Research article

Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method

  • Received: 26 January 2024 Revised: 14 March 2024 Accepted: 18 March 2024 Published: 29 March 2024
  • This paper solves an example of a time-space fractional Kuramoto-Sivashinsky (KS) equation using the integrated Bäcklund transformation and the Riccati-Bernoulli sub-ODE method. A specific version of the KS equation with power nonlinearity of a given degree is examined. Using symbolic computation, we find new analytical solutions to the current problem for modeling many nonlinear phenomena that are described by this equation, like how the flame front moves back and forth, how fluids move down a vertical wall, or how chemical reactions happen in a uniform medium while they oscillate uniformly across space. In the field of mathematical physics, the Riccati-Bernoulli sub-ODE approach is shown to be a valuable tool for producing a variety of single solutions.

    Citation: M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy. Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method[J]. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604

    Related Papers:

  • This paper solves an example of a time-space fractional Kuramoto-Sivashinsky (KS) equation using the integrated Bäcklund transformation and the Riccati-Bernoulli sub-ODE method. A specific version of the KS equation with power nonlinearity of a given degree is examined. Using symbolic computation, we find new analytical solutions to the current problem for modeling many nonlinear phenomena that are described by this equation, like how the flame front moves back and forth, how fluids move down a vertical wall, or how chemical reactions happen in a uniform medium while they oscillate uniformly across space. In the field of mathematical physics, the Riccati-Bernoulli sub-ODE approach is shown to be a valuable tool for producing a variety of single solutions.



    加载中


    [1] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [2] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singu- lar kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [3] A. Akgul, A novel method for a fractional derivative with non-local and non-singular kernel, Chaos Soliton. Fract., 114 (2018), 478–82.
    [4] X. Wang, H. Qi, B. Yu, Z. Xiong, H. Xu, Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids, Commun. Nonlinear Sci. Numer. Simul., 50 (2017), 77–87.
    [5] Y. Jiang, H. Qi, H. Xu, X. Jiang, Transient electroosmotic slip flow of fractional oldroyd-B fluids, Microfluid. Nanofluid., 21 (2017), 7.
    [6] B. Mehdinejadiani, H. Jafari, D. Baleanu, Derivation of a fractional Boussinesq equation for modelling unconfined groundwater, Eur. Phys. J. Spec. Top., 222 (2013), 1805–1812.
    [7] K. Hosseini, E. Hincal, M. Ilie, Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrodinger equation, Nonlinear Dyn., 111 (2023), 17455–17462.
    [8] Y. Zhang, J. Qian, C. Papelis, P. Sun, Improved understanding of bimolecular reactions in deceptively simple homogeneous media: From laboratory experiments to lagrangian quantification, Water Resour. Res., 50 (2014), 1704–1715.
    [9] D. Bolster, D. A. Benson, K. Singha, Upscaling chemical reactions in multicontinuum systems: When might time fractional equations work, Chaos, Soliton. Fract., 102 (2017), 414–425.
    [10] S. S. Ray, R. K. Bera, Analytical solution of a fractional diffusion equation by Adomian decomposition method, Appl. Math. Comput., 174 (2006), 329–336.
    [11] B. K. Singh, P. Kumar, Fractional variational iteration method for solving fractionalpartial differential equations with proportional delay, Int. J. Differ. Equ., 2017 (2017), 11.
    [12] J. Chen, F. Liu, V. Anh, Analytical solution for the time-fractional telegraph equation by the method of separating variables, J. Math. Anal. Appl., 338 (2008), 1364–1377.
    [13] Y. Nikolova, L. Boyadjiev, Integral transforms method to solve a time-space fractional diffusion equation, Fract. Calculus Appl. Anal., 13 (2010), 57–68.
    [14] A. Secer, M. A. Akinlar, A. Cevikel, Efficient solutions of systems of fractional PDEs by the differential transform method, Adv. Differ. Equa., 2012 (2012), 188.
    [15] A. Elsaid, S. Shamseldeen, S. Madkour, Analytical approximate solution of fractional wave equation by the optimal homotopy analysis method, Eur. J. Pure Appl. Math., 10 (2017), 586–601.
    [16] S. A. El-Tantawy, R. T. Matoog, R. Shah, W. Albandari Alrowaily, S. M. E. Ismaeel, On the shock wave approximation to fractional generalized Burger–Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105.
    [17] M. A. Hammad, R. Shah, B. M. Alotaibi, M. Alotiby, C. G. L. Tiofack, A. W. Alrowaily, et al., On the modified versions of $\left(\frac{G^{\prime}}{G}\right) $-expansion technique for analyzing the fractional coupled Higgs system, AIP Adv., 13 (2023), 105131.
    [18] S. Noor, B. M. Alotaibi, R. Shah, S. M. E. Ismaeel, S. A. El-Tantawy, On the Solitary Waves and Nonlinear Oscillations to the Fractional Schrödinger–KdV Equation in the Framework of the Caputo Operator, Symmetry, 15 (2023), 1616.
    [19] S. Noor, M. A. Hammad, R. Shah, A. W. Alrowaily, S. A. El-Tantawy, Numerical Investigation of Fractional-Order Fornberg–Whitham Equations in the Framework of Aboodh Transformation, Symmetry, 15 (2023), 1353.
    [20] S. A. El-Tantawy, R. Shah, A. W. Alrowaily, N. A. Shah, J. D. Chung, S. M. E. Ismaeel, A comparative study of the fractional-order Belousov–Zhabotinsky system, Mathematics, 11 (2023), 1751.
    [21] H. Yasmin, M. A. Hammad, R. Shah, B. M. Alotaibi, S. M. E. Ismaeel, S. A. El-Tantawy, On the Solutions of the Fractional-Order Sawada–Kotera–Ito Equation and Modeling Nonlinear Structures in Fluid Mediums, Symmetry, 15 (2023), 605.
    [22] H. A. Alyousef, R. Shah, N. A. Shah, J. D. Chung, S. M. E. Ismaeel, S. A. El-Tantawy, The fractional analysis of a nonlinear mKdV equation with Caputo operator, Fractal Fract., 7 (2023), 259.
    [23] R. K. Saxena S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199 (2008), 504–511.
    [24] A. Cetinkaya, O. Kymaz, The solution of the time-fractional diffusion equation by the generalized differential transform method, Math. Comput. Modell., 57 (2013), 2349–2354.
    [25] H. Khan, S. Barak, P. Kumam M. Arif, Analytical Solutions of Fractional Klein-Gordon and Gas Dynamics Equations, via the $G/G^{\prime}$-Expansion Method, Symmetry, 11 (2019), 566.
    [26] S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. http://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
    [27] H. M. He, J. G. Peng, H. Y. Li, Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds, UPB Bull. Ser. A, 84 (2022), 25–36.
    [28] X. Cai, R. Tang, H. Zhou, Q. Li, S. Ma, D. Wang, et al., Dynamically controlling terahertz wavefronts with cascaded metasurfaces, Adv. Photonics, 3 (2021), 036003. http://doi.org/10.1117/1.AP.3.3.036003 doi: 10.1117/1.AP.3.3.036003
    [29] H. Liu, H. Yuan, Q. Liu, J. Hou, H. Zeng, S. Kwong, A Hybrid Compression Framework for Color Attributes of Static 3D Point Clouds, IEEE Trans. Circuits Syst. Video Technol., 32 (2022), 1564–1577. http://doi.org/10.1109/TCSVT.2021.3069838 doi: 10.1109/TCSVT.2021.3069838
    [30] G. Tian, Y. Hui, W. Lu, W. Tingting, Rate-distortion optimized quantization for geometry-based point cloud compression, J. Electron. Imag., 32 (2023), 13047. http://doi.org/10.1117/1.JEI.32.1.013047 doi: 10.1117/1.JEI.32.1.013047
    [31] B. He, L. Yin, E. Zambrano-Serrano, Prediction Modelling of Cold Chain Logistics Demand Based on Data Mining Algorithm, Math. Probl. Eng., 2021 (2021), 3421478. http://doi.org/10.1155/2021/3421478 doi: 10.1155/2021/3421478
    [32] C. Guo, J. Hu, Time base generator based practical predefined-time stabilization of high-order systems with unknown disturbance, IEEE Trans. Circuits Syst. II: Express Briefs, 70 (2023), 2670–2674. http://doi.org/10.1109/TCSII.2023.3242856 doi: 10.1109/TCSII.2023.3242856
    [33] B. Chen, J. Hu, Y. Zhao, B. K. Ghosh, Finite-Time Velocity-Free Rendezvous Control of Multiple AUV Systems With Intermittent Communication, IEEE Trans. Syst. Man Cybern.: Syst., 52 (2022), 6618–6629. http://doi.org/10.1109/TSMC.2022.3148295 doi: 10.1109/TSMC.2022.3148295
    [34] Y. Kai, S. Chen, K. Zhang, Z. Yin, Exact solutions and dynamic properties of a nonlinear fourth-order time-fractional partial differential equation, Waves Random Complex Media, 2022. http://doi.org/10.1080/17455030.2022.2044541
    [35] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. http://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [36] X. Zhou, X. Liu, G. Zhang, L. Jia, X. Wang, Z. Zhao, An Iterative Threshold Algorithm of Log-Sum Regularization for Sparse Problem, IEEE Trans. Circuits Syst. Video Technol., 33 (2023), 4728–4740. http://doi.org/10.1109/TCSVT.2023.3247944 doi: 10.1109/TCSVT.2023.3247944
    [37] K. Hosseini, F. Alizadeh, E. Hinçal, D. Baleanu, A. Akgül, A. M. Hassan, Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to the nonlinear Kodama equation, Results Phys., 54 (2023), 107129.
    [38] K. Hosseini, F. Alizadeh, K. Sadri, Lie vector fields, conservation laws, bifurcation analysis, and Jacobi elliptic solutions to the Zakharov–Kuznetsov modified equal-width equation, Opt. Quant. Electron., 56 (2024), 506.
    [39] J. G. Liu, W. H. Zhu, Y. K. Wu, G. H. Jin, Application of multivariate bilinear neural network method to fractional partial differential equations, Results Phys., 47 (2023), 106341.
    [40] J. G. Liu, WH. Zhu, Y. He, Variable-coefficient symbolic computation approach for finding multiple rogue wave solutions of nonlinear system with variable coefficients, Z. Angew. Math. Phys., 72 (2021), 154.
    [41] J. G. Liu, Q. Ye, Stripe solitons and lump solutions for a generalized Kadomtsev–Petviashvili equation with variable coefficients in fluid mechanics, Nonlinear Dyn., 96 (2019), 23–29.
    [42] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the modified Korteweg-de Vries equation in deterministic case and random case, J. Phys. Math., 8 (2017), 1000214. http://doi.org/10.4172/2090-0902.1000214 doi: 10.4172/2090-0902.1000214
    [43] M. A. E. Abdelrahman, M. A. Sohaly, Solitary waves for the nonlinear Schrödinger problem with the probability distribution function in the stochastic input case, Eur. Phys. J. Plus, 132 (2017), 339.
    [44] X. F. Yang, Z. C. Deng Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equa., 1 (2015), 117–133.
    [45] M. S. Tariq, W. Masood, M. Siddiq, S. Asghar, B. M. Alotaibi, S. M. E. Ismaeel, et al., Bäcklund transformation for analyzing a cylindrical Kortewega-de Vries equation and investigating multiple soliton solutions in a plasma, Phys. Fluids, 35 (2023), 103105.
    [46] Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermel equilibrium, Prog. Theor. Phys., 55 (1976), 356–369.
    [47] G.I. Sivashinsky, Instabilities, pattern, formation, and turbulence in flames, Ann. Rev. Fluid Mech., 15 (1983), 179–199.
    [48] D. J. Benney, Long waves on liquid films, J. Math. Phys., 45 (1966), 150.
    [49] J. Topper, T. Kawahara, Approximate equation for long nonlinear waves on a viscous fluid, J. Phys. Soc. Japan, 44 (1978), 663–666.
    [50] V.Y. Shkadov, Solitary waves in layer of viscous fluid, Fluid Dyn., 1 (1977), 63–66.
    [51] B. I. Cohen, J. A. Krommers, W. M. Tang, M. N. Rosenbluth, Non-linear saturation of the dissipative trapped-ion mode by mode coupling, Nucl. Fusion, 16 (1976), 971–992.
    [52] D. Michelson, Elementary particles as solutions of the Sivashinsky equation, Physica D, 44 (1990), 502–556.
    [53] M. Z. Sarikaya, H. Budak, H. Usta, On generalized the conformable fractional calculus, TWMS J. Appl. Eng. Math., 9 (2019), 792799.
    [54] D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325.
    [55] S. A. Almutlak, S. Parveen, S. Mahmood, A. Qamar, B. M. Alotaibi, S. A. El-Tantawy, On the propagation of cnoidal wave and overtaking collision of slow shear Alfvén solitons in low $\beta-$magnetized plasmas, Phys. Fluids, 35 (2023), 075130.
    [56] N. Batool, W. Masood, M. Siddiq, A. W. Alrowaily, S. M. E. Ismaeel, S. A. El-Tantawy, Hirota bilinear method and multi-soliton interaction of electrostatic waves driven by cubic nonlinearity in pair-ion-electron plasmas, Phys. Fluids, 35 (2023), 033109.
    [57] B. S. Kashkari, S. A. El-Tantawy, A. H. Salas, L. S. El-Sherif, Homotopy perturbation method for studying dissipative nonplanar solitons in an electronegative complex plasma, Chaos Soliton. Fract., 130 (2020), 109457.
    [58] S. A. El-Tantawy, A. H Salas, M. R. Alharthi, On the Analytical and Numerical Solutions of the Linear Damped NLSE for Modeling Dissipative Freak Waves and Breathers in Nonlinear and Dispersive Mediums: An Application to a Pair-Ion Plasma, Front. Phys., 9 (2021), 580224.
    [59] S. A. El-Tantawy, R. A. Alharbey, A. H Salas, Novel approximate analytical and numerical cylindrical rogue wave and breathers solutions: An application to electronegative plasma, Chaos, Soliton. Fract., 155 (2022), 111776.
    [60] S. A. El-Tantawy, A. H. Salas, Haifa A. Alyousef, M. R. Alharthi, Novel approximations to a nonplanar nonlinear Schrödinger equation and modeling nonplanar rogue waves/breathers in a complex plasma, Chaos, Soliton. Fract., 1635 (2022), 112612.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(588) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog