Research article Special Issues

Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives

  • Received: 25 January 2024 Revised: 11 March 2024 Accepted: 13 March 2024 Published: 29 March 2024
  • MSC : 34A07, 34A08, 60G22

  • One kind of stochastic delay differential equation in which the delay term is dependent on a proportion of the current time is the pantograph stochastic differential equation. Electric current collection, nonlinear dynamics, quantum mechanics, and electrodynamics are among the phenomena modeled using this equation. A key idea in physics and mathematics is the well-posedness of a differential equation, which guarantees that the solution to the problem exists and is a unique and meaningful solution that relies continuously on the initial condition and the value of the fractional derivative. Ulam-Hyers stability is a property of equations that states that if a function is approximately satisfying the equation, then there exists an exact solution that is close to the function. Inspired by these findings, in this research work, we established the Ulam-Hyers stability and well-posedness of solutions of pantograph fractional stochastic differential equations (PFSDEs) in the framework of conformable derivatives. In addition, we provided examples to analyze the theoretical results.

    Citation: Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. Well-posedness and Ulam-Hyers stability results of solutions to pantograph fractional stochastic differential equations in the sense of conformable derivatives[J]. AIMS Mathematics, 2024, 9(5): 12375-12398. doi: 10.3934/math.2024605

    Related Papers:

  • One kind of stochastic delay differential equation in which the delay term is dependent on a proportion of the current time is the pantograph stochastic differential equation. Electric current collection, nonlinear dynamics, quantum mechanics, and electrodynamics are among the phenomena modeled using this equation. A key idea in physics and mathematics is the well-posedness of a differential equation, which guarantees that the solution to the problem exists and is a unique and meaningful solution that relies continuously on the initial condition and the value of the fractional derivative. Ulam-Hyers stability is a property of equations that states that if a function is approximately satisfying the equation, then there exists an exact solution that is close to the function. Inspired by these findings, in this research work, we established the Ulam-Hyers stability and well-posedness of solutions of pantograph fractional stochastic differential equations (PFSDEs) in the framework of conformable derivatives. In addition, we provided examples to analyze the theoretical results.



    加载中


    [1] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350. https://doi.org/10.1016/j.jmaa.2007.06.021 doi: 10.1016/j.jmaa.2007.06.021
    [2] M. Feckan, J. Wang, Y. Zhou, Controllability of fractional functional evolution equations of Sobolev type via characteristic solution operators, J. Optim. Theory Appl., 156 (2013), 79–95. http://dx.doi.org/10.1007/s10957-012-0174-7 doi: 10.1007/s10957-012-0174-7
    [3] C. Lizama, An operator theoretical approach to a class of fractional order differential equations, Appl. Math. Lett., 24 (2011), 184–190. https://doi.org/10.1016/j.aml.2010.08.042 doi: 10.1016/j.aml.2010.08.042
    [4] R. A. El-Nabulsi, Path integral formulation of fractionally perturbed Lagrangian oscillators on fractal, J. Stat. Phys., 172 (2018), 1617–1640. https://doi.org/10.1007/s10955-018-2116-8 doi: 10.1007/s10955-018-2116-8
    [5] P. B. Dhivakaran, A. Vinodkumar, S. Vijay, S. Lakshmanan, J. Alzabut, R. A. El-Nabulsi, et al., Bipartite synchronization of fractional-order memristor-based coupled delayed neural networks with pinning control, Mathematics, 10 (2022), 3699. http://dx.doi.org/10.3390/math10193699 doi: 10.3390/math10193699
    [6] E. Hernández, D. O'Regan, K. Balachandran, Existence results for abstract fractional differential equations with nonlocal conditions via resolvent operators, Indag. Math., 24 (2013), 68–82. https://doi.org/10.1016/j.indag.2012.06.007 doi: 10.1016/j.indag.2012.06.007
    [7] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, 2 Eds., World Scientific, 2016. https://doi.org/10.1142/10238 doi: 10.1142/10238
    [8] G. M. Mophou, G. M. N'guérékata, On integral solutions of some nonlocal fractional differential equations with nondense domain, Nonlinear Anal., 71 (2009), 4668–4675. https://doi.org/10.1016/j.na.2009.03.029 doi: 10.1016/j.na.2009.03.029
    [9] N. Nagajothi, V. Sadhasivam, O. Bazighifan, R. A. El-Nabulsi, Existence of the class of nonlinear hybrid fractional Langevin quantum differential equation with Dirichlet boundary conditions, Fractal Fract., 5 (2021), 156. https://doi.org/10.3390/fractalfract5040156 doi: 10.3390/fractalfract5040156
    [10] R. A. El-Nabulsi, Fractional nonlocal Newton's law of motion and emergence of Bagley-Torvik equation, J. Peridyn. Nonlocal Model., 2 (2020), 50–58. https://doi.org/10.1007/s42102-019-00018-6 doi: 10.1007/s42102-019-00018-6
    [11] W. Afzal, M. Abbas, W. Hamali, A. M. Mahnashi, M. D. Sen, Hermite-Hadamard-type inequalities via Caputo-Fabrizio fractional integral for h-Godunova-Levin and $(h_1, h_2)$-convex functions, Fractal Fract., 7 (2023), 687. https://doi.org/10.3390/fractalfract7090687 doi: 10.3390/fractalfract7090687
    [12] W. Afzal, N. M. Aloraini, M. Abbas, J. S. Ro, A. A. Zaagan, Some novel Kulisch-Miranker type inclusions for a generalized class of Godunova-Levin stochastic processes, AIMS Mathematics, 9 (2024), 5122–5146. https://doi.org/10.3934/math.2024249 doi: 10.3934/math.2024249
    [13] A. A. H. Ahmadini, W. Afzal, M. Abbas, E. S. Aly, Weighted Fejer, Hermite-Hadamard, and Trapezium-type inequalities for ($h_1$, $h_2$)-Godunova-Levin Preinvex function with applications and two open problems, Mathematics, 12 (2024), 382. https://doi.org/10.3390/math12030382 doi: 10.3390/math12030382
    [14] Y. Xu, W. Li, C. Zhang, W. Li, Global bipartite synchronization of fractional-order time-varying coupled signed networks with proportional delays, Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107452. http://dx.doi.org/10.1016/j.cnsns.2023.107452 doi: 10.1016/j.cnsns.2023.107452
    [15] L. Zhang, Y. Yang, Bipartite synchronization analysis of fractional order coupled neural networks with hybrid control, Neural Process. Lett., 52 (2020), 1969–1981. https://doi.org/10.1007/s11063-020-10332-6 doi: 10.1007/s11063-020-10332-6
    [16] Y. Guo, Y. Li, Bipartite leader-following synchronization of fractional-order delayed multilayer signed networks by adaptive and impulsive controllers, Appl. Math. Comput., 430 (2022), 127243. https://doi.org/10.1016/j.amc.2022.127243 doi: 10.1016/j.amc.2022.127243
    [17] Z. Yao, Z. Yang, Y. Fu, Long time decay analysis of complex-valued fractional abstract evolution equations with delay, Appl. Math. Comput., 460 (2024), 128292. https://doi.org/10.1016/j.amc.2023.128292 doi: 10.1016/j.amc.2023.128292
    [18] A. Jajarmi, D. Baleanu, S. S. Sajjadi, J. J. Nieto, Analysis and some applications of a regularized $\psi$-Hilfer fractional derivative, J. Comput. Appl. Math., 415 (2022), 114476. https://doi.org/10.1016/j.cam.2022.114476 doi: 10.1016/j.cam.2022.114476
    [19] M. I. Liaqat, A. Akg$\ddot{u}$l, A novel approach for solving linear and nonlinear time-fractional Schrödinger equations, Chaos Soliton Fract., 162 (2022), 112487. https://doi.org/10.1016/j.chaos.2022.112487 doi: 10.1016/j.chaos.2022.112487
    [20] W. Chen, H. Sun, X. Li, Fractional derivative modeling in mechanics and engineering, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-8802-7
    [21] M. I. Liaqat, A. Khan, A. Akg$\ddot{u}$l, Adaptation on power series method with conformable operator for solving fractional order systems of nonlinear partial differential equations, Chaos Soliton Fract., 157 (2022), 111984. https://doi.org/10.1016/j.chaos.2022.111984 doi: 10.1016/j.chaos.2022.111984
    [22] M. Mouy, H. Boulares, S. Alshammari, M. Alshammari, Y. Laskri, W. W. Mohammed, On averaging principle for Caputo-Hadamard fractional stochastic differential pantograph equation, Fractal Fract., 7 (2022), 31. https://doi.org/10.3390/fractalfract7010031 doi: 10.3390/fractalfract7010031
    [23] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [24] H. M. Ahmed, Q. Zhu, The averaging principle of Hilfer fractional stochastic delay differential equations with Poisson jumps, Appl. Math. Lett., 112 (2021), 106755. https://doi.org/10.1016/j.aml.2020.106755 doi: 10.1016/j.aml.2020.106755
    [25] C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions, Asian J. Control, 24 (2022), 2378–2394. https://doi.org/10.1002/asjc.2650 doi: 10.1002/asjc.2650
    [26] V. E. Tarasov, Mathematical economics: Application of fractional calculus, Mathematics, 8 (2020), 660. https://doi.org/10.3390/math8050660 doi: 10.3390/math8050660
    [27] Z. Li, L. Xu, Exponential stability in mean square of stochastic functional differential equations with infinite delay, Acta Appl. Math., 174 (2021), 8. https://doi.org/10.1007/s10440-021-00426-1 doi: 10.1007/s10440-021-00426-1
    [28] L. Kexue, P. Jigen, Controllability of fractional neutral stochastic functional differential systems, Z. Angew. Math. Phys., 65 (2014), 941–959. http://dx.doi.org/10.1007/s00033-013-0369-2 doi: 10.1007/s00033-013-0369-2
    [29] J. Cui, L. Yan, Existence result for fractional neutral stochastic integro-differential equations with infinite delay, J. Phys. A, 44 (2011), 335201. http://doi.org/10.1088/1751-8113/44/33/335201 doi: 10.1088/1751-8113/44/33/335201
    [30] M. Niu, B. Xie, Regularity of a fractional partial differential equation driven by space-time white noise, Proc. Amer. Math. Soc., 138 (2010), 1479–1489. http://dx.doi.org/10.1090/S0002-9939-09-10197-1 doi: 10.1090/S0002-9939-09-10197-1
    [31] P. Chen, Y. Li, X. Zhang, On the initial value problem of fractional stochastic evolution equations in Hilbert space, Commun. Pur. Appl. Anal., 14 (2015), 1817–1840. http://dx.doi.org/10.3934/cpaa.2015.14.1817 doi: 10.3934/cpaa.2015.14.1817
    [32] P. Chen, Y. Li, Nonlocal Cauchy problem for fractional stochastic evolution equations in Hilbert spaces, Collect. Math., 66 (2015), 63–76. http://dx.doi.org/10.1007/s13348-014-0106 doi: 10.1007/s13348-014-0106
    [33] P. Chen, X. Zhang, Y. Li, Nonlocal problem for fractional stochastic evolution equations with solution operators, Fract. Calc. Appl. Anal., 19 (2016), 1507–1526. http://dx.doi.org/10.1515/fca-2016-0078 doi: 10.1515/fca-2016-0078
    [34] A. Karczewska, C. Lizama, Solutions to stochastic fractional oscillation equations, Appl. Math. Lett., 23 (2010), 1361–1366. https://doi.org/10.1016/j.aml.2010.06.032 doi: 10.1016/j.aml.2010.06.032
    [35] R. Schnaubelt, M. Veraar, Regularity of stochastic Volterra equations by functional calculus methods, J. Evol. Equ., 17 (2017), 523–536. https://doi.org/10.1007/s00028-016-0365-z doi: 10.1007/s00028-016-0365-z
    [36] G. Xiao, J. Wang, Stability of solutions of Caputo fractional stochastic differential equations, Nonlinear Anal. Model. Control, 26 (2021), 581–596. http://dx.doi.org/10.15388/namc.2021.26.22421 doi: 10.15388/namc.2021.26.22421
    [37] S. Saifullah, S. Shahid, A. Zada, Analysis of neutral stochastic fractional differential equations involving Riemann-Liouville fractional derivative with retarded and advanced arguments, Qual. Theory Dyn. Syst., 23 (2024), 39. https://doi.org/10.1007/s12346-023-00894-w doi: 10.1007/s12346-023-00894-w
    [38] A. Moumen, A. Alsinai, R. Shafqat, N. A. Albasheir, M. Alhagyan, A. Gargouri, et al., Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory, AIMS Mathematics, 8 (2023), 19892–19912. http://dx.doi.org/10.3934/math.20231014 doi: 10.3934/math.20231014
    [39] M. Houas, A. Devi, A. Kumar, Existence and stability results for fractional-order pantograph differential equations involving Riemann-Liouville and Caputo fractional operators, Int. J. Dynam. Control, 11 (2023), 1386–1395. http://dx.doi.org/10.1007/s40435-022-01005-4 doi: 10.1007/s40435-022-01005-4
    [40] E. Gokmen, O. R. Isik, A numerical method to solve fractional pantograph differential equations with residual error analysis, Math. Sci., 16 (2022), 361–371. http://dx.doi.org/10.1007/s40096-021-00426-0 doi: 10.1007/s40096-021-00426-0
    [41] P. Rahimkhani, Y. Ordokhani, E. Babolian, Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet, J. Comput. Appl. Math., 309 (2017), 493–510. https://doi.org/10.1016/j.cam.2016.06.005 doi: 10.1016/j.cam.2016.06.005
    [42] I. Ahmed, P. Kumam, J. Abubakar, P. Borisut, K. Sitthithakerngkiet, Solutions for impulsive fractional pantograph differential equation via generalized anti-periodic boundary condition, Adv. Differ. Equ., 2020 (2020), 477.
    [43] C. Yang, J. Hou, X. Lv, Jacobi spectral collocation method for solving fractional pantograph delay differential equations, Eng. Comput., 38 (2022), 1985–1994. https://doi.org/10.1007/s00366-020-01193-7 doi: 10.1007/s00366-020-01193-7
    [44] J. Alzabut, A. G. M. Selvam, R. A. El-Nabulsi, V. Dhakshinamoorthy, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. http://dx.doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
    [45] O. Kahouli, S. Albadran, A. Aloui, A. B. Makhlouf, Ulam-Hyers stability of pantograph Hadamard fractional stochastic differential equations, Symmetry, 15 (2023), 1583. https://doi.org/10.3390/sym15081583 doi: 10.3390/sym15081583
    [46] M. Houas, A. Devi, A. Kumar, Existence and stability results for fractional-order pantograph differential equations involving Riemann-Liouville and Caputo fractional operators, Int. J. Dynam. Control, 11 (2023), 1386–1395. http://dx.doi.org/10.1007/s40435-022-01005-4 doi: 10.1007/s40435-022-01005-4
    [47] M. A. Alqudah, H. Boulares, B. Abdalla, T. Abdeljawad, Khasminskii approach for $\psi$-Caputo fractional stochastic pantograph problem, Qual. Theory Dyn. Syst., 23 (2024), 100. https://doi.org/10.1007/s12346-023-00951-4 doi: 10.1007/s12346-023-00951-4
    [48] A. S. Ranjani, M. Suvinthra, Large deviations for stochastic fractional pantograph differential equation, Int. J. Dynam. Control, 12 (2023), 136–147. https://doi.org/10.1007/s40435-023-01339-7 doi: 10.1007/s40435-023-01339-7
    [49] D. Gao, J. Li, Z. Luo, D. Luo, The averaging principle for stochastic pantograph equations with non-Lipschitz conditions, Math. Probl. Eng., 2021 (2021), 5578936. https://doi.org/10.1155/2021/5578936 doi: 10.1155/2021/5578936
    [50] L. Hu, Y. Ren, Q. He, Pantograph stochastic differential equations driven by G-Brownian motion, J. Math. Anal. Appl., 480 (2019), 123381. https://doi.org/10.1016/j.jmaa.2019.123381 doi: 10.1016/j.jmaa.2019.123381
    [51] L. Mchiri, A. B. Makhlouf, H. Rguigui, Ulam-Hyers stability of pantograph fractional stochastic differential equations, Math. Methods Appl. Sci., 46 (2023), 4134–4144. https://doi.org/10.1002/mma.8745 doi: 10.1002/mma.8745
    [52] W. Xu, W. Xu, S. Zhang, The averaging principle for stochastic differential equations with Caputo fractional derivative, Appl. Math. Lett., 93 (2019), 79–84. https://doi.org/10.1016/j.aml.2019.02.005 doi: 10.1016/j.aml.2019.02.005
    [53] W. Wang, S. Cheng, Z. Guo, X. Yan, A note on the continuity for Caputo fractional stochastic differential equations, Chaos, 30 (2022), 073106. http://dx.doi.org/10.1063/1.5141485 doi: 10.1063/1.5141485
    [54] D. Luo, Q. Zhu, Z. Luo, An averaging principle for stochastic fractional differential equations with time-delays, Appl. Math. Lett., 105 (2020), 106290. https://doi.org/10.1016/j.aml.2020.106290 doi: 10.1016/j.aml.2020.106290
    [55] Z. Wang, P. Lin, Averaging principle for fractional stochastic differential equations with $L^p$ convergence, Appl. Math. Lett., 130 (2022), 108024. https://doi.org/10.1016/j.aml.2022.108024 doi: 10.1016/j.aml.2022.108024
    [56] D. Zhao, M. Luo, General conformable fractional derivative and its physical interpretation, Calcolo, 54 (2017), 903–917. http://dx.doi.org/10.1007/s10092-017-0213-8 doi: 10.1007/s10092-017-0213-8
    [57] A. Ali, Z. Gul, W. A. Khan, S. Ahmad, S. Zeb, Investigation of fractional order sine-Gordon equation using Laplace Adomian decomposition method, Fractals, 29 (2021), 2150121. http://dx.doi.org/10.1142/S0218348X21501218 doi: 10.1142/S0218348X21501218
    [58] G. Sowmya, I. E. Sarris, C. S. Vishalakshi, R. S. V. Kumar, B. C. Prasannakumara, Analysis of transient thermal distribution in a convective-radiative moving rod using two-dimensional differential transform method with multivariate pade approximant, Symmetry, 13 (2021), 1793. http://dx.doi.org/10.3390/sym13101793 doi: 10.3390/sym13101793
    [59] E. Rama, K. Somaiah, K. Sambaiah, A study of variational iteration method for solving various types of problems, Malaya J. Mat., 9 (2021), 701–708. http://dx.doi.org/10.26637/MJM0901/0123 doi: 10.26637/MJM0901/0123
    [60] S. Yüzbasi, An operational matrix method to solve the Lotka-Volterra predator-prey models with discrete delays, Chaos Soliton Fract., 153 (2021), 111482. https://doi.org/10.1016/j.chaos.2021.111482 doi: 10.1016/j.chaos.2021.111482
    [61] P. Jain, M. Kumbhakar, K. Ghoshal, Application of homotopy analysis method to the determination of vertical sediment concentration distribution with shear-induced diffusivity, Eng. Comput., 38 (2022), 2609–2628. https://doi.org/10.1007/s00366-021-01491-8 doi: 10.1007/s00366-021-01491-8
    [62] S. N. Tural-Polat, A. T. Dincel, Numerical solution method for multi-term variable order fractional differential equations by shifted Chebyshev polynomials of the third kind, Alex. Eng. J., 61 (2022), 5145–5153. https://doi.org/10.1016/j.aej.2021.10.036 doi: 10.1016/j.aej.2021.10.036
    [63] H. Eltayeb, S. Mesloub, Application of multi-dimensional of conformable Sumudu decomposition method for solving conformable singular fractional coupled Burger's equation, Acta Math. Sci., 41 (2021), 1679–1698. http://dx.doi.org/10.1007/s10473-021-0517-2 doi: 10.1007/s10473-021-0517-2
    [64] M. H. Al-Tai, A. Al-Fayadh, Solving two dimensional coupled Burger's equations and Sine-Gordon equation using El-Zaki transform-variational iteration method, Al-Nahrain J. Sci., 24 (2021), 41–47. http://dx.doi.org/10.22401/ANJS.24.2.07 doi: 10.22401/ANJS.24.2.07
    [65] M. Modanli, S. T. Abdulazeez, A. M. Husien, A residual power series method for solving pseudo hyperbolic partial differential equations with nonlocal conditions, Numer. Methods Partial Differ. Equ., 37 (2021), 2235–2243. http://dx.doi.org/10.1002/num.22683 doi: 10.1002/num.22683
    [66] M. I. Liaqat, A. Khan, M. A. Alqudah, T. Abdeljawad, Adapted Homotopy perturbation method with Shehu transform for solving conformable fractional nonlinear partial differential equations, Fractals, 31 (2023), 2340027. http://dx.doi.org/10.1142/S0218348X23400273 doi: 10.1142/S0218348X23400273
    [67] M. I. Liaqat, E. Okyere, The fractional series solutions for the conformable time-fractional swift-Hohenberg equation through the conformable Shehu Daftardar-Jafari approach with comparative analysis, J. Math., 2022 (2022), 3295076. http://dx.doi.org/10.1155/2022/3295076 doi: 10.1155/2022/3295076
    [68] M. I. Liaqat, A. Akgül, M. De la Sen, M. Bayram, Approximate and exact solutions in the sense of conformable derivatives of quantum mechanics models using a novel algorithm, Symmetry, 15 (2023), 744. http://dx.doi.org/10.3390/sym15030744 doi: 10.3390/sym15030744
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(799) PDF downloads(56) Cited by(4)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog