Research article

The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation

  • Received: 11 October 2020 Accepted: 25 December 2020 Published: 08 January 2021
  • MSC : 35A20, 35A99, 35Q51, 65Z05, 83C15

  • We consider in this paper the stochastic nonlinear Schrödinger equation forced by multiplicative noise in the Itô sense. We use two different methods as sine-cosine method and Riccati-Bernoulli sub-ODE method to obtain new rational, trigonometric and hyperbolic stochastic solutions. These stochastic solutions are of a qualitatively distinct nature based on the parameters. Moreover, the effect of the multiplicative noise on the solutions of nonlinear Schrödinger equation will be discussed. Finally, two and three-dimensional graphs for some solutions have been given to support our analysis.

    Citation: Mahmoud A. E. Abdelrahman, Wael W. Mohammed, Meshari Alesemi, Sahar Albosaily. The effect of multiplicative noise on the exact solutions of nonlinear Schrödinger equation[J]. AIMS Mathematics, 2021, 6(3): 2970-2980. doi: 10.3934/math.2021180

    Related Papers:

    [1] Mahmoud A. E. Abdelrahman, Sherif I. Ammar, Kholod M. Abualnaja, Mustafa Inc . New solutions for the unstable nonlinear Schrödinger equation arising in natural science. AIMS Mathematics, 2020, 5(3): 1893-1912. doi: 10.3934/math.2020126
    [2] Yousef Jawarneh, Humaira Yasmin, Ali M. Mahnashi . A new solitary wave solution of the fractional phenomena Bogoyavlenskii equation via Bäcklund transformation. AIMS Mathematics, 2024, 9(12): 35308-35325. doi: 10.3934/math.20241678
    [3] Zeliha Korpinar, Mustafa Inc, Ali S. Alshomrani, Dumitru Baleanu . The deterministic and stochastic solutions of the Schrodinger equation with time conformable derivative in birefrigent fibers. AIMS Mathematics, 2020, 5(3): 2326-2345. doi: 10.3934/math.2020154
    [4] Yazid Alhojilan, Islam Samir . Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776
    [5] Wael W. Mohammed, Farah M. Al-Askar . New stochastic solitary solutions for the modified Korteweg-de Vries equation with stochastic term/random variable coefficients. AIMS Mathematics, 2024, 9(8): 20467-20481. doi: 10.3934/math.2024995
    [6] Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu . Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics. AIMS Mathematics, 2025, 10(1): 1859-1881. doi: 10.3934/math.2025086
    [7] M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604
    [8] Waleed Hamali, Abdulah A. Alghamdi . Exact solutions to the fractional nonlinear phenomena in fluid dynamics via the Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(11): 31142-31162. doi: 10.3934/math.20241501
    [9] Rou Lin, Min Zhao, Jinlu Zhang . Random uniform exponential attractors for non-autonomous stochastic Schrödinger lattice systems in weighted space. AIMS Mathematics, 2023, 8(2): 2871-2890. doi: 10.3934/math.2023150
    [10] Hamood Ur Rehman, Aziz Ullah Awan, Sayed M. Eldin, Ifrah Iqbal . Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise. AIMS Mathematics, 2023, 8(9): 21606-21621. doi: 10.3934/math.20231101
  • We consider in this paper the stochastic nonlinear Schrödinger equation forced by multiplicative noise in the Itô sense. We use two different methods as sine-cosine method and Riccati-Bernoulli sub-ODE method to obtain new rational, trigonometric and hyperbolic stochastic solutions. These stochastic solutions are of a qualitatively distinct nature based on the parameters. Moreover, the effect of the multiplicative noise on the solutions of nonlinear Schrödinger equation will be discussed. Finally, two and three-dimensional graphs for some solutions have been given to support our analysis.



    Nonlinear complex phenomena arising in various fields of applied science such as fluid mechanics, chemical physics, solid state physics, plasma physics, biology, optics and geochemistry can be modelled into various nonlinear partial differential equations (NLPDEs) [1,2,3,4,5,6,7,8,9]. Recently, studying the nature of these models has attracted the attentions of many researches [10,11,12,13,14,15,16,17,18,19,20,21]. The nonlinear Schrödinger equation (NLS, for short) is one of the fundamental models of nonlinear waves. It has many applications for example in the theory of solids [22] and crystals [23], in laser beams [24] and in electromechanical systems [25].

    Using stochastic processes in Schrödinger equations, thermal fluctuations or spontaneous emissions or general random disturbances can be modelled. Many authors studied the existence and uniqueness of the solution of stochastic Schrödinger equation with additive or multiplicative noise. The multiplicative noise case is investigated in [26,27,28,29,30], while the additive noise case is discussed in [31,32]. For both cases are studied in [33,34]. While, other authors are interested with numerical approximations of the solutions via effective schemes of stochastic Schr ödinger equation for example [35,36,37].

    In this article, we consider the following stochastic nonlinear Schrö dinger equation with multiplicative noise in the Itô sense:

    iutuxx+2|u|2u2ρ2u+σuβt=0, for t0  and xR, (1.1)

    where u(t,x) is a complex-valued process, ρ and σ are constants, and βt=dβdt is the time derivative of Browian motion β(t). In this paper we consider the one-dimensional noise, because on one hand, this is the case where we are able to obtain the exact solutions. On the other hand, infinite-dimensional noise may lead to spatially unbounded solutions of Eq (1.1). At this point, it is convenient to provide a definition of β(t). Brownian motion (also called one-dimensional Wiener process) is a stochastic process {β(t)}t0 with the following properties: (i) β(0)=0, (ii) β has continuous trajectories, (iii) The process {β(t)}t0 has stationary, independent increments, (iv) For s<t the stochastic variable β(t)β(s) has the normal distribution N(0;ts). The multiplicative noise in Eq (1.1) describes a process where the phase of the excitation is disturbed. In crystals, this type of noise corresponds to scattering of exciton by phonons due to thermal molecular vibrations.

    In the current work, the Riccati-Bernoulli sub-ODE technique [38] and sine-cosine method are employed to obtain new solutions in different form of stochastic Schrödinger Eq (1.1). Moreover, we discuss the effect of multiplicative noise on these solutions. To the best of our knowledge, this article is the first one for finding the exact solutions for the stochastic Schrödinger Eq (1.1).

    Our aim in the current work is to derive the exact solutions of stochastic nonlinear Schrödinger Eq (1.1) forced by a one- dimensional multiplicative white noise in the Itô sense by two various methods such as the Riccati-Bernoulli sub-ODE technique [38] and sine-cosine method. To the best of our knowledge, this article is the first one for finding the exact solutions for the stochastic Schrödinger Eq (1.1). Moreover, we discuss the effect of multiplicative noise on these solutions. The obtained solutions will be extremely helpful in future for further studies such as the improvement of biomedical, coastal water motions, industrial studies, quasi particle theory, space plasma and fiber applications.

    This article is divided into the following sections. In the next section, we will obtain the stochastic exact solutions of stochastic nonlinear Schrödinger Eq (1.1) by using two different methods, while in section 3 we show the effect of multiplicative noise on the exact solution of nonlinear Schrödinger Eq (1.1). Finally, we introduce the conclusions of this paper.

    In this section we will get the exact solutions of stochastic nonlinear Schr ödinger Eq (1.1). Let us first use the following wave transformation

    u(t,x)=ϰ(η)eiθ,   η=k(x+2αt), θ=αx+υt+σβ(t), (2.1)

    where α is the speed of the wave solution ϰ(η), σ is the noise strength, k is a positive constant. By using (2.1) and

    ut=(2αkϰ+iυϰ+iσβt)eiθ,2ux2=(k2ϰ+2iαkϰα2ϰ)eiθ,

    one can convert Eq (1.1) into the following ODE:

    k2ϰ+2ϰ3+Aϰ=0, (2.2)

    where

    A=(α22ρ2ν).

    In the following we apply two methods as the Riccati-Bernoulli sub-ODE method and sine-cosine method to obtain the solitary wave solution of Eq (2.2). And we, therefore, have stochastic exact solution of NLSE (1.1).

    Consider the following Riccati-Bernoulli equation

    ϰ=a1ϰ2m+a2ϰ+a3ϰm, (2.3)

    where a1,a2,a3 and m are constants and ϰ=ϰ(η).

    Differentiating the Riccati-Bernoulli Eq (2.3) one time with respect to η, we obtain

    ϰ=a1a2(3m)ϰ2m+a21(2m)ϰ32m                         
    +ma23ϰ2m1+a2a3(m+1)ϰm+(2a1a3+a22)ϰ. (2.4)

    By substituting (2.4) into (2.2), we have

    k2a1a2(3m)ϰ2mk2a21(2m)ϰ32mmk2a23ϰ2m1a2a3k2(m+1)ϰm
    +2ϰ3+(2a1a3k2a22k2+A)ϰ=0. (2.5)

    If we put m=0, then Eq (2.5) will be become

    (22a21k2)ϰ33a1a2k2ϰ2+(A2a1a3k2a22k2)ϰa2a3k2=0. (2.6)

    Equating each coefficient of ϰi(i=0,1,2,3) to zero, we obtain the following algebraic equations

    a2a3k2=0,
    A2a1a3k2a22k2=0,
    3a1a2k2=0,
    22a21k2=0.

    Solving the above equations, yields

    a1=±1k,
    a2=0,

    and

    a3=±12kA.

    Now, let us deduce the exact solutions of stochastic nonlinear Schrödinger Eq (1.1):

    First case: If m1 and A=(α22ρ2ν)=0, then the solution of (2.3) in this case takes the form

    ϰ(η)=(a1(m1)(η+C))1m1. (2.7)

    Consequently, the exact solution of (1.1) is

    u(t,x)=ϰ(η)ei[αx+υt+σβ(t)]=[±(m1)(x+2αt+C)]1m1ei[αx+υt+σβ(t)], (2.8)

    where C is the integration constant. Second case: If m1 and A=(α22ρ2ν)>0, then the solution of (2.3) in this case takes the form

    ϰ(η)=(±A2tan((1m)(x+2αt+C)A2))11m, (2.9)

    and

    ϰ(η)=(A2cot((1m)(x+2αt+C)A2))11m. (2.10)

    Therefore, then the exact solution of (1.1) is

    u(t,x)=ϰ(η)ei[αx+υt+σβ(t)]=ei[αx+υt+σβ(t)](±A2tan((1m)(x+2αt+C)A2))11m, (2.11)

    and

    u(t,x)=ϰ(η)ei[αx+υt+σβ(t)]=ei[αx+υt+σβ(t)](A2cot((1m)(x+2αt+C)A2))11m. (2.12)

    Third case: If m1 and A=(α22ρ2ν)<0, then the solution of (2.3) in this case takes the form

    ϰ(η)=(A2tanh((1m)(x+2αt+C)A2))11m, (2.13)

    and

    ϰ(η)=(A2coth((1m)(x+2αt+C)A2))11m. (2.14)

    Consequently, then the exact solution of (1.1) is

    u(t,x)=ϰ(η)ei[αx+υt+σβ(t)]=ei[αx+υt+σβ(t)](A2tanh((1m)(x+2αt+C)A2))11m, (2.15)

    and

    u(t,x)=ϰ(η)ei[αx+υt+σβ(t)]=ei[αx+υt+σβ(t)](A2coth((1m)(x+2αt+C)A2))11m. (2.16)

    While in this section we use the sine-cosine method [39,40,41]. Let the solution u take the form

    ϰ(η)=aYm (2.17)

    where

    Y=sin(bη)or    Y=cos(bη). (2.18)

    Substituting Eq (2.17) into Eq (2.2) we have

    ab2k2[m2Ym+m(m1)Ym2]+2a3Y3m+aAYm=0.

    Rewriting the above equation

    (aA+ab2k2m2)Ymm(m1)ab2k2Ym2+2a3Y3m=0. (2.19)

    Balancing the term of Y in Eq (2.19), we get

    m2=3m       m=1. (2.20)

    Substituting Eq (2.20) into Eq (2.19)

    (aA+ab2k2)Y1+(2a32ab2k2)Y3=0. (2.21)

    Equating each coefficient of Y1 and Y3 to zero, we obtain

    aA+ab2k2=0, (2.22)

    and

    2a32ab2k2=0. (2.23)

    We obtain by solving Eq (2.22) and Eq (2.23)

    a=±A   and  b=±1kA

    There are two cases:

    First case: If A=(α22ρ2ν)<0, then in this case the solitary wave solution of Eq (2.2) takes the form

    ϰ1,1(ξ)=±A[sin(1kAξ)]1=±Acsc(1kAξ),

    or

    ϰ1,2(ξ)=±Asec(1kAξ).

    Therefore, the stochastic exact solutions of NLSE (1.1) is

    u1,1(t,x)=±ei[αx+υt+σβ(t)]Acsc[1kA(x+2αt)], (2.24)

    and

    u1,2(t,x)=±ei[αx+υt+σβ(t)]Asec[1kA(x+2αt)]. (2.25)

    Second case: If A>0, then in this case the solitary wave solutions of Eq (2.2) takes the form

    ϰ2,1(ξ)=±iA[sin(ikAξ)]1=±iA[sinh(1kAξ)]1=±iAcsch(1kAξ),

    or

    ϰ2,2(ξ)=±iA[cosh(1kAξ)]1=±iAsech(1kAξ).

    Therefore, the stochastic exact solutions of NLSE (1.1) are

    u2,1(t,x)=±ei[αx+υt+σβ(t)]Acsch[1kA(x+2αt)], (2.26)

    and

    u2,2(t,x)=±ei[αx+υt+σβ(t)]Asech[1kA(x+2αt)]. (2.27)

    Substantially, it has been reported that the exact solutions of the nonlinear Schrödinger Eq (1.1) were gained in the explicit form, using sine-cosine and Riccati-Bernoulli sub-ODE methods. The difference between them is that they give different types of solutions. These solutions describe different phenomena in physics and applied science. The main advantages for these two methods over the most other methods is that they give various vital solutions with additional free parameters. Moreover, these methods are simple, sturdy and efficient. Indeed these two methods can be used to solve other models arising in physics.

    In this section we show the effect of multiplicative noise on the solution of Schrödinger Eq (1.1). In the following we introduce some graphical simulations for the fixed parameters α=1.3, k=1.3; p=1.4, μ=2, ν=2.4 and varying noise strength σ. The graphical simulations carried out with MATLAB package.

    We see that the solution of NLSE (1.1) fluctuates and has a pattern if σ=0 in the Figure 1. In Figures 24, we see that the pattern begins to destroy if the noise intensity σ increases. Finally, in Figure 5 we give 2-D graph of the solution of NLSE (1.1) with different values of the noise intensity σ.

    Figure 1.  Graph of solution u in (2.11) with σ=0.
    Figure 2.  Graph of solution u in (2.11) with σ=1.
    Figure 3.  Graph of solution u in (2.11) with σ=2.
    Figure 4.  Graph of solution u in (2.11) with σ=3.
    Figure 5.  Graph of solution u in (2.11).

    In this article we introduced a rich variety of families of wave solutions, to stochastic nonlinear Schrödinger equation with multiplicative noise in the Itô sense. These solutions are of significant importance in the explaining of some interesting complex physical phenomena. The proposed method is easy, concise, direct and effect tools that give interesting results. The obtained solutions will be extremely helpful in future for further studies such as the improvement of biomedical, coastal water motions, quasi particle theory, industrial studies, space plasma and fiber applications. Finally, we illustrated the effect of multiplicative noise on the solitary wave solution of Schördinger equation.

    The authors thank the editor and anonymous reviewers for their valuable comments and suggestions.

    The authors declare no conflict of interest.



    [1] M. A. E. Abdelrahman, Global solutions for the ultra-relativistic Euler equations, Nonlinear Anal., 155 (2017), 140–162. doi: 10.1016/j.na.2017.01.014
    [2] C. O. Alves, F. Gao, M. Squassina, M. Yang, Singularly perturbed critical Choquard equations, J. Differ. Equations, 263 (2017), 3943–3988. doi: 10.1016/j.jde.2017.05.009
    [3] P. I. Naumkin, J. J. Perez, Higher-order derivative nonlinear Schrödinger equation in the critical case, J. Math. Phys., 59 (2018), 021506. doi: 10.1063/1.5008500
    [4] M. A. E. Abdelrahman, Cone-grid scheme for solving hyperbolic systems of conservation laws and one application, Comput. Appl. Math., 37 (2018), 3503–3513. doi: 10.1007/s40314-017-0527-9
    [5] M. A. E. Abdelrahman, G. M. Bahaa, Elementary waves, Riemann problem, Riemann invariants and new conservation laws for the pressure gradient model, Eur. Phys. J. Plus, 134 (2019), 187. doi: 10.1140/epjp/i2019-12580-7
    [6] M. A. E. Abdelrahman, N. F. Abdo, On the nonlinear new wave solutions in unstable dispersive environments, Phys. Scripta, 95 (2020), 045220. doi: 10.1088/1402-4896/ab62d7
    [7] H. G. Abdelwahed, Nonlinearity contributions on critical MKP equation, J. Taibah Univ. Sci., 14 (2020), 777–782. doi: 10.1080/16583655.2020.1774136
    [8] H. G. Abdelwahed, Super electron acoustic propagations in critical plasma density, J. Taibah Univ. Sci., 14 (2020), 1363–1368. doi: 10.1080/16583655.2020.1822653
    [9] M. K. Sharaf, E. K. El-Shewy, M. A. Zahran, Fractional anisotropic diffusion equation in cylindrical brush model, J. Taibah Univ. Sci., 14 (2020), 1416–1420. doi: 10.1080/16583655.2020.1824743
    [10] A. M. Wazwaz, The integrable time-dependent sine-Gordon with multiple optical kink solutions, Optik, 182 (2019), 605–610. doi: 10.1016/j.ijleo.2019.01.018
    [11] M. A. E. Abdelrahman, M. A. Sohaly, On the new wave solutions to the MCH equation, Indian J. Phys., 93 (2019), 903–911. doi: 10.1007/s12648-018-1354-6
    [12] M. Eslami, Trial solution technique to chiral nonlinear Schrödinger's equation in (1 + 2)-dimensions, Nonlinear Dyn., 85 (2016), 813–816. doi: 10.1007/s11071-016-2724-2
    [13] M. Mirzazadeh, M. Eslami, A. Biswas, 1-Soliton solution of KdV equation, Nonlinear Dyn., 80 (2015), 387–396. doi: 10.1007/s11071-014-1876-1
    [14] B. Ghanbari, C. K. Kuo, New exact wave solutions of the variable-coefficient (1 + 1)-dimensional Benjamin-Bona-Mahony and (2 + 1)-dimensional asymmetric Nizhnik-Novikov-Veselov equations via the generalized exponential rational function method, Eur. Phys. J. Plus, 134 (2019), 134. doi: 10.1140/epjp/i2019-12635-9
    [15] C. K. Kuo, B. Ghanbari, Resonant multi-soliton solutions to new (3 + 1)-dimensional Jimbo-Miwa equations by applying the linear superposition principle, Nonlinear Dyn., 96 (2019), 459–464. doi: 10.1007/s11071-019-04799-9
    [16] M. A. E. Abdelrahman, M. A. Sohaly, The development of the deterministic nonlinear PDEs in particle physics to stochastic case, Results Phys., 9 (2018), 344–350. doi: 10.1016/j.rinp.2018.02.032
    [17] M. A. E. Abdelrahman, S. Z. Hassan, M. Inc, The coupled nonlinear Schrödinger-type equations, Mod. Phys. Lett. B, 34 (2020), 2050078.
    [18] W. W. Mohammed, Amplitude equation with quintic nonlinearities for the generalized Swift-Hohenberg equation with additive degenerate noise, Adv. Differ. Equ., 1 (2016), 84.
    [19] W. W. Mohammed, Approximate solution of the Kuramoto-Shivashinsky equation on an unbounded domain, Chinese Ann. Math. B, 39 (2018), 145–162. doi: 10.1007/s11401-018-1057-5
    [20] W. W. Mohammed, Modulation equation for the stochastic Swift–Hohenberg equation with cubic and quintic nonlinearities on the real line, Mathematics, 6 (2020), 1–12.
    [21] H. G. Abdelwahed, E. K. El-Shewy, M. A. E. Abdelrahman, R. Sabry, New super waveforms for modified Korteweg-de-Veries-equation, Results Phys., 19 (2020), 103420. doi: 10.1016/j.rinp.2020.103420
    [22] N. W. Ashcroft, N. D. Mermin, Solid state physics, New York: Cengage Learning, 1976.
    [23] H. T. Chu, Eigen energies and eigen states of conduction electrons in pure bismithunder size and magnetic fields quatizations, J. Phys. Chem. Solids, 50 (1989), 319–324. doi: 10.1016/0022-3697(89)90494-0
    [24] P. I. Kelley, Self-focusing of optical beams, Phys. Rev. Lett., 15 (1965), 1005–1008. doi: 10.1103/PhysRevLett.15.1005
    [25] M. Blencowe, Quantum electromechanical systems, Phys. Rep., 395 (2004), 159–222. doi: 10.1016/j.physrep.2003.12.005
    [26] W. Grecksch, H. Lisei, Stochastic nonlinear equations of Schrödinger type, Stoch. Anal. Appl., 29 (2011), 631–653. doi: 10.1080/07362994.2011.581091
    [27] C. H. Bruneau, L. Di Menza, T. Lehner, Numerical resolution of some nonlinear Schrödinger-like equations in plasmas, Numer. Meth. Part. D. E., 15 (1999), 672–696. doi: 10.1002/(SICI)1098-2426(199911)15:6<672::AID-NUM5>3.0.CO;2-J
    [28] V. Barbu, M. Röckner, D. Zhang, Stochastic nonlinear Schrödinger equations with linear multiplicative noise: rescaling approach, J. Nonlin. Sci., 24 (2014), 383–409. doi: 10.1007/s00332-014-9193-x
    [29] M. A. E. Abdelrahman, W. W. Mohammed, The impact of multiplicative noise on the solution of the Chiral nonlinear Schrödinger equation, Phys. Scripta, 95 (2020), 085222. doi: 10.1088/1402-4896/aba3ac
    [30] S. Albosaily, W. W. Mohammed, M. A. Aiyashi, M. A. E. Abdelrahman, Exact solutions of the (2 + 1)-dimensional stochastic chiral nonlinear Schrödinger equation, Symmetry, 12 (2020), 1874. doi: 10.3390/sym12111840
    [31] A. Debussche, C. Odasso, Ergodicity for a weakly damped stochastic nonlinear Schrödinger equation, J. Evol. Equ., 5 (2005), 317–356. doi: 10.1007/s00028-005-0195-x
    [32] G. E. Falkovich, I. Kolokolov, V. Lebedev, S. K. Turitsyn, Statistics of soliton-bearing systems with additive noise, Phys. Rev. E, 63 (2001), 025601.
    [33] A. Debussche, L. Di Menzab, Numerical simulation of focusing stochastic nonlinear Schrödinger equations, Physica D, 162 (2002), 131–154. doi: 10.1016/S0167-2789(01)00379-7
    [34] K. Cheung, R. Mosincat, Stochastic nonlinear Schrö dinger equations on tori, Stoch. Partial Differ., 7 (2019), 169–208.
    [35] A. De Bouard, A. Debussche, A semidiscrete scheme for the stochastic nonlinear Schrödinger equation, Numer. Math., 96 (2004), 733–770. doi: 10.1007/s00211-003-0494-5
    [36] J. Cui, J. Hong, Z. Liu, Strong convergence rate of finite difference approximations for stochastic cubic Schrödinger equations, J. Differ. Equations, 263 (2017), 3687–3713. doi: 10.1016/j.jde.2017.05.002
    [37] J. Cui, J. Hong, Z. Liu, W. Zhou, Strong convergence rate of splitting schemes for stochastic nonlinear Schrödinger equation, J. Differ. Equations, 266 (2019), 5625–5663. doi: 10.1016/j.jde.2018.10.034
    [38] X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 1 (2015), 117–133.
    [39] A. M. Wazwaz, A sine-cosine method for handling nonlinear wave equations, Math. Comput. Model., 40 (2004), 499–508. doi: 10.1016/j.mcm.2003.12.010
    [40] A. M. Wazwaz, The sine-cosine method for obtaining solutions with compact and noncompact structures, Appl. Math. Comput., 159 (2004), 559–576
    [41] E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using sine-cosine method, Int. J. Comput. Math., 83 (2006), 915–924. doi: 10.1080/00207160601138756
  • This article has been cited by:

    1. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Luminita Moraru, Salam Khan, Yakup Yıldırım, Hashim M. Alshehri, Milivoj R. Belic, Dispersive optical solitons with Schrödinger–Hirota model having multiplicative white noise via Itô Calculus, 2022, 445, 03759601, 128268, 10.1016/j.physleta.2022.128268
    2. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Dispersive optical solitons in magneto-optic waveguides with stochastic generalized Schrôdinger–Hirota equation having multiplicative white noise, 2022, 271, 00304026, 170069, 10.1016/j.ijleo.2022.170069
    3. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Dispersive optical solitons in birefringent fibers for stochastic Schrödinger–Hirota equation with parabolic law nonlinearity and spatiotemporal dispersion having multiplicative white noise, 2023, 278, 00304026, 170736, 10.1016/j.ijleo.2023.170736
    4. Aydin Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, 2022, 268, 00304026, 169831, 10.1016/j.ijleo.2022.169831
    5. Tianyong Han, Zhao Li, Kaibo Shi, Guo-Cheng Wu, Bifurcation and traveling wave solutions of stochastic Manakov model with multiplicative white noise in birefringent fibers, 2022, 163, 09600779, 112548, 10.1016/j.chaos.2022.112548
    6. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Optical solitons in birefringent fibers with Biswas-Arshed equation having multiplicative noise via Itô calculus using two integration algorithms, 2022, 262, 00304026, 169322, 10.1016/j.ijleo.2022.169322
    7. Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Anjan Biswas, Yakup Yıldırım, Ali S. Alshomrani, Hashim M. Alshehri, Optical solitons having Kudryashov’s self-phase modulation with multiplicative white noise via Itô Calculus using new mapping approach, 2022, 264, 00304026, 169369, 10.1016/j.ijleo.2022.169369
    8. W.W. Mohammed, M. El-Morshedy, The influence of multiplicative noise on the stochastic exact solutions of the Nizhnik–Novikov–Veselov system, 2021, 190, 03784754, 192, 10.1016/j.matcom.2021.05.022
    9. Yilin Tian, Jifeng Cui, Ruigang Zhang, Exact traveling wave solutions of the strain wave and (1 + 1)-dimensional Benjamin–Bona–Mahony equations via the simplest equation method, 2022, 36, 0217-9849, 10.1142/S0217984922501032
    10. Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Cubic-quartic embedded solitons with χ(2) and χ(3) nonlinear susceptibilities having multiplicative white noise via Itô calculus, 2023, 168, 09600779, 113186, 10.1016/j.chaos.2023.113186
    11. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Yakup Yıldırım, Ali S. Alshomrani, Hashim M. Alshehri, Optical solitons with Manakov equation having multiplicative white noise by Itô Calculus, 2022, 262, 00304026, 169233, 10.1016/j.ijleo.2022.169233
    12. Elsayed M. E. Zayed, Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yıldırım, Houria Triki, Seithuti P. Moshokoa, Hashim M. Alshehri, Optical solitons in birefringent fibers with Sasa–Satsuma equation having multiplicative noise with Itô calculus, 2023, 32, 0218-8635, 10.1142/S0218863523500066
    13. Elsayed M.E. Zayed, Mahmoud El-Horbaty, Mohamed E.M. Alngar, Mona El-Shater, Optical solitons in polarization preserving fibers for perturbed resonant NLSE with Kerr law nonlinearity and Bohm potential having multiplicative white noise via Itô calculus, 2022, 261, 00304026, 169228, 10.1016/j.ijleo.2022.169228
    14. Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Optical solitons in magneto-optic waveguides for perturbed NLSE with Kerr law nonlinearity and spatio-temporal dispersion having multiplicative noise via Itô calculus, 2023, 276, 00304026, 170682, 10.1016/j.ijleo.2023.170682
    15. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Khaled A. Gepreel, Taher A. Nofal, Yakup Yıldırım, Optical solitons for Biswas–Arshed equation with multiplicative noise via Itô calculus using three integration algorithms, 2022, 258, 00304026, 168847, 10.1016/j.ijleo.2022.168847
    16. Elsayed M. E. Zayed, Mahmoud El-Horbaty, Mohamed E. M. Alngar, Mona El-Shater, Dispersive Optical Solitons for Stochastic Fokas-Lenells Equation With Multiplicative White Noise, 2022, 3, 2673-4117, 523, 10.3390/eng3040037
    17. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Dispersive optical solitons with Biswas–Milovic equation having dual-power law nonlinearity and multiplicative white noise via Itô calculus, 2022, 270, 00304026, 169951, 10.1016/j.ijleo.2022.169951
    18. Elsayed M. E. Zayed, Mohamed E. M. Alngar, Reham M. A. Shohib, Dispersive Optical Solitons to Stochastic Resonant NLSE with Both Spatio-Temporal and Inter-Modal Dispersions Having Multiplicative White Noise, 2022, 10, 2227-7390, 3197, 10.3390/math10173197
    19. E M E Zayed, R M A Shohib, M E M Alngar, A Biswas, Yakup Yildirim, A Dakova, H M Alshehri, M R Belic, Optical solitons in the Sasa�Satsuma model with multiplicative noise via Ito calculus, 2022, 23, 1609-1833, 9, 10.3116/16091833/23/1/9/2022
    20. Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Dispersive optical solitons in magneto-optic waveguides for perturbed stochastic NLSE with generalized anti-cubic law nonlinearity and spatio-temporal dispersion having multiplicative white noise, 2022, 271, 00304026, 170131, 10.1016/j.ijleo.2022.170131
    21. Elsayed M. E. Zayed, Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Simona Moldovanu, Puiu Lucian Georgescu, Dispersive Optical Solitons with Differential Group Delay Having Multiplicative White Noise by Itô Calculus, 2023, 12, 2079-9292, 634, 10.3390/electronics12030634
    22. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Yakup Yıldırım, Ali S. Alshomrani, Hashim M. Alshehri, Optical solitons with generalized anti–cubic nonlinearity having multiplicative white noise by Itô Calculus, 2022, 262, 00304026, 169262, 10.1016/j.ijleo.2022.169262
    23. Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Elena Mereuta, Hashim M. Alshehri, Embedded solitons with χ(2) and χ(3) nonlinear susceptibilities having multiplicative white noise via Itô Calculus, 2022, 162, 09600779, 112494, 10.1016/j.chaos.2022.112494
    24. Souleymanou Abbagari, Pélérine Tsogni Nyawo, Alphonse Houwe, Mustafa Inc, Brownian motion effects on W-shaped soliton and modulation instability gain of the (2+1)-dimensional nonlinear schrödinger equation, 2022, 54, 0306-8919, 10.1007/s11082-021-03377-x
    25. Elsayed M.E. Zayed, Mohamed E.M. Alngar, Reham M.A. Shohib, Khaled A. Gepreel, Taher A. Nofal, Optical solitons with (2+1)-dimensional nonlinear Schrödinger equation having spatio-temporal dispersion and multiplicative white noise via Itô calculus, 2022, 261, 00304026, 169204, 10.1016/j.ijleo.2022.169204
    26. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Dispersive optical solitons in birefringent fibers for (2+1)-dimensional NLSE with Kerr law nonlinearity and spatio-temporal dispersion having multiplicative white noise via Itô calculus, 2022, 267, 00304026, 169667, 10.1016/j.ijleo.2022.169667
    27. Wael W. Mohammed, Hijaz Ahmad, Hamid Boulares, Fathi Khelifi, Mahmoud El-Morshedy, Exact solutions of Hirota–Maccari system forced by multiplicative noise in the Itô sense, 2022, 41, 1461-3484, 74, 10.1177/14613484211028100
    28. Elsayed M. E. Zayed, Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yildirim, Luminita Moraru, Elena Mereuta, Hashim M. Alshehri, Embedded Solitons with Χ⁽²⁾ and Χ⁽³⁾ Nonlinear Susceptibilities Having Multiplicative White Noise Via Itô Calculus, 2022, 1556-5068, 10.2139/ssrn.4137060
    29. Elsayed M. E. Zayed, Mohamed E. M. Alngar, Reham M. A. Shohib, Anjan Biswas, Yakup Yıldırım, Asim Asiri, Highly dispersive optical solitons in birefringent fibers with Lakshmanan–Porsezian–Daniel model having multiplicative white noise, 2023, 111, 0924-090X, 20237, 10.1007/s11071-023-08935-4
    30. Salman A. AlQahtani, Reham M. A. Shohib, Mohamed E. M. Alngar, Abdulaziz M. Alawwad, High-stochastic solitons for the eighth-order NLSE through Itô calculus and STD with higher polynomial nonlinearity and multiplicative white noise, 2023, 55, 0306-8919, 10.1007/s11082-023-05478-1
    31. Elsayed M. E. Zayed, Khaled A. E. Alurrfi, Mona El–Shater, Anjan Biswas, Yakup Yildirim, Bharat S. Rawal, Ali Saleh Alshomrani, Optical dromions with polarization–mode dispersion having parabolic law of self–phase modulation with multiplicative white noise, 2024, 0972-8821, 10.1007/s12596-024-01888-w
    32. Salman A. AlQahtani, Reham M. A. Shohib, Mohamed E. M. Alngar, Abdulaziz M. Alawwad, The $$\Phi ^{6}$$-model expansion approach for solving the (2+1)-dimensional NLSE with Kerr law nonlinearity and STD with multiplicative white noise in birefringent fibers, 2024, 56, 0306-8919, 10.1007/s11082-023-06055-2
    33. Asma Rashid Butt, Muhammad Umair, Ghada Ali Basendwah, Exploring advanced non-linear effects on highly dispersive optical solitons with multiplicative white noise, 2024, 308, 00304026, 171801, 10.1016/j.ijleo.2024.171801
    34. Pinar Albayrak, Muslum Ozisik, Aydin Secer, Mustafa Bayram, Sebahat Ebru Das, Optical solitons of stochastic perturbed Radhakrishnan–Kundu–Lakshmanan model with Kerr law of self-phase-modulation, 2024, 38, 0217-9849, 10.1142/S0217984924501227
    35. Wafaa B. Rabie, Hisham H. Hussein, Hamdy M. Ahmed, Mahmoud Alnahhass, Wassim Alexan, Abundant solitons for highly dispersive nonlinear Schrödinger equation with sextic-power law refractive index using modified extended direct algebraic method, 2024, 86, 11100168, 680, 10.1016/j.aej.2023.12.022
    36. Hakima Kh. Ahmed, Karmina K. Ali, Optical solutions to the stochastic Fokas–Lenells equation with multiplicative white noise in Itô sense using Jacobi elliptic expansion function method, 2024, 56, 1572-817X, 10.1007/s11082-024-06519-z
    37. Muslum Ozisik, Aydin Secer, Mustafa Bayram, Retrieval of optical soliton solutions of stochastic perturbed Schrödinger-Hirota equation with Kerr law in the presence of spatio-temporal dispersion, 2024, 56, 0306-8919, 10.1007/s11082-023-05652-5
    38. Hina Zulfiqar, Aqsa Aashiq, Kalim U. Tariq, Hijaz Ahmad, Bandar Almohsen, Muhammad Aslam, Hamood Ur Rehman, On the solitonic wave structures and stability analysis of the stochastic nonlinear Schrödinger equation with the impact of multiplicative noise, 2023, 289, 00304026, 171250, 10.1016/j.ijleo.2023.171250
    39. Yi Wei, The Riccati-Bernoulli subsidiary ordinary differential equation method to the coupled Higgs field equation, 2023, 31, 2688-1594, 6790, 10.3934/era.2023342
    40. Elsayed M. E. Zayed, Reham M. A. Shohib, Mohamed E. M. Alngar, Anjan Biswas, Yakup Yıldırım, Asim Asiri, Optical solitons with DWDM topology having parabolic law nonlinearity with multiplicative white noise, 2024, 53, 0972-8821, 2322, 10.1007/s12596-023-01370-z
    41. Wafaa B. Rabie, Hamdy M. Ahmed, Ali Akgül, Derivation of optical solitons for perturbed highly dispersive conformable fractional nonlinear Schrödinger equation with sextic-power law refractive index, 2024, 56, 1572-817X, 10.1007/s11082-024-06725-9
    42. Elsayed M. E. Zayed, Mahmoud El-Horbaty, Basel M. M. Saad, Ahmed H. Arnous, Yakup Yildirim, Novel solitary wave solutions for stochastic nonlinear reaction–diffusion equation with multiplicative noise, 2024, 112, 0924-090X, 20199, 10.1007/s11071-024-10085-0
    43. Nafissa T. Trouba, Mohamed E.M. Alngar, Haitham A. Mahmoud, Reham M.A. Shohib, Optical soliton solutions of the stochastic resonant nonlinear Schrödinger equation with spatio temporal and inter-modal dispersion under generalized Kudryashov's law non-linearity, 2024, 20904479, 103117, 10.1016/j.asej.2024.103117
    44. Salman A. AlQahtani, Mohamed E.M. Alngar, Reham M.A. Shohib, Pranavkumar Pathak, Highly dispersive embedded solitons with quadratic χ(2) and cubic χ(3) non-linear susceptibilities having multiplicative white noise via Itô calculus, 2023, 171, 09600779, 113498, 10.1016/j.chaos.2023.113498
    45. M. Mossa Al-Sawalha, Saima Noor, Mohammad Alqudah, Musaad S. Aldhabani, Rasool Shah, Formation of Optical Fractals by Chaotic Solitons in Coupled Nonlinear Helmholtz Equations, 2024, 8, 2504-3110, 594, 10.3390/fractalfract8100594
    46. Mohamed E. M. Alngar, Almetwally M. Mostafa, Salman A. AlQahtani, Reham M. A. Shohib, Pranavkumar Pathak, Highly dispersive eighth-order embedded solitons with cubic–quartic χ(2) and χ(3) nonlinear susceptibilities under the influence of multiplicative white noise using Itô calculus, 2024, 0217-9849, 10.1142/S0217984924504748
    47. Elsayed M E Zayed, Basel M M Saad, Ahmed H Arnous, Yakup Yildirim, Novel stochastic embedded solitons with quadratic nonlinear susceptibility in the presence of multiplicative noise, 2024, 99, 0031-8949, 095215, 10.1088/1402-4896/ad6940
    48. Rehab M. El-Shiekh, Mahmoud Gaballah, Similarity reduction and new wave solutions for the 2D stochastic cubic Schrödinger equation with multiplicative white noise arising in optics, 2024, 56, 0306-8919, 10.1007/s11082-023-05822-5
    49. Elsayed M.E. Zayed, Reham M.A. Shohib, Mohamed E.M. Alngar, Anjan Biswas, Yakup Yıldırım, Luminita Moraru, Catalina Iticescu, Simona Moldovanu, Dorin Bibicu, Abdulah A. Alghamdi, Dispersive optical solitons with DWDM topology and multiplicative white noise, 2023, 51, 22113797, 106723, 10.1016/j.rinp.2023.106723
    50. Wael W. Mohammed, Farah M. Al-Askar, New optical stochastic solutions for the Schrödinger equation with multiplicative Wiener process/random variable coefficients using two different methods, 2024, 22, 2391-5471, 10.1515/phys-2024-0086
    51. E. M. Mohamed, I. L. El-Kalla, A. M. K. Tarabia, A. H. Abdel Kader, New optical solitons for perturbed stochastic nonlinear Schrödinger equation by functional variable method, 2023, 55, 0306-8919, 10.1007/s11082-023-04844-3
    52. Elsayed M. E. Zayed, Reham M. A. Shohib, Mohamed E. M. Alngar, Anjan Biswas, Yakup Yildirim, Anwar Ja’afar Mohamad Jawad, Ali Saleh Alshomrani, Highly dispersive optical solitons with differential group delay for Sasa-Satsuma equation having multiplicative white noise, 2024, 0972-8821, 10.1007/s12596-024-01801-5
    53. Ismail Onder, Handenur Esen, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Sania Qureshi, Stochastic optical solitons of the perturbed nonlinear Schrödinger equation with Kerr law via Ito calculus, 2023, 138, 2190-5444, 10.1140/epjp/s13360-023-04497-x
    54. Mir Sajjad Hashemi, Ahmed H Arnous, Mustafa Bayram, Sayed M El Din, Nehad Ali Shah, Schrödinger-Hirota equation in birefringent fibers with cubic-quantic nonlinearity and multiplicative white noise in the ito sense: Nucci’s reductions and soliton solutions, 2024, 99, 0031-8949, 095234, 10.1088/1402-4896/ad6aa4
    55. Manar S. Ahmed, Ahmed H. Arnous, Khaled A. Gepreel, Aydin Secer, Analyzing the influence of multiplicative white noise on optical solitons in birefringent fibers through the perturbed Gerdjikov–Ivanov model, 2024, 56, 1572-817X, 10.1007/s11082-024-07329-z
    56. Elsayed M E Zayed, Khaled A E Alurrfi, Abeer M M Hasek, Nouria Arar, Ahmed H Arnous, Yakup Yildirim, Novel highly dispersive soliton solutions in couplers for optical metamaterials: leveraging generalized Kudryashov’s Law of refractive index with eighth-order dispersion and multiplicative white noise, 2024, 99, 0031-8949, 095220, 10.1088/1402-4896/ad69d7
    57. Elsayed M. E. Zayed, Mahmoud El‐Horbaty, Khaled A. Gepreel, Dispersive optical soliton solutions in birefringent fibers with stochastic Kaup–Newell equation having multiplicative white noise, 2024, 47, 0170-4214, 352, 10.1002/mma.9658
    58. Nauman Raza, Saima Arshed, Mustafa Bayram, Kottakkaran Sooppy Nisar, Wedad Albalawi, Mona Mahmoud, Hegagi M. Ali, Exploration of novel solitary waves in presence of higher order polynomial nonlinearity and spatio-temporal dispersion via itô calculus, 2025, 114, 11100168, 179, 10.1016/j.aej.2024.11.057
    59. Elsayed M. E. Zayed, Basel M. M. Saad, Ahmed H. Arnous, Yakup Yildirim, Novel solitary wave solutions in a generalized derivative nonlinear Schrödinger equation with multiplicative white noise effects, 2024, 0924-090X, 10.1007/s11071-024-10725-5
    60. Elsayed M E Zayed, Basel M M Saad, Ahmed H Arnous, Aydin Secer, Handenur Esen, Mustafa Bayram, Chirped and chirp-free optical soliton solutions for stochastic long-short wave resonant equations with multiplicative white noise, 2025, 100, 0031-8949, 015253, 10.1088/1402-4896/ad9d02
    61. Khaled A. Gepreel, Reham M.A. Shohib, Mohamed E.M. Alngar, Yakup Yildirim, Analysis of Novel Optical Cubic–Quartic Solitons in the (2+1)-Dimensional Nonlinear Schrödinger Equation with Multiplicative White Noise, 2025, 03759601, 130204, 10.1016/j.physleta.2024.130204
    62. Bitong Zhang, Ben Gao, Soliton, breather-like and dark-soliton-breather-like solutions in a two-dimensional graded-index waveguide, 2025, 0924-090X, 10.1007/s11071-024-10850-1
    63. Nafissa T. Trouba, Huiying Xu, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Xinzhong Zhu, Soliton solutions and stability analysis of the stochastic nonlinear reaction-diffusion equation with multiplicative white noise in soliton dynamics and optical physics, 2025, 10, 2473-6988, 1859, 10.3934/math.2025086
    64. Elsayed M E Zayed, Khaled A E Alurrfi, Abeer M M Hasek, Ahmed H Arnous, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Sachin Kumar, Perturbations of optical solitons in magneto-optic waveguides incorporating multiplicative white noise and sixth-order dispersion: a study of the Sasa–Satsuma equation, 2025, 99, 0973-7111, 10.1007/s12043-024-02848-6
    65. Khaled A. Gepreel, Reham M. A. Shohib, Mohamed E. M. Alngar, Analyzing multiplicative noise effects on stochastic resonant nonlinear Schrödinger equation via two integration algorithms, 2025, 57, 1572-817X, 10.1007/s11082-025-08067-6
    66. Aydin Secer, Mustafa Bayram, Muslum Ozisik, Stochastic higher-order Lakshmanan–Porsezian–Daniel model with cubic-quintic law nonlinearities in the presence of spatio-temporal and chromatic dispersion terms, 2025, 34, 0218-8635, 10.1142/S021886352450005X
    67. Elsayed M.E. Zayed, Mona El-Shater, Muhammad Amin S. Murad, Aydin Secer, Muslum Ozisik, Ahmed H. Arnous, Investigating broadly dispersive solitons in optical couplers for metamaterials with nonlinear cubic-quintic-septic dynamics and white noise using distinct integration approaches, 2025, 539, 03759601, 130367, 10.1016/j.physleta.2025.130367
    68. Elsayed M.E. Zayed, Manar S. Ahmed, Ahmed H. Arnous, Yakup Yıldırım, Novel soliton solutions of the (3+1)-dimensional stochastic nonlinear Schrödinger equation in birefringent fibers, 2025, 194, 09600779, 116152, 10.1016/j.chaos.2025.116152
    69. Zhimin Yan, Jinbo Li, Shoaib Barak, Salma Haque, Nabil Mlaiki, Delving into quasi-periodic type optical solitons in fully nonlinear complex structured perturbed Gerdjikov–Ivanov equation, 2025, 15, 2045-2322, 10.1038/s41598-025-91978-x
    70. Hongwei Ma, Ziming Liu, Peng Guo, Jianming Qi, Analyzing chaos and bifurcations about fractional order long–short wave interaction system in fluid mechanics models, 2025, 37, 1070-6631, 10.1063/5.0256027
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2311) PDF downloads(98) Cited by(70)

Figures and Tables

Figures(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog