Research article

Existence of solutions of fractal fractional partial differential equations through different contractions

  • Received: 28 January 2024 Revised: 08 March 2024 Accepted: 18 March 2024 Published: 29 March 2024
  • MSC : 47H10, 54H25

  • In the past, the existence and uniqueness of the solutions of fractional differential equations have been investigated by many researchers theoretically in various approaches in the literature. In this paper, there is no discussion of the existence of solutions for the nonlinear differential equations with fractal fractional operators. The objective of this work is to present novel contraction approaches, notably the $ \varpropto $-$ \psi $-contraction $ \varpropto $-type of the $ \tilde{\texttt{F}} $-contraction, within the context of $ \hat{F} $-metric and orbital metric spaces. The aim of this study is to illustrate certain fixed point theorems that offer a new and direct approach to establish the existence and uniqueness of the solution to the general partial differential equations by employing the fractal fractional operators.

    Citation: Muhammad Sarwar, Aiman Mukheimer, Syed Khayyam Shah, Arshad Khan. Existence of solutions of fractal fractional partial differential equations through different contractions[J]. AIMS Mathematics, 2024, 9(5): 12399-12411. doi: 10.3934/math.2024606

    Related Papers:

  • In the past, the existence and uniqueness of the solutions of fractional differential equations have been investigated by many researchers theoretically in various approaches in the literature. In this paper, there is no discussion of the existence of solutions for the nonlinear differential equations with fractal fractional operators. The objective of this work is to present novel contraction approaches, notably the $ \varpropto $-$ \psi $-contraction $ \varpropto $-type of the $ \tilde{\texttt{F}} $-contraction, within the context of $ \hat{F} $-metric and orbital metric spaces. The aim of this study is to illustrate certain fixed point theorems that offer a new and direct approach to establish the existence and uniqueness of the solution to the general partial differential equations by employing the fractal fractional operators.



    加载中


    [1] T. Allahviranloo, A. Jafarian, R. Saneifard, N. Ghalami, S. M. Nia, F. Kiani, et al., An application of artificial neural networks for solving fractional higher-order linear integro-differential equations, Bound. Value Probl., 2023 (2023), 74. https://doi.org/10.1186/s13661-023-01762-x doi: 10.1186/s13661-023-01762-x
    [2] M. Sivashankar, S. Sabarinathan, V. Govindan, U. Fernandez-Gamiz, S. Noeiaghdam, Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation, AIMS Math., 8 (2023), 2720–2735. https://doi.org/10.3934/math.2023143 doi: 10.3934/math.2023143
    [3] P. Rakshit, S. Kumar, S. Noeiaghdam, U. Fernandez-Gamiz, M. Altanji, S. Santra, Modified SIR model for COVID-19 transmission dynamics: simulation with case study of UK, US and India, Results Phys., 40 (2022), 105855. https://doi.org/10.1016/j.rinp.2022.105855 doi: 10.1016/j.rinp.2022.105855
    [4] Y. Talaei, S. Noeiaghdam, H. Hosseinzadeh, Numerical solution of fractional order fredholm integro-differential equations by spectral method with fractional basis functions, Bull. Irkutsk State Univ. Ser. Math., 45 (2023), 89–103. https://doi.org/10.26516/1997-7670.2023.45.89 doi: 10.26516/1997-7670.2023.45.89
    [5] H. A. Hasanen, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2023), 1–16. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [6] T. Obut, E. Cimen, M. Cakir, A novel numerical approach for solving delay differential equations arising in population dynamics, Math. Modell. Control, 3 (2023), 233–243. https://doi.org/10.3934/mmc.2023020 doi: 10.3934/mmc.2023020
    [7] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos Solitons Fract., 89 (2016), 447–454. https://doi.org/10.1016/j.chaos.2016.02.012 doi: 10.1016/j.chaos.2016.02.012
    [8] X. Zhang, D. Boutat, D. Liu, Applications of fractional operator in image processing and stability of control systems, Fractal Fract., 7 (2023), 359. https://doi.org/10.3390/fractalfract7050359 doi: 10.3390/fractalfract7050359
    [9] H. Yan, J. Zhang, X. Zhang, Injected infrared and visible image fusion via $L_{1}$ decomposition model and guided filtering, IEEE Trans. Comput. Imag., 8 (2022), 162–173. https://doi.org/10.1109/TCI.2022.3151472 doi: 10.1109/TCI.2022.3151472
    [10] A. J. Gnanaprakasam, G. Mani, O. Ege, A. Aloqaily, N. Mlaiki, New fixed point results in orthogonal $b$-metric spaces with related applications, Mathematics, 11 (2023), 677. https://doi.org/10.3390/math11030677 doi: 10.3390/math11030677
    [11] H. Alrabaiah, T. Abdeljawad, A new approach to fractional differential equations, Therm. Sci., 27 (2023), 301–309. https://doi.org/10.2298/TSCI23S1301A doi: 10.2298/TSCI23S1301A
    [12] M. Hedayati, R. Ezzatid, S. Noeiaghdam, New procedures of a fractional order model of novel coronavirus (COVID-19) outbreak via wavelets method, Axioms, 10 (2021), 122. https://doi.org/10.3390/axioms10020122 doi: 10.3390/axioms10020122
    [13] Z. Luo, L. Luo, New criteria for oscillation of damped fractional partial differential equations, Math. Modell. Control, 2 (2022), 219–227. https://doi.org/10.3934/mmc.2022021 doi: 10.3934/mmc.2022021
    [14] H. Afshari, D. Baleanu, Applications of some fixed point theorems for fractional differential equations with Mittag-Leffler kernel, Adv. Differ. Equations, 2020 (2020), 140. https://doi.org/10.1186/s13662-020-02592-2 doi: 10.1186/s13662-020-02592-2
    [15] E. Karapınar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equations, 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3 doi: 10.1186/s13662-019-2354-3
    [16] D. Wardowski, Fixed point theory of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), 94. https://doi.org/10.1186/1687-1812-2012-94 doi: 10.1186/1687-1812-2012-94
    [17] B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha$-$\psi$-contractive type mappings, Nonlinear Anal., 2012 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [18] E. Karapınar, B. Samet, Generalized $\alpha$-$\psi$-contractive type mappings and related fixed point theorems with applications, Abstr. Appl. Anal., 2012 (2012), 793486. https://doi.org/10.1155/2012/793486 doi: 10.1155/2012/793486
    [19] D. Gopal, M. Abbas, D. K. Patel, C. Vetro, Fixed points of $\alpha$-type $F$-contractive mappings with an application to nonlinear fractional differential equation, Acta Math. Sci., 36 (2016), 957–970. https://doi.org/10.1016/S0252-9602(16)30052-2 doi: 10.1016/S0252-9602(16)30052-2
    [20] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [21] H. Aydi, E. Karapınar, Z. D. Mitrovi, T. Rashid, A remark on "existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results $\mathcal{F}$-metric space", Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., 113 (2019), 3197–3206. https://doi.org/10.1007/s13398-019-00690-9 doi: 10.1007/s13398-019-00690-9
    [22] H. Afshari, H. Hosseinpour, H. R. Marasi, Application of some new contractions for existence and uniqueness of differential equations involving Caputo-Fabrizio derivative, Adv. Differ. Equations, 2021 (2021), 321. https://doi.org/10.1186/s13662-021-03476-9 doi: 10.1186/s13662-021-03476-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(358) PDF downloads(47) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog