Research article Special Issues

Contraction of variational principle and optical soliton solutions for two models of nonlinear Schrödinger equation with polynomial law nonlinearity

  • Received: 28 November 2023 Revised: 15 January 2024 Accepted: 19 January 2024 Published: 04 February 2024
  • MSC : 35B10, 35C07, 35C08, 35Q35

  • Our study analyzes the two models of the nonlinear Schrödinger equation (NLSE) with polynomial law nonlinearity by powerful and comprehensible techniques, such as the variational principle method and the amplitude ansatz method. We will derive the functional integral and the Lagrangian of these equations, which illustrate the system's dynamic. The solutions of these models will be extracted by selecting the trial ansatz functions based on the Jost linear functions, which are continuous at all intervals. We start with the Jost function that has been approximated by a piecewise linear function with a single nontrivial variational parameter in three cases from a region of a rectangular box, then use this trial function to obtain the functional integral and the Lagrangian of the system without any loss. After that, we approximate this trial function by piecewise linear ansatz function in two cases of the two-box potential, then approximate it by quadratic polynomials with two free parameters rather than a piecewise linear ansatz function, and finally, will be approximated by the tanh function. Also, we utilize the amplitude ansatz method to extract the new solitary wave solutions of the proposed equations that contain bright soliton, dark soliton, bright-dark solitary wave solutions, rational dark-bright solutions, and periodic solitary wave solutions. Furthermore, conditions for the stability of the solutions will be submitted. These answers are crucial in applied science and engineering and will be introduced through various graphs such as 2D, 3D, and contour plots.

    Citation: Aly R. Seadawy, Bayan Alsaedi. Contraction of variational principle and optical soliton solutions for two models of nonlinear Schrödinger equation with polynomial law nonlinearity[J]. AIMS Mathematics, 2024, 9(3): 6336-6367. doi: 10.3934/math.2024309

    Related Papers:

  • Our study analyzes the two models of the nonlinear Schrödinger equation (NLSE) with polynomial law nonlinearity by powerful and comprehensible techniques, such as the variational principle method and the amplitude ansatz method. We will derive the functional integral and the Lagrangian of these equations, which illustrate the system's dynamic. The solutions of these models will be extracted by selecting the trial ansatz functions based on the Jost linear functions, which are continuous at all intervals. We start with the Jost function that has been approximated by a piecewise linear function with a single nontrivial variational parameter in three cases from a region of a rectangular box, then use this trial function to obtain the functional integral and the Lagrangian of the system without any loss. After that, we approximate this trial function by piecewise linear ansatz function in two cases of the two-box potential, then approximate it by quadratic polynomials with two free parameters rather than a piecewise linear ansatz function, and finally, will be approximated by the tanh function. Also, we utilize the amplitude ansatz method to extract the new solitary wave solutions of the proposed equations that contain bright soliton, dark soliton, bright-dark solitary wave solutions, rational dark-bright solutions, and periodic solitary wave solutions. Furthermore, conditions for the stability of the solutions will be submitted. These answers are crucial in applied science and engineering and will be introduced through various graphs such as 2D, 3D, and contour plots.



    加载中


    [1] L. Tang, Dynamical behavior and multiple optical solitons for the fractional Ginzburg-Landau equation with $\beta$-derivative in optical fibers, Opt. Quant. Electron., 56 (2024), 175. https://doi.org/10.1007/s11082-023-05761-1 doi: 10.1007/s11082-023-05761-1
    [2] R. F. Luo, Rafiullah, H. Emadifar, M. ur Rahman, Bifurcations, chaotic dynamics, sensitivity analysis and some novel optical solitons of the perturbed non-linear Schrödinger equation with Kerr law non-linearity, Results Phys., 54 (2023), 107133. https://doi.org/10.1016/j.rinp.2023.107133 doi: 10.1016/j.rinp.2023.107133
    [3] P. F. Wang, F. Yin, M. ur Rahman, M. A. Khan, D. Baleanu, Unveiling complexity: exploring chaos and solitons in modified nonlinear Schrödinger equation, Results Phys., 56 (2024), 107268. https://doi.org/10.1016/j.rinp.2023.107268 doi: 10.1016/j.rinp.2023.107268
    [4] W. M. Li, J. Hu, M. U. Rahman, N. U. Haq, Complex behavior and soliton solutions of the resonance nonlinear Schrödinger equation with modified extended tanh expansion method and Galilean transformation, Results Phys., 56 (2024), 107285. https://doi.org/10.1016/j.rinp.2023.107285 doi: 10.1016/j.rinp.2023.107285
    [5] L. Tang, Bifurcation analysis and multiple solitons in birefringent fibers with coupled Schrödinger-Hirota equation, Chaos Solitons Fract., 161 (2022), 112383. https://doi.org/10.1016/j.chaos.2022.112383 doi: 10.1016/j.chaos.2022.112383
    [6] M. Arshad, A. Seadawy, D. C. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. https://doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043
    [7] J. H. Lee, O. K. Pashaev, C. Rogers, W. K. Schief, The resonant nonlinear Schrödinger equation in cold plasma physics. Application of Bäcklund-Darboux transformations and superposition principles, J. Plasma Phys., 73 (2007), 257–272. https://doi.org/10.1017/S0022377806004648 doi: 10.1017/S0022377806004648
    [8] E. Nelson, Derivation of the Schrödinger equation from Newtonian mechanics, Phys. Rev., 150 (1966), 1079. https://doi.org/10.1103/PhysRev.150.1079 doi: 10.1103/PhysRev.150.1079
    [9] R. Fedele, G. Miele, L. Palumbo, V. G. Vaccaro, Thermal wave model for nonlinear longitudinal dynamics in particle accelerators, Phys. Lett. A, 179 (1993), 407–413. https://doi.org/10.1016/0375-9601(93)90099-L doi: 10.1016/0375-9601(93)90099-L
    [10] J. L. Bona, J. C. Saut, Dispersive blow-up II. Schrödinger-type equations, optical and oceanic rogue waves, Chin. Ann. Math. Ser. B, 31 (2010), 793–818. https://doi.org/10.1007/s11401-010-0617-0 doi: 10.1007/s11401-010-0617-0
    [11] A. Hasegawa, Y. Kodama, Solitons in optical communications, Oxford University Press, 1995. https://doi.org/10.1093/oso/9780198565079.001.0001
    [12] A. L. Guo, J. Lin, (2+1)-dimensional analytical solutions of the combining cubic-quintic nonlinear Schrödinger equation, Commun. Theor. Phys., 57 (2012), 523. https://doi.org/10.1088/0253-6102/57/4/02 doi: 10.1088/0253-6102/57/4/02
    [13] Q. Zhou, Q. P. Zhu, Combined optical solitons with parabolic law nonlinearity and spatio-temporal dispersion, J. Modern Opt., 62 (2015), 483–486. https://doi.org/10.1080/09500340.2014.986549 doi: 10.1080/09500340.2014.986549
    [14] A. M. Wazwaz, Higher dimensional nonlinear Schrödinger equations in anomalous dispersion and normal dispersive regimes: bright and dark optical solitons, Optik, 222 (2020), 165327. https://doi.org/10.1016/j.ijleo.2020.165327 doi: 10.1016/j.ijleo.2020.165327
    [15] A. H. Khater, D. K. Callebaut, M. A. Helal, A. R. Seadawy, Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line, Eur. Phys. J. D, 39 (2006), 237–245. https://doi.org/10.1140/epjd/e2006-00093-3 doi: 10.1140/epjd/e2006-00093-3
    [16] D. C. Lu, A. Seadawy, M. Arshad, Applications of extended simple equation method on unstable nonlinear Schrödinger equations, Optik, 140 (2017), 136–144. https://doi.org/10.1016/j.ijleo.2017.04.032 doi: 10.1016/j.ijleo.2017.04.032
    [17] M. Mirzazadeh, M. Eslami, A. Biswas, Dispersive optical solitons by Kudryashov's method, Optik, 125 (2014), 6874–6880. https://doi.org/10.1016/j.ijleo.2014.02.044 doi: 10.1016/j.ijleo.2014.02.044
    [18] E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383–392. https://doi.org/10.1016/S0375-9601(02)01516-5 doi: 10.1016/S0375-9601(02)01516-5
    [19] M. J. Ablowitz, P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991. https://doi.org/10.1017/CBO9780511623998
    [20] M. A. Helal, A. R. Seadawy, Variational method for the derivative nonlinear Schrödinger equation with computational applications, Phys. Scr., 80 (2009), 035004. https://doi.org/10.1088/0031-8949/80/03/035004 doi: 10.1088/0031-8949/80/03/035004
    [21] W. Malfliet, W. Hereman, The tanh method: I. Exact solutions of nonlinear evolution and wave equations, Phys. Scr., 54 (1996), 563. https://doi.org/10.1088/0031-8949/54/6/003 doi: 10.1088/0031-8949/54/6/003
    [22] M. A. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations, Chaos Solitons Fract., 31 (2007), 95–104. https://doi.org/10.1016/j.chaos.2005.09.030 doi: 10.1016/j.chaos.2005.09.030
    [23] E. M. E. Zayed, M. A. M. Abdelaziz, Exact solutions for the nonlinear Schrödinger equation with variable coefficients using the generalized extended tanh-function, the sine-cosine and the exp-function methods, Appl. Math. Comput., 218 (2011), 2259–2268. https://doi.org/10.1016/j.amc.2011.07.043 doi: 10.1016/j.amc.2011.07.043
    [24] B. Li, Y. Chen, On exact solutions of the nonlinear Schrödinger equations in optical fiber, Chaos Solitons Fract., 21 (2004), 241–247. https://doi.org/10.1016/j.chaos.2003.10.029 doi: 10.1016/j.chaos.2003.10.029
    [25] A. R. Seadawy, New exact solutions for the KdV equation with higher order nonlinearity by using the variational method, Comput. Math. Appl., 62 (2011), 3741–3755. https://doi.org/10.1016/j.camwa.2011.09.023 doi: 10.1016/j.camwa.2011.09.023
    [26] R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192. https://doi.org/10.1103/PhysRevLett.27.1192 doi: 10.1103/PhysRevLett.27.1192
    [27] L. Zhang, Y. Z. Lin, Y. P. Liu, New solitary wave solutions for two nonlinear evolution equations, Comput. Math. Appl., 67 (2014), 1595–1606. https://doi.org/10.1016/j.camwa.2014.02.017 doi: 10.1016/j.camwa.2014.02.017
    [28] Q. Zhao, L. H. Wu, Darboux transformation and explicit solutions to the generalized TD equation, Appl. Math. Lett., 67 (2017), 1–6. https://doi.org/10.1016/j.aml.2016.11.012 doi: 10.1016/j.aml.2016.11.012
    [29] K. U. H. Tariq, A. R. Seadawy, Bistable bright-dark solitary wave solutions of the (3+1)-dimensional breaking soliton, Boussinesq equation with dual dispersion and modified Korteweg-de Vries-Kadomtsev-Petviashvili equations and their applications, Results Phys., 7 (2017), 1143–1149. https://doi.org/10.1016/j.rinp.2017.03.001 doi: 10.1016/j.rinp.2017.03.001
    [30] M. Li, T. Xu, L. Wang, Dynamical behaviors and soliton solutions of a generalized higher-order nonlinear Schrödinger equation in optical fibers, Nonlinear Dyn., 80 (2015), 1451–1461. https://doi.org/10.1007/s11071-015-1954-z doi: 10.1007/s11071-015-1954-z
    [31] H. Zhao, J. G. Han, W. T. Wang, H. Y. An, Applications of extended hyperbolic function method for quintic discrete nonlinear Schrödinger equation, Commun. Theor. Phys., 47 (2007), 474. https://doi.org/10.1088/0253-6102/47/3/020 doi: 10.1088/0253-6102/47/3/020
    [32] M. L. Wang, Solitary wave solutions for variant Boussinesq equations, Phys. Lett. A, 199 (1995), 169–172. https://doi.org/10.1016/0375-9601(95)00092-H doi: 10.1016/0375-9601(95)00092-H
    [33] S. Arbabi, M. Najafi, Exact solitary wave solutions of the complex nonlinear Schrödinger equations, Optik, 127 (2016), 4682–4688. https://doi.org/10.1016/j.ijleo.2016.02.008 doi: 10.1016/j.ijleo.2016.02.008
    [34] J. Zhang, X. L. Wei, Y. J. Lu, A generalized $(\frac{G'}{G})$-expansion method and its applications, Phys. Lett. A, 372 (2008), 3653–3658. https://doi.org/10.1016/j.physleta.2008.02.027 doi: 10.1016/j.physleta.2008.02.027
    [35] E. Tala-Tebue, Z. I. Djoufack, D. C. Tsobgni-Fozap, A. Kenfack-Jiotsa, F. Kapche-Tagne, T. C. Kofané, Traveling wave solutions along microtubules and in the Zhiber-Shabat equation, Chin. J. Phys., 55 (2017), 939–946. https://doi.org/10.1016/j.cjph.2017.03.004 doi: 10.1016/j.cjph.2017.03.004
    [36] X. Lü, H. W. Zhu, X. H. Meng, Z. C. Yang, B. Tian, Soliton solutions and a Bäcklund transformation for a generalized nonlinear Schrödinger equation with variable coefficients from optical fiber communications, J. Math. Anal. Appl., 336 (2007), 1305–1315. https://doi.org/10.1016/j.jmaa.2007.03.017 doi: 10.1016/j.jmaa.2007.03.017
    [37] S. Javeed, D. Baleanu, A. Waheed, M. S. Khan, H. Affan, Analysis of homotopy perturbation method for solving fractional order differential equations, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7010040 doi: 10.3390/math7010040
    [38] K. Hosseini, D. Kumar, M. Kaplan, E. Y. Bejarbaneh, New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761. https://doi.org/10.1088/0253-6102/68/6/761 doi: 10.1088/0253-6102/68/6/761
    [39] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 1–17.
    [40] M. Arshad, A. R. Seadawy, D. C. Lu, Optical soliton solutions of the generalized higher-order nonlinear Schrödinger equations and their applications, Opt. Quant. Electron., 50 (2018), 1–16. https://doi.org/10.1007/s11082-017-1260-8 doi: 10.1007/s11082-017-1260-8
    [41] J. Weiss, M. Tabor, G. Carnevale, The Painlevé property for partial differential equations, J. Math. Phys., 24 (1983), 522–526. https://doi.org/10.1063/1.525721 doi: 10.1063/1.525721
    [42] L. X. Li, E. Q. Li, M. L. Wang, The $(G'/G, 1/G)$-expansion method and its application to travelling wave solutions of the Zakharov equations, Appl. Math. J. Chin. Univ., 25 (2010), 454–462. https://doi.org/10.1007/s11766-010-2128-x doi: 10.1007/s11766-010-2128-x
    [43] C. T. Sindi, J. Manafian, Soliton solutions of the quantum Zakharov-Kuznetsov equation which arises in quantum magneto-plasmas, Eur. Phys. J. Plus, 132 (2017), 1–23. https://doi.org/10.1140/epjp/i2017-11354-7 doi: 10.1140/epjp/i2017-11354-7
    [44] J. Manafian, Optical soliton solutions for Schrödinger type nonlinear evolution equations by the tan$(\Phi(\xi)/2)$-expansion method, Optik, 127 (2016), 4222–4245. https://doi.org/10.1016/j.ijleo.2016.01.078 doi: 10.1016/j.ijleo.2016.01.078
    [45] A. R. Seadawy, Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method, Eur. Phys. J. Plus, 130 (2015), 1–10. https://doi.org/10.1140/epjp/i2015-15182-5 doi: 10.1140/epjp/i2015-15182-5
    [46] A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comput. Math. Appl., 67 (2014), 172–180. https://doi.org/10.1016/j.camwa.2013.11.001 doi: 10.1016/j.camwa.2013.11.001
    [47] A. R. Seadawy, H. M. Ahmed, W. B. Rabie, A. Biswas, Chirp-free optical solitons in fiber Bragg gratings with dispersive reflectivity having polynomial law of nonlinearity, Optik, 225 (2021), 165681. https://doi.org/10.1016/j.ijleo.2020.165681 doi: 10.1016/j.ijleo.2020.165681
    [48] A. R. Seadawy, S. T. R. Rizvi, S. Althobaiti, Chirped periodic and solitary waves for improved perturbed nonlinear Schrödinger equation with cubic quadratic nonlinearity, Fractal Fract., 5 (2021), 1–26. https://doi.org/10.3390/fractalfract5040234 doi: 10.3390/fractalfract5040234
    [49] N. Aziz, A. R. Seadawy, K. Ali, M. Sohail, S. T. R. Rizvi, The nonlinear Schrödinger equation with polynomial law nonlinearity: localized chirped optical and solitary wave solutions, Opt. Quant. Electron., 54 (2022), 458. https://doi.org/10.1007/s11082-022-03831-4 doi: 10.1007/s11082-022-03831-4
    [50] G. Dieu-donne, M. B. Hubert, A. Seadawy, T. Etienne, G. Betchewe, S. Y. Doka, Chirped soliton solutions of Fokas-Lenells equation with perturbation terms and the effect of spatio-temporal dispersion in the modulational instability analysis, Eur. Phys. J. Plus, 135 (2020), 1–10. https://doi.org/10.1140/epjp/s13360-020-00142-z doi: 10.1140/epjp/s13360-020-00142-z
    [51] T. G. Sugati, A. R. Seadawy, R. A. Alharbey, W. Albarakati, Nonlinear physical complex hirota dynamical system: construction of chirp free optical dromions and numerical wave solutions, Chaos Solitons Fract., 156 (2022), 111788. https://doi.org/10.1016/j.chaos.2021.111788 doi: 10.1016/j.chaos.2021.111788
    [52] A. R. Seadawy, Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma, Phys. A, 455 (2016), 44–51. https://doi.org/10.1016/j.physa.2016.02.061 doi: 10.1016/j.physa.2016.02.061
    [53] E. Tonti, Variational formulation for every nonlinear problem, Int. J. Eng. Sci., 22 (1984), 1343–1371. https://doi.org/10.1016/0020-7225(84)90026-0 doi: 10.1016/0020-7225(84)90026-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(660) PDF downloads(66) Cited by(17)

Article outline

Figures and Tables

Figures(12)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog