2006), 1162–1167. https://doi.org/10.1016/j.aml.2005.07.014 doi: 10.1016/j.aml.2005.07.014
    [47] G. N. Shaikhova, B. B. Kutum, Traveling wave solutions of two-dimensional nonlinear Schrodinger equation via sine-cosine method, Eurasian Phys. Technical J., 17 (2020), 169–174. http://rep.ksu.kz/xmlui/handle/data/10854
    [48] J. Javadvahidi, S. M. Zekavatmanda, H. Rezazadeh, M. Mehmet, A. Akinlar, Y. Ch. Chugh, New solitary wave solutions to the coupled Maccari's system, Res. Phys., 21 (2021), 103801. https://doi.org/10.1016/j.rinp.2020.103801 doi: 10.1016/j.rinp.2020.103801
    [49] A. M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., 184 (2007), 1002–1014. https://doi.org/10.1016/j.amc.2006.07.002 doi: 10.1016/j.amc.2006.07.002
    [50] K. J. Wang, Abundant analytical solutions to the new coupled Konno-Oono equation arising in magnetic field, Res. Phys., 31 (2021), 104931. https://doi.org/10.1016/j.rinp.2021.104931 doi: 10.1016/j.rinp.2021.104931
    [51] K. J. Wang, G. D. Wang, Exact traveling wave solutions for the system of the ion sound and Langmuir waves by using three effective methods, Res. Phys., 35 (2022), 105390. https://doi.org/10.1016/j.rinp.2022.105390 doi: 10.1016/j.rinp.2022.105390
    [52] C. Burdik, G. Shaikhova, B. Rakhimzhanov, Soliton solutions and travelling wave solutions for the two-dimensional generalized nonlinear Schrodinger equations, Eur. Phys. J. Plus., 136 (2021), 1095(1–17). https://doi.org/10.1140/epjp/s13360-021-02092-6 doi: 10.1140/epjp/s13360-021-02092-6
    [53] N. A. Kudryashov, Exact soliton solutions of the generalized evolution equation of wave dynamics, J. Appl. Math. Mech., 52 (1988), 361–365. https://doi.org/10.1016/0021-8928(88)90090-1 doi: 10.1016/0021-8928(88)90090-1
    [54] N. A. Kudryashov, Exact solutions of the generalized Kuramoto-Sivashinsky equation, Phys. Lett. A., 147 (1990), 287–291. https://doi.org/10.1016/0375-9601(90)90449-X doi: 10.1016/0375-9601(90)90449-X
    [55] N. A. Kudryashov, On types of nonlinear nonintegrable equations with exact solutions, Phys. Lett. A., 155 (1991), 269–275. https://doi.org10.1016/0375-9601(91)90481-M
    [56] N. A. Kudryashov, Simpliest equation method to look for exact solutions of nonlinear differential equations, Chaos, Soliton. Fract., 24 (2005), 1217–1231. https://doi.org/10.1016/j.chaos.2004.09.109 doi: 10.1016/j.chaos.2004.09.109
  • This article has been cited by:

    1. Ya-Hui Liu, Jian-Wen Zhang, Localized wave solutions and their superposition and conversion mechanism for the (2+1)-dimensional Hirota’s system, 2023, 277, 00304026, 170717, 10.1016/j.ijleo.2023.170717
    2. M. A. El-Shorbagy, Sonia Akram, Mati ur Rahman, Hossam A. Nabwey, Analysis of bifurcation, chaotic structures, lump and $ M-W $-shape soliton solutions to $ (2+1) $ complex modified Korteweg-de-Vries system, 2024, 9, 2473-6988, 16116, 10.3934/math.2024780
    3. Exact Solutions of Beta-Fractional Fokas-Lenells Equation via Sine-Cosine Method, 2023, 16, 20710216, 10.14529/mmp230201
    4. Annamalai Muniyappan, Kannan Manikandan, Akbota Saparbekova, Nurzhan Serikbayev, Exploring the Dynamics of Dark and Singular Solitons in Optical Fibers Using Extended Rational Sinh–Cosh and Sine–Cosine Methods, 2024, 16, 2073-8994, 561, 10.3390/sym16050561
    5. Bahadır Kopçasız, Qualitative analysis and optical soliton solutions galore: scrutinizing the (2+1)-dimensional complex modified Korteweg–de Vries system, 2024, 112, 0924-090X, 21321, 10.1007/s11071-024-10036-9
    6. Mallick S, Panda B, Sen A, Majumdar A, Ghosal R, Chandra S, Kaur B, Nasrin S, Chatterjee P, Myrzakulov R, Transverse Fluctuations and Their Effects on the Stable Functioning of Semiconductor Devices, 2023, 2582-2195, 44, 10.34256/famr2313
    7. Umar Ali Muhammad, Jamilu Sabi’u, Soheil Salahshour, Hadi Rezazadeh, Soliton solutions of (2+1) complex modified Korteweg–de Vries system using improved Sardar method, 2024, 56, 1572-817X, 10.1007/s11082-024-06591-5
    8. Nikolay A. Kudryashov, Solitons of the complex modified Korteweg–de Vries hierarchy, 2024, 184, 09600779, 115010, 10.1016/j.chaos.2024.115010
    9. Gaukhar Shaikhova, Bayan Kutum, Arailym Syzdykova, Phase portraits and new exact traveling wave solutions of the (2+1)-dimensional Hirota system, 2023, 55, 22113797, 107173, 10.1016/j.rinp.2023.107173
    10. Ibrahim Sani Ibrahim, Jamilu Sabi’u, Yusuf Ya’u Gambo, Shahram Rezapour, Mustafa Inc, Dynamic soliton solutions for the modified complex Korteweg-de Vries system, 2024, 56, 1572-817X, 10.1007/s11082-024-06821-w
    11. Yaru Wang, Yanyan Ge, Yabin Zhang, Exact solutions of the nonlocal (2+1)-dimensional complex modified Korteweg-de Vries Equation, 2024, 0924-090X, 10.1007/s11071-024-10743-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2003) PDF downloads(109) Cited by(11)

Figures and Tables

Figures(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog