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Abstract: In the past, the existence and uniqueness of the solutions of fractional differential
equations have been investigated by many researchers theoretically in various approaches in
the literature. In this paper, there is no discussion of the existence of solutions for the
nonlinear differential equations with fractal fractional operators. The objective of this work is to
present novel contraction approaches, notably the ∝-ψ-contraction ∝-type of the F̃-contraction, within
the context of F̂-metric and orbital metric spaces. The aim of this study is to illustrate certain fixed
point theorems that offer a new and direct approach to establish the existence and uniqueness of the
solution to the general partial differential equations by employing the fractal fractional operators.
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1. Introduction and preliminaries

Fractional order problems are receiving considerable attention in different scientific fields because
they can model complicated processes more precisely than conventional integer-order equations.
Artificial neural networks (ANNs) have been one of the notable applications used in recent studies to
solve fractional higher-order linear integro-differential equations [1]. By utilizing the natural parallel
processing skills of ANNs, these equations can be effectively solved, leading to progress in areas such
as physics, engineering, and finance. The stability study of pandemics like the COVID-19 outbreak
has been improved by using Caputo-Fabrizio fractional differential equations (FDEs) [2, 3]. This
method allows for a more detailed comprehension of epidemic dynamics, which helps create
successful containment tactics. Using spectral methods with fractional basis functions provides a
robust framework for solving integral equations in various scientific fields, namely, fractional
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Fredholm integro-differential equations. Researching stability and the existence of solutions in
complex structures, such as the triple problem of fractional hybrid delay differential equations, along
with modern mathematical modeling techniques, provides valuable insights into the behavior of
intricate dynamic systems [4–6].

Nonlinear differential equations are widely recognized for describing a variety of physical events.
Partial differential equations, specifically belonging to the category of the Cauchy problem, have long
been recognized as effective mathematical tools for modeling real-world problems in various areas of
engineering and science. There are numerous differential operators in use today in the literature, the
most popular of which is related to the rate of change [7]. Because of a newly introduced parameter
known as fractal dimension, it has now been demonstrated in several exceptional studies that the
fractal derivative, a differential operator introduced by Wenfeng Chen, predicts aspects of nature more
precisely than ordinary differentiation. The fractal derivative is a term used in applied mathematics to
describe a variable scaled according to tα. New avenues of research for science, engineering, and
technological progress have been opened because of these new mathematical tools. The fractal
derivative was developed to describe physical phenomena that are beyond the scope of classical
physical rules. Media having non-integral fractal dimensions do not conform to these supposedly
Euclidean geometrical considerations. Fractal features are frequently seen in practical situations such
as porous materials, aquifers turbulence, etc. [8, 9].

As a result, utilizing diverse numerical and analytical approaches for solving the nonlinear
differential equations is essential for scientific problem identification [10, 11]. The majority of
researchers (see [12, 13]) have looked at theoretical conclusions in different ways that prove the
existence results for the FDEs. Afshari and Baleanu [14] have recently investigated the theoretical
solution (existence and uniqueness) for some Atangana-Baleanu FDEs in the sense of Caputo. Also,
Karapinar et al. [15] demonstrate the existence of solutions to ordinary and fractional boundary value
problems (BVPs) with integral type boundary conditions (BC) in the context of some Caputo-type
fractional operators.

Therefore, fixed point theory has attracted much attention in recent decades; it is a beautiful
technique for determining the solution of existence to differential/integral equations. For this reason,
one of the efficient results proposed by Wardowski [16] guarantees the existence and uniqueness of a
fixed point in the context of the usual metric space. Samet et al. [17] introduce the idea of
∝-admissibility of mappings, which was subsequently expanded upon by Karapinar and Samet [18].
Gopal introduced a novel idea of ∝-type F̃-contraction mapping in their paper [19]. Recently, Jleli
with Samet [20] has proposed the concept of F-metric space as an approach to extend the applicability
of the Banach contraction principle.

This manuscript employs various contractions, including the ∝-ψ-contraction and ∝-type of
F̃-contraction, along with outcomes from F̂-metric and orbital metric spaces. These are utilized to
obtain the theoretical solution for a general partial differential equation involving a fractal fractional
differential operator

FF
0 D♭

϶ℏ(q, ϶) = F(q, ϶, ℏ(q, ϶)), 0 < ♭ < 1, (1.1)
ℏ(q, 0) = ℏ◦,

where
(q, ϶) ∈ [0, £] × [0,H], V = [0, £] × [0,H]ℏ(q, ϶) ∈ C(V,R),
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and F is a function that is continuous and non-linear, i.e., F(0, 0, ℏ(0, 0)) = 0.

Definition 1.1. [10] For a non-empty set ℧, define md: ℧ × ℧ → [0,+∞), which is termed as a
b-metric if these conditions hold:

(1) If md(w, s) = 0, then w = s for all w, s ∈ ℧.

(2) md(w, s) = md(s,w) for all w, s ∈ ℧.

(3) md(w, s) ≤ b[md(w, q) + md(q, s)].

Then, we call (℧,md) a b-metric space.

Consider (℧,md) to represent a complete b-metric space, and P is the set of functions ψ: [0,+∞)→
[0,+∞) possessing the following two properties:

(1) ψ being increasing and continuous.

(2) ψ(ℓq) ≤ ℓψ(q) ≤ ℓq, provided ℓ > 0.

Further, we assume that Q consist of elements in the form as non-decreasing mapping Φ, which are
defined by Φ: [0,+∞)→ [0, 1

a ) with a ≥ 1.

Definition 1.2. [17] Let ℧ be a non-empty set, Υ: ℧→ ℧, and ∝: ℧ ×℧→ R such that

∝ (g, s) ≥ 1 =⇒ ∝ (Υg,Υs) ≥ 1 for all g, s ∈ ℧.

Then Υ is termed as ∝-admissible

Definition 1.3. [11] Let (℧,md) represent a complete b-metric space, andΥ: ℧→ ℧, and ∝: ℧×℧→
[0,+∞) such that,

∝ (g, s)ψ
(
a3md(Υg,Υs)

)
≤ Φ (ψ (md(g, s)))ψ (md(g, s)) ,

where g, s ∈ ℧, Φ ∈ Q, a ≥ 1, and ψ ∈ P. Then Υ is termed as an ∝-ψ-contraction function.

The upcoming result illustrates that ∝-ψ-contractive mapping have a fixed point.

Corollary 1.4. [17] Assume (℧,md) represents a complete b-metric space, and Υ: ℧ → ℧ is an
∝-ψ-contraction in a way that:

(℘1) There exists ℘ ∈ ℧ in a manner that ∝ (℘, ψ℘) ≥ 1.

(℘2) {℘n} ⊆ ℧, lim
n→+∞

℘n = ℘, where ℘ ∈ ℧ and ∝ (℘n, ℘n+1) ≥ 1 implies ∝ (℘n, ℘) ≥ 1.

Then Υ possesses a fixed point.

2. Existence results

For the proof of the following theorem consider

℧ = C(ς,R) and md(ℏ, ω) = sup
q,϶∈ς
∥ℏ(q) − ω(϶)∥2.
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Theorem 2.1. Let J: R2 → R in a way that

(i)

∥F(q, ϶, ℏ(q, ϶)) − F(q, ϶, ω(q, ϶))∥ ≤
ς♭

2
√

2♭⊤2♭−1B(♭, ♭)
,

then,
√
Φ(ψ(∥ℏ(q, ϶) − ω(q, ϶)∥2))ψ(∥ℏ(q, ϶) − ω(q, ϶)∥2) for (q, ϶) ∈ ς and ℏ(q, ϶), ω(q, ϶) ∈ C(ς,R)

with J(ℏ, ω) ≥ 0.

(ii) There exists ℏ1 ∈ C(ς,R) with J(ℏ,Υℏ1) ≥ 0, where Υ: C→ C is defined as

Υ(ℏ) = ℏ◦ +
1
ς(♭)

∫ t

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ(q,⋎))d ⋎ .

(iii) (q, ϶) ∈ ς and ℏ, ω ∈ C, J(ℏ, ω) ≥ 0 emphasize the fact that J(Υℏ,Υω) ≥ 0.

(iv) {ℏn} ⊆ C, ℏn → ℏ, where ℏ ∈ C and J(ℏn, ℏn+1) ≥ 0, for n ∈ N; then there exists at least one solution
of the problem (1.1).

Proof. In problem (1.1) F a is nonlinear mapping, and

FF
0 D♭

϶ℏ(q, ϶) =
1

ς(1 − ♭)
d

d ϶♭

∫ ϶

0
ℏ(q,⋎)(϶ −⋎)−♭d ⋎ . (2.1)

Since
∫ ϶

0
ℏ(q,⋎)(϶ −⋎)−♭d⋎ is differentiable, Eq (2.1) can be converted into

1
♭ ϶♭−1

1
ς(1 − ♭)

d
d ϶

∫ ϶

0
ℏ(q,⋎)(϶ −⋎)−♭d ⋎ .

Consequently, Eq (1.1) could be transformed into

ℏ(q, ϶) − ℏ(q, 0) = ⋎♭−1(϶ −⋎)♭−1F(ℓ,⋎, ℏ)d⋎,⋎♭−1(϶ −⋎)♭−1F(q,⋎, ℏ)d ⋎ .

Consequently,

ℏ(q, ϶) = ℏ◦ +
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ) = Υℏ. (2.2)

Here, we show that Υ has a fixed point

∥Υℏ − Υω∥2 = ∥
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1(F(q,⋎, ℏ) − F(q,⋎, ω))d ⋎ ∥2

≤ {
1
ς(♭)

∫ t

0
♭ ⋎♭−1 (϶ −⋎)♭−1∥F(q,⋎, ℏ) − F(q,⋎, ω)∥d⋎}2

≤ {
1

2
√

2⊤2♭−1B(♭, ♭)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1

√
Φ(ψ(∥ℏ(q, ϶) − ω(q, ϶)∥2))ψ(∥ℏ(q, ϶) − ω(q, ϶)∥2)d⋎}2

= {
1

2
√

2⊤2♭−1B(♭, ♭)

√
Φ(ψ(∥ℏ(q, ϶) − ω(q, ϶)∥2))ψ(∥ℏ(q, ϶) − ω(q, ϶)∥2)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1d⋎}2

≤ {
1

2
√

2⊤2♭−1B(♭, ♭)

√
Φ(ψ(md(ℏ − ω)))ψ(md(ℏ − ω))⊤2♭−1B(♭, ♭)}2

= {
1

2
√

2

√
Φ(ψ(md(ℏ − ω)))ψ(md(ℏ − ω))}2

=
1
8
Φ(ψ(md(ℏ − ω)))ψ(md(ℏ − ω)),
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for ℏ, ω ∈ C(ς,R) with J(ℏ, ω) ≥ 0, we have

8∥Υℏ − Υω∥2 ≤ Φ(ψ(md(ℏ, ω)))ψ(md(ℏ, ω)).

Now defining
∝: C(ς,R) × C(ς,R)→ [0,+∞)

by

∝ (ℏ, ω) =

1, if J(ℏ, ω) ≥ 0,
0, otherwise,

and

∝ (ℏ, ω)ψ(8md(Υℏ,Υω)) ≤ 8md(Υℏ,Υω)
= Φ(ψ(md(ℏ, ω)))ψ(md(ℏ, ω)).

To justify Υ is ∝-admissible, we have from (iii)

∝ (ℏ, ω) ≥ 1⇒ J(ℏ, ω) ≥ 0⇒ J(Υℏ,Υω) ≥ 0
⇒∝ (Υℏ,Υω) ≥ 1,

ℏ, ω ∈ C(ς,R). By (ii), it is obvious that ℏ◦ ∈ C(ς,R) in a way that ∝ (ℏ◦,Υℏ◦) ≥ 1, from (iv) and the
Corollary 1.4 there exist ℏ∗ ∈ C(ς,R) that ensure ℏ∗ = Υℏ∗. □

Next, the definition of ∝-type F̃-contraction is to be presented. For this, we need certain
assumptions. Suppose that F represents the mappings of the form, F̃: R+ → R in the sense that:

(k1) F̃ needs to be increasing strictly;

(k2) lim
g→0+

gσF̃(g) = 0 for σ ∈ (0, 1);

(k3) lim
n→+∞

F̃(gn) = −∞ if and only if lim
n→+∞

gn = 0 for every {gn}n∈N .

Definition 2.2. [19] Let Υ: ℧ → ℧, ∝: ℧ × ℧ → {+∞} ∪ (0,+∞) and F̃ ∈ 𭟋; and there exists ε > 0
such that

ε+ ∝ (ℏ, ω)F̃(md(Υℏ,Υω)) ≤ F̃(md(ℏ, ω)),

for each ℏ, ω ∈ ℧, with md(Υℏ,Υω) > 0, and then Υ is called an ∝-type F̃-contraction on ℧.

Theorem 2.3. [19] Assume (℧,md) is a metric space, and Υ: ℧→ ℧ such that

(λ1) Υ is an ∝-type F̃-contraction;

(λ2) There exist ℏ◦ ∈ ℧ with ∝ (ℏ◦,Υℏ◦) ≥ 1;

(λ3) Υ is ∝-admissible;

(λ4) If {ℏn} ⊆ ℧ with ∝ (ℏn, ℏn+1) ≥ 1 and ℏn → ℏ, then ∝ (ℏn, ℏ) ≥ 1;

(λ5) F̃ is continuous. Then there exists ℏ∗ ∈ ℧ such that Υ(ℏ∗) = ℏ∗, and {Υnℏ◦}n∈N converge to ℏ∗.

AIMS Mathematics Volume 9, Issue 5, 12399–12411.
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For the proof of the next theorem the metric

md(ℏ, ω) = sup
(q,϶)∈ς

|ℏ(q, ϶) − ω(q, ϶)| = ∥ℏ − ω∥

will be taken under consideration.

Theorem 2.4. Let J: R2 → R in a way that

(p1)

∥Fℏ − Fω∥ ≤
e−ες(♭)

♭⊤2♭−1B(♭, ♭)
∥ℏ − ω∥

for (q, ϶) ∈ ς and ℏ(q, ϶), ω(q, ϶) ∈ C(ς,R) with J(ℏ, ω) ≥ 0;

(p2) There exists ℏ1 ∈ C(ς,R) with J(ℏ,Υℏ1) ≥ 0, where Υ : C→ C, defined by

Υ(ℏ) = ℏ◦ +
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ(q,⋎))d⋎;

(p3) (q, ϶) ∈ ς and ℏ, ω ∈ C, J(ℏ, ω) ≥ 0 imply that J(Υℏ,Υω) ≥ 0;

(p4) {ℏn} ⊆ C, ℏn → ℏ, where ℏ ∈ C and J(ℏn, ℏn+1) ≥ 0, for n ∈ N; Then there exists at least one
solution of the problem (1.1).

Proof. The following integral equation can be formed from Eq (1.1):

ℏ(q, ϶) = ℏ◦ +
∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ)d⋎ = Υℏ.

To verify the fixed point of Υ, we have

∥Υℏ − Υω∥ = ∥
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1(F(q,⋎, ℏ) − F(q,⋎, ω))d ⋎ ∥

≤
♭

ς(♭)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1∥F(q,⋎, ℏ − F(q,⋎, ω))∥d⋎

≤
e−ε

⊤2♭−1B(♭, ♭)
∥ℏ − ω∥

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1d⋎

≤
e−ε

⊤2♭−1B(♭, ♭)
∥ℏ − ω∥⊤2♭−1B(♭, ♭).

Consequently,

∥Υℏ − Υω∥ ≤ e−ε∥ℏ − ω∥,

ε + ln(∥Υℏ − Υω∥) ≤ ln(∥ℏ − ω∥).

Or,

ε + ln(md(Υℏ − Υω)) ≤ ln(md(ℏ − ω)).

Setting F(ℏ) = ln ℏ, then quite smoothly it can be shown that F ∈ F̃.
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Next, defining ∝ as, ∝: C × C→ {−∞} ∪ [0,+∞) such that,

∝ (ℏ, ω) =

1, if J(ℏ, ω) ≥ 0,
−∞, else,

then we deduce
ε+ ∝ (ℏ, ω)F(md(Υℏ,Υω)) ≤ F(md(ℏ, ω))

for ℏ, ω ∈ C, and md(Υℏ,Υω) > 0, and with utilisation of (p3), we have

∝ (ℏ, ω) ≥ 1⇒ J(ℏ, ω) ≥ 0
⇒ J(Υℏ,Υω) ≥ 0
⇒∝ (Υℏ,Υω) ≥ 1

for ℏ, ω ∈ C. Hence, Υ is ∝-admissible by (p2), and we have ℏ◦ ∈ C such that ∝ (ℏ◦,Υℏ◦) ≥ 1. From
the condition (p4) and Theorem 2.3, we get ℏ∗ = Υℏ∗, where ℏ∗ ∈ C, and then there must be at least
one solution for (1.1). □

Let F̂ be the family of functions ϑ: (0,+∞)→ R in a way that:

(ζ1) 0 < u < v ϑ(u) ≤ ϑ(v);

(ζ2) ϶n→ 0 if and only if ϑ(϶n)→ −∞, where {϶n} ⊂ (0,+∞).

Definition 2.5. [20] Let ℧ be a non empty set, md: ℧ × ℧ → [0,+∞), ϑ ∈ F, and ξ ∈ [0,+∞) in a
way that, when x, v ∈ ℧, the below conditions hold true:

(υ1) md(x, t) = 0⇔ x = t;

(υ2) md(x, t) = md(t, x);

(υ3) If {xi}
n
i=1 ⊂ ℧ in the sense that (x1, xn) = (x, t), n ≥ 2, we have

md(x, t) > 0 ⇒ ϑ(md(x, t)) ≤ ϑ(
n−1∑
i=1

md(xi, xi+1)) + ξ.

Then (℧,md) is termed as an F̂-metric space with F̂-metric md.

Convergence, Cauchyness, and sequence completeness are all defined in F̂-metric space as similar
as defined in standard metric space.

Let η be the mappings ψ: [0,+∞)→ [0,+∞) in a way that:

(η1) ψ is non-decreasing;

(η2)
∑+∞

n=1 ψ
n(e) < +∞, for e ∈ R+.

Definition 2.6. [21] If a mapping Υ: ℧→ ℧ is such that

∝ (϶,Υ ϶) ≥ 1 ⇒ ∝ (Υ ϶,Υ2 ϶) ≥ 1,

for ϶∈ ℧ and ∝: ℧ ×℧→ [0,+∞), then Υ is called ∝-orbital admissible.
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Corollary 2.7. [21] Let (℧,md) be a complete F̂-metric space, and Υ: ℧ → ℧ and ψ: [0,+∞) →
[0,+∞) in the sense that:

(α1)
∝ (ℏ, ω)md(Υℏ,Υω) ≤ ψ(Md(ℏ, ω)),

where Md(ℏ, ω) = max md(ℏ, ω),md(ℏ,Υℏ),md(ω,Υω), ℏ, ω ∈ ℧;

(α2) Υ is ∝-orbital admissible;

(α3) ∝ (s◦,Υs◦) ≥ 1 for s◦ ∈ ℧;

(α4) Υ ∈ F is continuous and verify the condition (υ3), and ψ is continuous and satisfying Υ(s) >
Υ(ψ(s)) + ξ, 0 < s < +∞, where ξ ∈ [0,+∞). Then Υ must have a fixed point.

Assume ℧ = C(ς,R) and md: ℧ ×℧→ [0,+∞) defined by

md(ℏ, ω) =

e∥ℏ−ω∥, if ℏ , ω,
0, if ℏ = ω,

where
∥ℏ(q, ϶) − ω(q, ϶)∥ = sup

(q,϶)∈ς
|ℏ(q, ϶) − ω(q, ϶)|,

and then md is an F̂-metric on ℧. We have ϑ ∈ F defined by

ϑ(϶) = −
1
t

for t > 0 as well. So, it is obvious that ϑ(µ) > ϑ(ψ(µ)) + ξ, µ > 0, such that, ψ possess the properties

ψ <
µ

1 + µ
, eψ(n◦) ≤ ψ(en◦),

where n◦ ∈ {0, 1, 2, 3, . . .}.
The problem (1.1) has a solution in F̂-metric space, which can be observed in the following theorem.

Theorem 2.8. Suppose there is J: R2 → R in a way that

(⋎1)

∥F(q, ϶, ℏ(q, ϶)) − F(q, ϶, ω(q, ϶))∥ ≤
ς(♭)

♭⊤2♭−1B(♭, ♭)
ψ(∥ℏ − ω∥),

where (q, ϶) ∈ ς, and ℏ, ω ∈ ℧ with J(ℏ, ω) ≥ 0;

(⋎2) There exists ℏ1 ∈ ℧ with J(ℏ1,Υℏ1) ≥ 0 where Υ : ℧→ ℧ is defined by

Υ(ℏ) = ℏ◦ +
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ(q,⋎))d⋎;

(⋎3) ℏ ∈ ℧ with J(ℏ,Υℏ) ≥ 0 implies that J(Υℏ,Υ2ℏ) ≥ 0. Then, there exist a fixed point of Υ.
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Proof. We can write Eq (1.1) as

ℏ(q, ϶) = ℏ◦ +
∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ)d⋎ = Υℏ.

To derive the fixed point of Υ, we have

∥Υℏ − Υω∥ = ∥
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1(F(q,⋎, ℏ) − F(q,⋎, ω))d ⋎ ∥

≤
♭

ς(♭)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1∥F(q,⋎, ℏ) − F(q,⋎, ω)∥d⋎

≤
1

T2♭−1B(♭, ♭)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1ψ(∥ℏ − ω∥)d⋎

=
ψ(∥ℏ − ω∥)
T2♭−1B(♭, ♭)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1d⋎

≤ ψ(∥ℏ − ω∥).

Thus, for ℏ, ω ∈ ℧ having J(ℏ, ω) ≥ 0, we have

md(Υℏ,Υω) = e∥Υℏ−Υω∥ ≤ eψ(∥ℏ−ω∥) ≤ ψ(e∥ℏ−ω∥)
= ψ(md(ℏ, ω)) ≤ ψ(Md(ℏ, ω)).

Define ∝: ℧ ×℧→ [0,+∞) by

∝ (ℏ, ω) =

1, if J(ℏ, ω),
0, otherwise.

Therefore,
∝ (ℏ, ω)md(Υℏ,Υω) ≤ md(Υℏ,Υω) ≤ ψ(Md(ℏ, ω)),

for ℏ, ω ∈ ℧ with md(Υℏ,Υω) ≥ 0. By (⋎3), we have

∝ (ℏ,Υℏ) ≥ 1 ⇒ J(ℏ,Υℏ) ≥ 0 ⇒ J(Υℏ,T2ℏ) ≥ 0
⇒ ∝ (Υℏ,Υ2ℏ) ≥ 1.

Hence, Υ is an orbital ∝-admissible, and from the condition (⋎2), there exist ℏ1 ∈ ℧ in a way that
∝ (ℏ1,Υℏ1) ≥ 1. Additionally, by (⋎3) and the Corollary 2.7, we obtain ℏ∗ ∈ ℧ in a way that ℏ∗ = Υℏ∗.
Hence there is a solution ℏ∗ of the problem (1.1). □

Now for defining an orbitally complete metric space, suppose (℧,md) is a metric space and Υ:
℧→ ℧. If ℓ◦ ∈ ℧, then ℓ◦ has the orbit in the set form as

O(q◦) = {Υ
nq◦ : n = 0, 1, 2, 3 . . .},

where Υn is the nth iteration of Υ andD(q◦) is the diameter of O(x◦). ℧ is characterised as Υ-orbitally
complete metric space if all the Cauchy sequences from O(x) converge in ℧ for some q ∈ ℧.
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Theorem 2.9. [22] Let (℧,md) represent Υ-orbitally complete metric space, Υ: ℧ → ℧ and θ:
℧→ N . Then Υ has a unique fixed point, if there exists ν > 0 and q◦ ∈ ℧ with 0 < D < +∞ such as

md(Υθ(q)(ℏ),Υθ(q)(ω)) ≤ eνmd(ℏ, ω).

Let
℧ = C(ς,R) and md(ℏ, ω) = sup

(q,϶)∈ς
|ℏ − ω|.

The below theorem explores the existence and uniqueness of the problem (1.1) in Υ-orbitally complete
metric space.

Theorem 2.10. Let Υ: ℧→ ℧ define by

Υ(ℏ) = ℏ◦ +
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ(q,⋎))d⋎

and

|F(q, ϶, ℏ(q, ϶) − Fω(q, ϶))| ≤
ς(♭)

♭⊤2♭−1B(♭, ♭)
e−ν|
√
|ℏ| −

√
|ω||,

|F(q, ϶, ℏ)| + |F(q, ϶, ω)| ≤
ς(♭)

♭⊤2♭−1B(♭, ♭)
e−ν|
√
|ℏ| +

√
|ω||.

Then the problem (1.1) must have a unique solution.

Proof. Equation (1.1) can be written as

ℏ(q, ϶) = ℏ◦ +
∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ)d⋎ = Υℏ.

To prove a unique solution of Υ, we have

|Υℏ − Υω| = |
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1(F(q,⋎, ℏ) − F(q,⋎, ω))d ⋎ |

≤
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1|F(q,⋎, ℏ − F(q,⋎, ω))|d⋎

≤
e−ν

♭⊤2♭−1B(♭, ♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1|

√
|ℏ| −

√
|ω||d⋎

=
e−ν

♭⊤2♭−1B(♭, ♭)
sup |
√
|ℏ| −

√
|ω||

∫ ϶

0
♭ ⋎♭−1 (t − ⋎)♭−1d⋎

≤ e−ν sup |
√
|ℏ| −

√
|ω||.

Also,

|Υℏ| + |Υω| = |
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ℏ)d ⋎ | + |

1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1F(q,⋎, ω)d ⋎ |

≤
1
ς(♭)

∫ ϶

0
♭ ⋎♭−1 (϶ −⋎)♭−1(|F(q,⋎, ℏ)| + |F(q,⋎, ω)|)d⋎
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≤
e−ν

⊤2♭−1B(♭, ♭)

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1|

√
|ℏ| +

√
|ω||d⋎

=
e−ν

⊤2♭−1B(♭, ♭)
sup |
√
|ℏ| +

√
|ω||

∫ ϶

0
⋎♭−1(϶ −⋎)♭−1d⋎

≤ e−ν sup |
√
|ℏ| +

√
|ω|| ≤ sup |

√
|ℏ| +

√
|ω||.

Now,

md(Υ2ℏ,Υ2ω) = sup |Υ2ℏ − Υ2ω|

= sup |Υℏ − Υω| × sup |Υℏ + Υω|
≤ sup |Υℏ − Υω| × sup(|Υℏ| + |Υω|)

≤ e−ν sup |
√
|ℏ| −

√
|ω|| × sup sup |

√
|ℏ| +

√
|ω||

= e−ν sup ||ℏ| − |ω||
≤ e−ν sup |ℏ − ω|
= e−νmd(ℏ, ω).

If we consider θ: ℧ → N in a way that θ(ℏ) = 2 for every ℏ ∈ ℧, then all necessities of Theorem
2.9 are true. As a result, the problem (1.1) ensures a unique solution in ℧. □

3. Conclusions

Exploring the solutions for fractional differential equations has been a central focus of this
research. There still needs to be more research regarding solutions for nonlinear differential equations
that involve fractal fractional operators. This study has focused on introducing new contraction
methods, specifically the ∝-ψ-contraction and ∝-type of F̃-contraction, in the framework of F̂-metric
and orbitally metric spaces. This paper has developed particular fixed point theorems that provide a
novel and direct approach for investigating the existence and uniqueness of solutions for general
partial differential equations using fractal fractional operators. This discovery helps further the
knowledge and use of fractional calculus in dealing with complicated nonlinear events and opens the
door for future development in this field.
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