In this paper, the stochastic fourth order nonlinear Schrödinger equation with quantic nonlinearity and affected by multiplicative noise is considered. This model is used to mimic the wave propagation through optical fibers. The improved modified extended tanh method is used to extract optical solutions for the investigated model. Various types of stochastic solutions are provided such as bright soliton, dark soliton, singular soliton, singular periodic solution and Weierstrass elliptic solution. Moreover, Matlab software packages are used to introduce the effect of the multiplicative noise on the raised solutions. The noise intensity is varied to show the robust of the extracted solutions against the noise.
Citation: Yazid Alhojilan, Islam Samir. Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity[J]. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776
In this paper, the stochastic fourth order nonlinear Schrödinger equation with quantic nonlinearity and affected by multiplicative noise is considered. This model is used to mimic the wave propagation through optical fibers. The improved modified extended tanh method is used to extract optical solutions for the investigated model. Various types of stochastic solutions are provided such as bright soliton, dark soliton, singular soliton, singular periodic solution and Weierstrass elliptic solution. Moreover, Matlab software packages are used to introduce the effect of the multiplicative noise on the raised solutions. The noise intensity is varied to show the robust of the extracted solutions against the noise.
[1] | I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, A. S. Ghanem, Solitary wave solutions and other solutions for Gilson-Pickering equation by using the modified extended mapping method, Results Phys., 36 (2022), 105427. https://doi.org/10.1016/j.rinp.2022.105427 doi: 10.1016/j.rinp.2022.105427 |
[2] | I. Samir, N. Badra, A. R. Seadawy, H. M. Ahmed, A. H. Arnous, Computational extracting solutions for the perturbed Gerdjikov-Ivanov equation by using improved modified extended analytical approach, J. Geom. Phys., 176 (2022), 104514. https://doi.org/10.1016/j.geomphys.2022.104514 doi: 10.1016/j.geomphys.2022.104514 |
[3] | A. R. Alharbi, Traveling-wave and numerical solutions to a Novikov-Veselov system via the modified mathematical methods, AIMS Math., 8 (2023), 1230–1250. https://doi.org/10.3934/math.2023062 doi: 10.3934/math.2023062 |
[4] | M. Sharaf, E. El-Shewy, M. Zahran, Fractional anisotropic diffusion equation in cylindrical brush model, J. Taibah Univ. Sci., 14 (2020), 1416–1420. https://doi.org/10.1080/16583655.2020.1824743 doi: 10.1080/16583655.2020.1824743 |
[5] | I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, Solitary wave solutions for generalized Boiti-Leon-Manna-Pempinelli equation by using improved simple equation method, Int. J. Appl. Comput. Math., 8 (2022), 1–12. https://doi.org/10.1007/s40819-022-01308-2 doi: 10.1007/s40819-022-01308-2 |
[6] | H. Abdelwahed, Nonlinearity contributions on critical MKP equation, J. Taibah Univ. Sci., 14 (2020), 777–782. https://doi.org/10.1080/16583655.2020.1774136 doi: 10.1080/16583655.2020.1774136 |
[7] | I. Samir, N. Badra, H. M. Ahmed, A. H. Arnous, Solitons in birefringent fibers for CGL equation with Hamiltonian perturbations and Kerr law nonlinearity using modified extended direct algebraic method, Commun. Nonlinear Sci., 102 (2021), 105945. https://doi.org/10.1016/j.cnsns.2021.105945 doi: 10.1016/j.cnsns.2021.105945 |
[8] | T. A. Nofal, I. Samir, N. Badra, A. Darwish, H. M. Ahmed, A. H. Arnous, Constructing new solitary wave solutions to the strain wave model in micro-structured solids, Alex. Engin. J., 61 (2022), 11879–11888. https://doi.org/10.1016/j.aej.2022.05.050 doi: 10.1016/j.aej.2022.05.050 |
[9] | I. Samir, N. Badra, A. R. Seadawy, H. M. Ahmed, A. H. Arnous, Exact wave solutions of the fourth order non-linear partial differential equation of optical fiber pulses by using different methods, Optik, 2021, 166313. https://doi.org/10.1016/j.ijleo.2021.166313 |
[10] | H. X. Jia, D. W. Zuo, X. H. Li, X. S. Xiang, Breather, soliton and rogue wave of a two-component derivative nonlinear Schrödinger equation, Phys. Lett. A, 405 (2021), 127426. https://doi.org/10.1016/j.physleta.2021.127426 doi: 10.1016/j.physleta.2021.127426 |
[11] | M. A. Abdelrahman, S. Hassan, M. Inc, The coupled nonlinear Schrödinger-type equations, Mod. Phys. Lett. B, 34 (2020), 2050078. https://doi.org/10.1142/S0217984920500785 doi: 10.1142/S0217984920500785 |
[12] | A. R. Alharbi, A study of traveling wave structures and numerical investigation of two-dimensional Riemann problems with their stability and accuracy, CMES-Comp. Model. Eng., 134 (2023), 2193–2209. https://doi.org/10.32604/cmes.2022.018445 doi: 10.32604/cmes.2022.018445 |
[13] | S. Frassu, T. Li, G. Viglialoro, Improvements and generalizations of results concerning attraction-repulsion chemotaxis models, Math. Method. Appl. Sci., 45 (2022), 11067–11078. https://doi.org/10.1002/mma.8437 doi: 10.1002/mma.8437 |
[14] | K. L. Geng, D. S. Mou, C. Q. Dai, Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrödinger equations, Nonlinear Dyn., 111 (2023), 603–617. https://doi.org/10.1007/s11071-022-07833-5 doi: 10.1007/s11071-022-07833-5 |
[15] | W. B. Bo, R. R. Wang, Y. Fang, Y. Y. Wang, C. Q. Dai, Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity, Nonlinear Dyn., 111 (2023), 1577–1588. https://doi.org/10.1007/s11071-022-07884-8 doi: 10.1007/s11071-022-07884-8 |
[16] | M. Blencowe, Quantum electromechanical systems, Phys. Rep., 395 (2004), 159–222. https://doi.org/10.1016/j.physrep.2003.12.005 doi: 10.1016/j.physrep.2003.12.005 |
[17] | P. Kelley, Self-focusing of optical beams, Phys. Rev. Lett., 15 (1965), 1005. https://doi.org/10.1103/PhysRevLett.15.1005 doi: 10.1103/PhysRevLett.15.1005 |
[18] | H. Chu, Eigen energies and eigen states of conduction electrons in pure bismuth under size and magnetic field quantizations, J. Phys. Chem. Solids, 50 (1989), 319–324. https://doi.org/10.1016/0022-3697(89)90494-0 doi: 10.1016/0022-3697(89)90494-0 |
[19] | N. Ashcroft, N. Mermin, Solid state physics, New York, Cengage Learning, 1976. |
[20] | G. Falkovich, I. Kolokolov, V. Lebedev, S. Turitsyn, Statistics of soliton-bearing systems with additive noise, Phys. Rev. E, 63 (2001), 025601. https://doi.org/10.1103/PhysRevE.63.025601 doi: 10.1103/PhysRevE.63.025601 |
[21] | A. Debussche, C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ., 5 (2005), 317–356. https://doi.org/10.1007/s00028-005-0195-x doi: 10.1007/s00028-005-0195-x |
[22] | M. A. Abdelrahman, W. W. Mohammed, The impact of multiplicative noise on the solution of the chiral nonlinear Schrödinger equation, Phys. Scripta, 95 (2020), 085222. https://doi.org/10.1088/1402-4896/aba3ac doi: 10.1088/1402-4896/aba3ac |
[23] | S. Albosaily, W. W. Mohammed, M. A. Aiyashi, M. A. Abdelrahman, Exact solutions of the (2+1)-dimensional stochastic chiral nonlinear Schrödinger equation, Symmetry, 12 (2020), 1874. https://doi.org/10.3390/sym12111874 doi: 10.3390/sym12111874 |
[24] | K. Cheung, R. Mosincat, Stochastic nonlinear Schrödinger equations on tori, Stoch. Partial Differ., 7 (2019), 169–208. https://doi.org/10.1007/s40072-018-0125-x doi: 10.1007/s40072-018-0125-x |
[25] | A. Debussche, L. D. Menza, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Physica D, 162 (2002), 131–154. https://doi.org/10.1016/S0167-2789(01)00379-7 doi: 10.1016/S0167-2789(01)00379-7 |
[26] | J. Cui, J. Hong, Z. Liu, W. Zhou, Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equations, J. Differ. Equ., 266 (2019), 5625–5663. https://doi.org/10.1016/j.jde.2018.10.034 doi: 10.1016/j.jde.2018.10.034 |
[27] | J. Cui, J. Hong, Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differ. Equ., 263 (2017), 3687–3713. https://doi.org/10.1016/j.jde.2017.05.002 doi: 10.1016/j.jde.2017.05.002 |
[28] | Y. Fang, G. Z. Wu, X. K. Wen, Y. Y. Wang, C. Q. Dai, Predicting certain vector optical solitons via the conservation-law deep-learning method, Opt. Laser Technol., 155 (2022), 108428. https://doi.org/10.1016/j.optlastec.2022.108428 doi: 10.1016/j.optlastec.2022.108428 |
[29] | I. Samir, A. Abd-Elmonem, H. M. Ahmed, General solitons for eighth-order dispersive nonlinear Schrödinger equation with ninth-power law nonlinearity using improved modified extended tanh method, Opt. Quant. Electron., 55 (2023), 470. https://doi.org/10.1007/s11082-023-04753-5 doi: 10.1007/s11082-023-04753-5 |
[30] | R. R. Wang, Y. Y. Wang, C. Q. Dai, Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser, Opt. Laser Technol., 152 (2022), 108103. https://doi.org/10.1016/j.optlastec.2022.108103 doi: 10.1016/j.optlastec.2022.108103 |
[31] | J. J. Fang, D. S. Mou, H. C. Zhang, Y. Y. Wang, Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model, Optik, 228 (2021), 166186. https://doi.org/10.1016/j.ijleo.2020.166186 doi: 10.1016/j.ijleo.2020.166186 |
[32] | Y. F. Alharbi, E. K. El-Shewy, M. A. Abdelrahman, Effects of Brownian noise strength on new chiral solitary structures, J. Low Freq. Noise V. A., 2022. |
[33] | Y. F. Alharbi, E. El-Shewy, M. A. Abdelrahman, New and effective solitary applications in Schrödinger equation via Brownian motion process with physical coefficients of fiber optics, AIMS Math., 8 (2023), 4126–4140. https://doi.org/10.3934/math.2023205 doi: 10.3934/math.2023205 |
[34] | Z. Yang, B. Y. Hon, An improved modified extended tanh-function method, Z. Naturforsch. A, 61 (2006), 103–115. https://doi.org/10.1515/zna-2006-3-401 doi: 10.1515/zna-2006-3-401 |