Loading [MathJax]/jax/output/SVG/jax.js
Research article

On 2-variable q-Hermite polynomials

  • Received: 04 March 2021 Accepted: 24 May 2021 Published: 08 June 2021
  • MSC : 34C05, 34C07, 34C25

  • The quantum calculus has emerged as a connection between mathematics and physics. It has wide applications, particularly in quantum mechanics, analytic number theory, combinatorial analysis, operation theory etc. The q-calculus, which serves as a powerful tool to model quantum computing, has drawn attention of many researchers in the field of special functions and as a result the q-analogues of certain special functions, especially hypergeometric function, 1-variable Hermite polynomials, Appell polynomials etc., are introduced and studied. In this paper, we introduce the 2-variable q-Hermite polynomials by means of generating function. Also, its certain properties like series definition, recurrence relations, q-differential equation and summation formulas are established. The operational definition and some integral representations of these polynomials are obtained. Some examples are also considerd to show the efficacy of the proposed method. Some concluding remarks are given. At the end of this paper, the graphical representations of these polynomials of certain degrees with specified values of q are given.

    Citation: Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya. On 2-variable q-Hermite polynomials[J]. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506

    Related Papers:

    [1] Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano . Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration. AIMS Mathematics, 2024, 9(10): 26799-26824. doi: 10.3934/math.20241303
    [2] Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769
    [3] Gul Sana, Muhmmad Aslam Noor, Dumitru Baleanu . Novel higher order iterative schemes based on the qCalculus for solving nonlinear equations. AIMS Mathematics, 2022, 7(3): 3524-3553. doi: 10.3934/math.2022196
    [4] Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015
    [5] Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510
    [6] Saad Ihsan Butt, Muhammad Nasim Aftab, Hossam A. Nabwey, Sina Etemad . Some Hermite-Hadamard and midpoint type inequalities in symmetric quantum calculus. AIMS Mathematics, 2024, 9(3): 5523-5549. doi: 10.3934/math.2024268
    [7] Jung Yoog Kang, Cheon Seoung Ryoo . The forms of (q,h)-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
    [8] Nazmiye Gonul Bilgin, Yusuf Kaya, Melis Eren . Security of image transfer and innovative results for (p,q)-Bernstein-Schurer operators. AIMS Mathematics, 2024, 9(9): 23812-23836. doi: 10.3934/math.20241157
    [9] Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103
    [10] Reny George, Sina Etemad, Fahad Sameer Alshammari . Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p,q)-thermostat system. AIMS Mathematics, 2024, 9(1): 818-846. doi: 10.3934/math.2024042
  • The quantum calculus has emerged as a connection between mathematics and physics. It has wide applications, particularly in quantum mechanics, analytic number theory, combinatorial analysis, operation theory etc. The q-calculus, which serves as a powerful tool to model quantum computing, has drawn attention of many researchers in the field of special functions and as a result the q-analogues of certain special functions, especially hypergeometric function, 1-variable Hermite polynomials, Appell polynomials etc., are introduced and studied. In this paper, we introduce the 2-variable q-Hermite polynomials by means of generating function. Also, its certain properties like series definition, recurrence relations, q-differential equation and summation formulas are established. The operational definition and some integral representations of these polynomials are obtained. Some examples are also considerd to show the efficacy of the proposed method. Some concluding remarks are given. At the end of this paper, the graphical representations of these polynomials of certain degrees with specified values of q are given.



    The quantum calculus, briefly called q-calculus, is infact the investigation of calculus without limits. The q-calculus is a generalization of ordinary calculus as for q1, the quantum calculus reduces to the ordinary calculus. Recently, it has got attention of many researchers in the field of applied mathematics due to the fact that it provides a connection between mathematics and physics. It has been proved very helpful in the mathematical modelling of the problems arising in quantum computing. This motivates the study of certain special functions in the context of q-calculus. The q-analogues of some special functions like q-Gamma and q-Beta functions, 1-variable q-Hermite polynomials and q-Hermite polynomials-Appell polynomials etc., are introduced and studied [5,6,15,17,19].

    In this paper, we introduce the 2-variable q-Hermite polynomials and investigate some of its properties like series definition, recurrence relations, q-differential equation, summation formulas, operational definition and some integral representations.

    We review briefly some definitions and notations of the quantum calculus.

    The q-analogue of a complex number α is defined as [2,3,11,12]:

    [α]q=1qα1q(0<q<1). (1.1)

    The first five few q-numbers are as follows:

    [0]q=0,[1]q=1,[2]q=1+q,[3]q=1+q+q2,[4]q=1+q+q2+q3.

    The q-factorial is defined as:

    [n]q!={nk=1[k]q!,0<q<1n11,n=0,

    which satisfies

    [n+1]q!=[n+1]q[n]q!. (1.2)

    The Gauss q-binomial coefficient is defined as [2,3,11,12]:

    [nk]q=[n]q![nk]q![k]q!=(1;q)n(1;q)k(1;q)nk.k=0,1,,n. (1.3)

    The raising and lowering q-powers are defined as [2,3,11,12]:

    (u±a)nq={(u±a)(u±aq)...(u±aqn2)(u±aqn1), if n1,1, if n=0, (1.4)

    or, equivalently

    (u±a)nq=nk=0[nk]qq(nk2)uk(±a)nk, (1.5)

    where [nk]q is given by Eq (1.3). For n=1, it is obvious that (u±a)1q=(u±a).

    In particular, for a=0, Eq (1.4) or (1.5), gives

    (u)nq=un. (1.6)

    The two q-exponential functions, denoted by eq(u) and Eq(u), are defined as [2,3,11,12]:

    eq(u)=n=0un[n]q!=1(u;q),|u|<1,|q|<1 (1.7)

    and

    Eq(u)=n=0q(n2)un[n]q!=(u;q)|q|<1, (1.8)

    respectively. The relation between both q-exponential functions is as follows:

    eq(u)Eq(u)=1. (1.9)

    Next, the q-derivative of a function f with respect to u, denoted by Dq,uf(u), is defined as [13]:

    Dq,uf(u)=f(qu)f(u)quu,0<q<1,u0. (1.10)

    Also, for two arbitrary functions g(u) and h(u), we have

    Dq,u(g(u)h(u))=g(u)Dq,uh(u)+h(qu)Dq,ug(u). (1.11)

    In particular, we have

    Dq,uun=[n]qun1, (1.12)
    Dq,ueq(αu)=αeq(αu) (1.13)

    and

    Dq,uEq(αu)=αEq(αqu).

    The mth order q-derivative of the q-exponential functions are as follows:

    Dmq,ueq(αu)=αmeq(αu)(m1) (1.14)

    and

    Dmq,uEq(αu)=αmq(m2)Eq(αqmu)(m1),

    where Dmq,u denotes the mth order q-derivative with respect to u.

    Also, the q-definite integral of a function g is defined as [11,12,14]:

    a0g(u)dqu=(1q)an=01qn+1g(aqn+1),0<q<1,aR (1.15)

    and

    bag(u)dqu=b0g(u)dqua0g(u)dqu. (1.16)

    From Eqs (1.15) and (1.16), it is clear that

    ba(g(u)+h(u))dqu=bag(u)dqu+bah(u)dqu. (1.17)

    The q-definite integral of the q-derivative of a function g(u) is given as:

    baDqg(u)dqu=g(b)g(a). (1.18)

    We note that, for q1, all the results in the q-calculus reduce to the corresponding results in ordinary calculus.

    The Hermite polynomials are one of the most applicable classical orthogonal special functions. They are the solutions of the differential equations, which are equivalent to the Schrödinger equation for a harmonic oscillator in quantum mechanics and thus they appear as eigen functions. Moreover, these polynomials have significant role in the study of classical boundary-value problems in parabolic regions, through the use of parabolic coordinates, or in quantum mechanics as well as in other application areas.

    Now, we recall the generating function and series definition of the classical Hermite polynomials Hn(u) and the 2-variable Hermite polynomials Hn(u,v).

    The classical Hermite polynomials Hn(u) are defined by means of the following generating function [1]:

    e2utt2=n=0Hn(u)tnn! (1.19)

    and the series definition [1]:

    Hn(u)=[n/2]k=0(1)kn!k!(n2k)!(2u)n2k . (1.20)

    The 2-variable Hermite polynomials (2VHP) Hn(u,v) are defined by means of the following generating function [4]:

    e(ut+vt2)=n=0Hn(u,v)tnn! (1.21)

    and the series definition [4]:

    Hn(u,v)=[n/2]k=0n!k!(n2k)!vkun2k . (1.22)

    The pure and the differential recurrence relations for Hn(u,v) are defined as [4]:

    Hn+1(u,v)=uHn(u,v)+2nvHn1(u,v)(n1), (1.23)
    Hn+1(u,v)=uHn(u,v)+2vDuHn(u,v), (1.24)
    nHn(u,v)=uDuHn(u,v)+2nvDuHn1(u,v)(n1), (1.25)
    nHn(u,v)=nuHn1(u,v)+2vDvHn(u,v)(n1), (1.26)

    and

    n(n1)Hn1(u,v)=uDvHn(u,v)+2nuDvHn1(u,v)(n1). (1.27)

    The 2VHP Hn(u,v) satisfies the following differential equation [4]:

    2v2u2Hn(u,v)+uuHn(u,v)=nHn(u,v). (1.28)

    From Eqs (1.19) and (1.21), it is clear that the 2VHP Hn(u,v) is related with the classical Hermite polynomials Hn(u) as:

    Hn(2u,1)=Hn(u). (1.29)

    The q-Hermite polynomials of 1-variable, which is defined in several ways, has many literatures due to its wide applications in various fields of mathematics and physics. For instance, Berg and Ismail [6], have shown that 1-variable q-Hermite polynomials can be used to build the classical q-orthogonal polynomials systemetically.

    Recently, Nalci and Pashaev [17] defined the q-Hermite polynomials by means of the following generating function :

    eq([2]qut)eq(t2)=n=0Hn,q(u)tn[n]q! (1.30)

    and series definition

    Hn,q(u)=[n]q![n/2]k=0(1)k([2]qu)n2k [n2k]q![k]q!, (1.31)

    in the context of q-analog of shock soliton solution.

    In this paper, we introduce the 2-variable q-Hermite polynomials and study certain properties of these polynomials. An operational definition and some integral representations of these polynomials are obtained. Some examples are also considerd to show the efficacy of the proposed method. Some concluding remarks are given. At the end of this paper the graphical representations of these polynomials of certain degrees with specified values of q are given.

    In the next section, we introduce 2-variable q-Hermite polynomials with the help of generating function and we obtain their series definition, recurrence relations, operational differential equations of 2VqHP.

    In this section, we introduce the 2-variable q-Hermite polynomials and obtain their series definition, recurrence relations and differential equation.

    In view of Eqs (1.21), (1.29) and (1.30), we define the 2-variable q-Hermite polynomials (2VqHP) Hn,q(u,v) by means of the following generating function:

    eq(ut)eq(vt2)=n=0Hn,q(u,v)tn[n]q!. (2.1)

    The series on the right hand side of the above equation converges in the finite complex plane.

    Expanding the left hand side of Eq (2.1) by using Eq (1.7), we have

    n=0k=0unvktn+2k[n]q![k]q!=n=0Hn,q(u,v)tn[n]q!,

    which on using the following series rearrangement technique[1]:

    n=0m=0A(m,n)=n=0[n/2]m=0A(m,n2m), (2.2)

    gives

    n=0[n/2]k=0un2k vktn[n2k]q![k]q!=n=0Hn,q(u,v)tn[n]q!.

    Equating the coefficients of equal powers of t from both sides of the above equation, we have the following series definition of 2VqHP Hn,q(u,v):

    Hn,q(u,v)=[n]q![n/2]k=0un2k vk[n2k]q![k]q!, (2.3)

    where [.] denotes the greatest integer function. Being a finite power series, the series on the right hand side of the above equation converges in the finite complex plane.

    Taking v=0 and u=0 one by one in Eq (2.3), we have the following boundary conditions:

    Hn,q(u,0)=(u)nq,Hn,q(0,v)=[n]q!(v)[n/2]q[[n/2]]q!,n=0,1,2. (2.4)

    Further, from Eq (2.3), it can be easily verified that

    Hn,q(au,a2v)=anHn,q(u,v), (2.5)

    where a is a constant.

    Now, taking q-partial derivative of both the sides of Eq (2.1) with respect to u and then using Eq (1.13) in the resultant equation, we have

    teq(ut)eq(vt2)=n=0Dq,uHn,q(u,v)tn[n]q!. (2.6)

    Using Eq (2.1) in the left hand side of Eq (2.6), we have

    n=0Hn,q(u,v)tn+1[n]q!=n=0Dq,uHn,q(u,v)tn[n]q!,

    or, equivalently

    n=1Hn1,q(u,v)tn[n1]q!=n=0Dq,uHn,q(u,v)tn[n]q!.

    Comparing the equal powers of t from both the sides of the above equation, we have

    Dq,uHn,q(u,v)=[n]qHn1,q(u,v)(n1). (2.7)

    Again, taking 2nd order q-partial derivative of both the sides of Eq (2.1) with respect to u, then using Eq (1.13) for m=2 and following the steps involved in the proof of Eq (2.7), we have

    D2q,uHn,q(u,v)=[n]q[n1]qHn2,q(u,v)(n2). (2.8)

    Similarly, taking mth order q-partial derivative of both sides of Eq (2.1) with respect to u, then using Eq (1.13) and following the same steps, we get the following mth order q-partial derivative of Hn,q(u,v) with respect to u:

    Dmq,u(Hn,q(u,v))=[n]q![nm]q!Hnm,q(u,v)(0mn). (2.9)

    Next, taking q-partial derivative of both sides of Eq (2.1) with respect to v and following the steps involved in the proof of Eq (2.7), we have

    Dq,v(Hn,q(u,v))=[n]q[n1]qHn2,q(u,v)(n2). (2.10)

    Similarly, taking mth order q-partial derivative of both sides of Eq (2.1) with respect to v and following the same steps, we have

    Dmq,v(Hn,q(u,v))=[n]q![n2m]q!Hn2m,q(u,v)(m1). (2.11)

    Again, in view of Eqs (2.7), (2.10) and (2.5), it is easy to verify that the 2VqHP Hn,q(u,v) satisfy the following q-partial differential equation:

    D2q,uHn,q(u,v)=Dq,vHn,q(u,v). (2.12)

    Next, we proceed to establish the recurrence relations for the 2VqHP Hn,q(u,v). For this, we need to prove the following lemma:

    Lemma 2.1. If Dq,t denotes the q-partial derivative with respect to t, then

    Dq,teq(vt2)=vteq(vt2)+qvteq(qvt2). (2.13)

    Proof. Using Eqs (1.7) and (1.13), we have

    Dq,teq(vt2)=n=0vn[2n]qt2n1[n]q!. (2.14)

    The series on the right hand side of the above equation converges in the finite complex plane.

    Since, from Eq (1.1), we have [2n]q[n]q = 1+qn, therefore using Eq (1.2) in the right hand side of the above equation, we have

    Dq,teq(vt2)=n=1vn(1+qn)t2n1[n1]q!,

    which on simplifying the right hand side, gives

    Dq,teq(vt2)=n=1vnt2n1[n1]q!+n=1(qv)nt2n1[n1]q!=vtn=0(vt2)n[n]q!+qvtn=0(qvt2)n[n]q!. (2.15)

    Using Eq (1.7) in the right hand side of above equation, we get the assertion (2.13).

    Remark 2.1 Since, for q1, we have Dq,t Dt and eq(vt2) evt2, therefore for q1, Lemma 2.2, gives the following well known result of ordinary calculus:

    Dtevt2=2vtevt2,

    where Dt denotes the ordinary derivative with respect to t.

    Now, we establish the pure and q-differential recurrence relations for Hn,q(u,v) in the form of following theorem:

    Theorem 2.2. The 2VqHP Hn,q(u,v) satisfy the following recurrence relations:

    Hn+1,q(u,v)=uHn,q(u,v)+[n]qv(Hn1,q(qu,v)+qHn1,q(qu,qv))=0(n1), (2.16)
    qHn+1,q(u,v)=quHn,q(u,v)+vDq,u(Hn,q(qu,v)+qHn,q(qu,qv)), (2.17)
    q[n]qHn,q(u,v)=quDq,uHn,q(u,v)+[n]qvDq,v(Hn1,q(qu,v)+qHn1,q(qu,qv))(n1), (2.18)
    [n]qHn,q(u,v)=[n]quHn1,q(u,v)+vDq,v(Hn,q(qu,v)+Hn,q(qu,qv))(n1) (2.19)

    and

    [n]q[n1]qHn1,q(u,v)=Dq,vuHn,q(u,v)+[n]qvDq,v(Hn1,q(qu,v)+Hn1,q(qu,qv))(n1). (2.20)

    Proof. Taking q-derivative of both sides of Eq (2.1) with respect to t and then using Eq (1.11) in the right hand side of the resultant equation, we have

    n=0Dq,tHn,q(u,v)tn[n]q!=eq(vt2)Dq,teq(ut)+eq(qut)Dq,teq(vt2),

    which on using Eqs (1.12) and (1.2) in the left hand side and using Eqs (1.13) and (2.13) in the right hand side, gives

    n=1Hn,q(u,v)tn1[n1]q!=ueq(ut)eq(vt2)+vteq(qut)eq(vt2)+qvteq(qut)eq(qvt2).

    Using Eq (2.1) in both sides of the above equation and then comparing the equal powers of t from both sides of the resultant equation, we get the assertion (2.16).

    If a is an arbitrary constant, then in view of Eq (2.5), we have

    Hn1,q(qu,av)=qn1Hn1,q(u,1q2av),

    which on using Eq (2.7), gives

    Hn1,q(qu,av)=qn11[n]qDq,uHn,q(u,1q2av). (2.21)

    Again, using Eq (2.5) in the right hand side of Eq (2.21), we have

    Hn1,q(qu,av)=1q1[n]qDq,uHn,q(qu,av). (2.22)

    Using Eq (2.22) for a=1 and a=q in the right hand side of Eq (2.16), we have the assertion (2.17).

    Now, replacing n by n1 in Eq (2.17), we have

    qHn,q(u,v)=quHn1,q(u,v)+vDq,u(Hn1,q(qu,v)+qHn1,q(qu,qv))(n1),

    which on using Eq (2.7) in the right hand side, gives the assertion (2.18).

    Next, replacing n by n1 in Eq (2.16), we have

    Hn,q(u,v)=xHn1,q(u,v)+[n1]qv(Hn2,q(qu,v)+qHn2,q(qu,qv))=0(n2). (2.23)

    In view of Eq (2.5), for any constant a, we have

    Hn2,q(qu,av)=(a)n2Hn2,q(qau,v),

    which on using Eq (2.10), gives

    Hn2,q(qu,av)=(a)n21[n]q[n1]qDq,vHn,q(qau,v). (2.24)

    Again, using Eq (2.5) in the right hand side of Eq (2.24), we have

    Hn2,q(qu,av)=1a1[n]q[n1]qDq,vHn,q(qu,av). (2.25)

    Using Eq (2.25) for a=1 and a=q, in the right hand side of Eq (2.23), we have the assertion (2.19).

    Again, replacing n by n1 in Eq (2.19), we have

    [n1]qHn1,q(u,v)=[n1]quHn2,q(u,v)+vDq,v(Hn1,q(qu,v)+Hn1,q(qu,qv)),n1, (2.26)

    which on using Eq (2.10) in the right hand side of Eq (2.26), gives the assertion (2.20).

    In order, to establish the differential equation of 2VqHP Hn,q(u,v), we define the following operators:

    Let f(u,v) be a q-function of two variables, then we define the shift operators La,u and La,v as:

    La,uf(u,v)=f(au,v) (2.27)

    and

    La,vf(u,v)=f(u,av), (2.28)

    where a is a constant. In view of (2.27), the shift operator La,u satisfy the following properties:

    La,uLb,uf(u,v)=f(abu,v)=Lab,uf(u,v). (2.29)

    In particular, for a = b, we have

    La2,uf(u,v)=f(a2uv,)=La,uLa,uf(v=L2a,uf(u,v). (2.30)

    If L1a,u is the inverse of the operator La,u, that is L1a,uLa,u=I, where I is an identity operator such that If(u,v)=f(u,v).

    Then, from Eq (2.27), we have

    L1a,uf(au,v)=f(u,v).

    Replacing au by u in the above equation, we have

    L1a,uf(u,v)=f(1au,v)=f(a1u,v),

    which on using Eq (2.27), gives

    L1a,uf(u,v)=La1,uf(u,v). (2.31)

    Using induction method, Eqs (2.29) and (2.30), gives

    Lar,uf(u,v)=Lra,uf(u,v), (2.32)

    where r is any integer.

    Similarly, it can be shown that La,v satisfies the following properties:

    Lab,vf(u,v)=La,vLb,vf(u,v), (2.33)
    Lar,vf(u,v)=Lra,vf(u,v), (2.34)

    where r is any integer.

    Now, we prove the following result:

    Theorem 2.3. The 2-variable q-Hermite polynomials Hn,q(u,v) satisfy the following q-differential equation:

    (vLq,u(1+qn2L1q,u)D2q,u+uDq,u[n]q)Hn,q(u,v)=0, (2.35)

    where L.,u is the shift operator defined in Eq (2.27).

    Proof. Replacing n by (n1) in Eq (2.16) and then using (2.7) in resultant equation, we have

    Hn,q(u,v)uHn1,q(u,v)[n1]qv(Hn2,q(qu,v)+qn1Hn2,q(u,1qv))=0,n2. (2.36)

    In view of Eq (2.27), we have

    Hn2,q(qu,v)=Lq,uHn2,q(u,v). (2.37)

    Also, in view of Eqs (2.5) and (2.27), we have

    Hn2,q(u,1qv)=(1q)n2Lq,uHn2,q(u,v). (2.38)

    Using Eqs (2.27), (2.37) and (2.38) in Eq (2.36), we have

    Hn,q(u,v)uHn1,q(u,v)[n1]qv(Lq,u+qn1(1q)n2Lq,u)Hn2,q(u,v)=0,n2. (2.39)

    Now, using Eqs (2.7) and (2.8) in Eq (2.39), we have

    Hn,q(u,v)u[n]qDq,uHn,q(u,v)v[n]q(Lq,u+qn(1q)nLq12,u)D2q,uHn,q(u,v)=0,

    or, equivalently

    v(Lq,u+qn(1q)nLq,u)D2q,uHn,q(u,v)+uDq,uHn,q(u,v)[n]qHn,q(u,v)=0, (2.40)

    which, on further simplification yields assertion (2.35).

    Remark 2.2 It can be easily verified that

    La,uDmq,uHn,q(u,v)=1anDmq,uLa,uHn,q(u,v). (2.41)

    Using Eq (2.41), for m=1 and m=2, in Eq (2.40), we have the following equivalent form of differential equation:

    (1q2D2q,uLq,u+qn+1(1q)nD2q,uLqn12,u)Hn,q(u,v)+uDq,uHn,q(u,v)[n]qHn,q(u,v)=0 (2.42)

    Another, forms of the differential Eq (2.35) are as follows

    (qn2vL1q,v(L1/q,v+q)D2q,u+uDq,u[n]q)Hn,q(u,v)=0 (2.43)

    and

    (vLq,u(1+qLq,v)D2q,u+quDq,uq[n]q)Hn,q(u,v)=0, (2.44)

    where Lq,v is the shift operator defined by Eq (2.28).

    Remark 2.3 Since, for q1, the q-calculus reduces to the ordinary calculus. Therefore, for q1, Eq (2.1) gives the generating function of 2VHP Hn(u,v), given by Eq (1.21). Also, the series definition, recurrence relations and differential equation for 2VHP Hn(u,v), given by the Eqs (1.21), (1.22) and (1.23)-(1.28), can be obtained by taking q1 in Eqs (2.3), (2.16)-(2.20) and (2.35), respectively.

    In the next section, we establish certain summation formulas involving the 2-variables q-Hermite polynomials Hn,q(u,v) and its q-derivatives.

    In this section, we obtain certain summation formulas for 2VqHP by exploiting the identities (1.7) and (1.9) and using the generating function of Hn,q(u,v). The following summation formulas for the 2VqHP Hn,q(u,v) hold:

    Theorem 3.1. The following summation formulas hold in the finite complex plane:

    [n/2]r=0q(r2)(v)rHn2r,q  (u,v)[r]q![n2r]q!=(u)nq[n]q!. (3.1)

    If n is even i.e. n=2m (mN), then

     2mr=0q(r2)(u)rH2mr,q  (u,v)[r]q![2mr]q!=(v)mq[m]q!, (3.2)

    if n is odd i.e. n=2m+1 (mN{0}), then

     2m+1r=0q(r2)(u)rH2m+1r,q  (u,v)[r]q![2m+1r]q!=0. (3.3)

    Proof. In view of Eq (1.9), we have

    eq(ut)eq(vt2)Eq(vt2)=eq(ut), (3.4)

    which on using Eqs (1.7), (1.8) and (2.1), gives

    n=0Hn,q(u,v)tn[n]q!r=0q(r2)(v)rt2r[r]q!=n=0untn[n]q!,

    or, equivalently

    n=0r=0Hn,q(u,v)q(r2)(v)rtn+2r[n]q![r]q!=n=0untn[n]q!.

    Using Eq (2.2) in the left hand side of above equation, we have

    n=0[n/2]k=0Hn2r,q  (u,v)q(r2)(v)rtn[n2r]q![r]q!=n=0untn[n]q!,

    which on equating the coefficients of equal powers of t from both sides, gives the assertion (3.1).

    Again, using Eq (1.9), we have

    Eq(ut)eq(ut)eq(vt2)=eq(vt2). (3.5)

    Using Eqs (1.7), (1.8) and (2.1) in the above equation, we have

    n=0r=0q(r2)(u)rHn,q(u,v)tn+r[n]q![r]q!=n=0vnt2n[n]q!,

    which on using the following series rearrangement technique[1]:

    n=0k=0A(k,n)=n=0nk=0A(k,nk), (3.6)

    gives

    n=0nr=0q(r2)(u)rHnr,q  (u,v)tn[r]q![nr]q!=n=0vnt2n[n]q!. (3.7)

    Comparing the even and odd powers of t from both sides of Eq (3.7), we get the assertions (3.2) and (3.3), respectively.

    Remark 3.1 The summation formula, given by Eq (3.3), has the following equivalent form:

     2mr=0q(r2)(u)rH2m+1r,q  (u,v)[r]q![2m+1r]q!=q(2m+12)u2m+1[2m+1]q!. (3.8)

    From Theorem 3.1 and Remark 3.1, we deduce the following summation formulas for q-derivative of 2VqHP Hn,q(u,v) with respect to u:

    Corollary 3.2. The following summation formulas hold in the finite complex plane:

    [n/2]r=0q(r2)(v)rDq,uHn+12r,q  (u,v)[r]q![n+12r]q!=(u)nq[n]q!, (3.9)
     2mr=0q(r2)(u)rDq,uH2m+1r,q  (u,v)[r]q![2m+1r]q!=(v)mq[m]q! (3.10)

    and

     2mr=0q(r2)(u)rDq,uH2m+2r,q  (u,v)[r]q![2m+2r]q!=q(2m+12)u2m+1[2m+1]q!. (3.11)

    Proof. Using Eq (2.7), we have

    Dq,uHn+12r,q  (u,v)=[n+12r]qHn2r,q  (u,v), (3.12)

    which on simplifying, gives

    Hn2r,q  (u,v)=Dq,uHn+12r,q  (u,v)[n+12r]q. (3.13)

    Using Eqs (3.13) and (1.6) in Eq (3.1), we have the assertion (3.9).

    Similarly, using Eq (2.7), we have

    H2mr,q  (u,v)=Dq,uH2m+1r,q  (u,v)[2m+1r]q. (3.14)

    Using Eqs (3.14) and (1.6) in Eq (3.2), we have the assertion (3.10).

    From Eq (3.14), we have

    H2m+1r,q  (u,v)=Dq,uH2m+2r,q  (u,v)[2m+2r]q. (3.15)

    Using Eq (3.15) in Eq (3.8), we have the assertion (3.11).

    Remark 3.2 Using Eq (2.10) in the right hand sides of Eqs (3.1), (3.2) and (3.8), we have the following summation formulas for q-derivative of 2VqHP Hn,q(u,v) with respect to v:

    Corollary 3.3. The following summation formulas hold in the finite complex plane:

    [n/2]r=0q(r2)(v)rDq,vHn2r+2,q(u,v)[r]q![n2r+2]q!=(u)nq[n]q!, (3.16)
     2mr=0q(r2)(u)rDq,vH2m+2r,q  (u,v)[r]q![2m+2r]q!=(v)mq[m]q! (3.17)

    and

     2mr=0q(r2)(u)rDq,vH2m+3r,q  (u,v)[r]q![2m+3r]q!=q(2m+12)(u)2m+1[2m+1]q!. (3.18)

    Remark 3.3 For q1, Eqs (3.1)-(3.3), (3.8)-(3.11), (3.16)-(3.18) give summation formulas for 2VHP Hn(u,v) and its derivatives.

    Now, we list some examples in Table 1 to show the efficacy of our results established in sections 2 and 3.

    Table 1.  Properties of 2-variable q-Hermite polynomials H4,q  (u,v) and H7,q  (u,v).
    S. No. Polynomials Name of the properties Results
    I H4,q  (u,v) Series definition H4,q  (u,v)=u4+[4]q[3]qu2v+[4]q[3]qv2
    Recurrence relation 1 H5,q  (u,v)=uH4,q  (u,v)+[4]qv(H3,q  (qu,v)+qH3,q  (qu,qv))=0
    Recurrence relation 2 H7,q  (u,v)=uH6,q  (u,v)+[7]qv(H6,q  (qu,v)+qH6,q  (qu,qv))=0
    Recurrence relation 3 qH5,q  (u,v)=quH4,q  (u,v)+vDq,u  (H4,q  (qu,v)+qH4,q  (qu,qv))
    Recurrence relation 4 [4]qH4,q  (u,v)=[4]quH3,q  (u,v)+vDq,v  (H4,q  (qu,v)+H4,q  (qu,qv))
    Recurrence relation 5 [4]q[3]qH3,q  (u,v)=Dq,v  uH4,q  (u,v)+[4]qvDq,v  (H3,q  (qu,v)+H3,q  (qu,qv))
    q-Differential equation (vLq,u  (1+q2L1q,u)D2q,u  +uDq,u  [4]q)H4,q  (u,v)=0
    Summation Formula 1 H4,q  (u,v)[4]q!vH2,q  (u,v)[2]q!+qv2[2]q!=(u)4q[4]q!
    Summation Formula 2 H4,q  (u,v)[4]q!uH3,q  (u,v)[3]q!+qu2H2,q  (u,v)[2]q!q3u3H1,q  (u,v)[3]q!+q6u4[2]q!=(v)2q[4]q!
    Summation Formula 3 Dq,u  H5,q  (u,v)[5]q!vDq,u  H3,q  (u,v)[3]q!+qv2Dq,u  H1,q  (u,v)[2]q!=(u)4q[4]q!
    Summation Formula 4 Dq,u  H5,q  (u,v)[5]q!uDq,u  H4,q  (u,v)[4]q!+qu2Dq,u  H3,q  (u,v)[2]q![3]q!q3u3Dq,u  H2,q  (u,v)[2]q![3]q!+q6u4Dq,u  H1,q  (u,v)[2]q!=(v)2q[4]q!
    Summation Formula 5 Dq,v  H6,q  (u,v)[6]q!vDq,v  H4,q  (u,v)[4]q!+qv2Dq,v  H2,q  (u,v)[2]q![2]q!=(u)4q[4]q!
    Summation Formula 6 Dq,v  H6,q  (u,v)[6]q!uDq,v  H5,q  (u,v)[5]q!+qu2Dq,v  H4,q  (u,v)[4]q![2]q!q3u3Dq,v  H2,q  (u,v)[3]q![3]q!+q6u4Dq,v  H2,q  (u,v)[4]q![2]q!=(v)2q[2]q!
    II H7,q  (u,v) Series definition H7,q  (u,v)=u7+[7]q[6]qu5v+[7]q[6]q[5]q(1+q2)u3v2+[7]q[6]q[5]q[4]quv3
    Recurrence relation 1 H7,q  (u,v)=uH6,q  (u,v)+[7]qv(H6,q  (qu,v)+qH6,q  (qu,qv))=0
    Recurrence relation 2 qH8,q  (u,v)=quH7,q  (u,v)+vDq,u  (H7,q  (qu,v)+qH7,q  (qu,qv))
    Recurrence relation 3 q[7]qH7,q  (u,v)=quDq,u  H7,q  (u,v)+[7]qvDq,v  (H6,q  (qu,v)+qH6,q  (qu,qv))
    Recurrence relation 4 [7]qH7,q  (u,v)=[7]quH6,q  (u,v)+vDq,v  (H7,q  (qu,v)+H7,q  (qu,qv))
    Recurrence relation 5 [7]q[6]qH6,q  (u,v)=Dq,v  uH6,q  (u,v)+[7]qvDq,v  (H6,q  (qu,v)+H6,q  (qu,qv))
    q-Differential equation (vLq,u  (1+q2L1q,u)D2q,u  +uDq,u  [7]q)H7,q  (u,v)=0
    Summation Formula 1 H7,q  (u,v)[7]q!vH5,q  (u,v)[5]q!+qvH3,q  (u,v)[2]q![3]q!q3v3H1,q  (u,v)[3]q!=(u)7q[7]q!
    Summation Formula 2 H7,q  (u,v)[7]q!uH6,q  (u,v)[6]q!+qu2H5,q  (u,v)[2]q![5]q!q3u3H4,q  (u,v)[3]q![4]q!+q6u4H3,q  (u,v)[3]q![4]q!q10u5H2,q  (u,v)[5]q![2]q!+q15u6H1,q  (u,v)[6]q!q21u7[7]q!=0
    Summation Formula 3 Dq,u  H8,q  (u,v)[8]q!vDq,u  H6,q  (u,v)[6]q!+qvDq,u  H4,q  (u,v)[2]q![4]q!q3v3Dq,u  H2,q  (u,v)[2]q![3]q!=(u)7q[7]q!
    Summation Formula 4 Dq,u  H8,q  (u,v)[8]q!uDq,u  H7,q  (u,v)[7]q!+qu2Dq,u  H6,q  (u,v)[2]q![6]q!q3u3Dq,u  H5,q  (u,v)[3]q![5]q!+q6u4Dq,u  H4,q  (u,v)[4]q![4]q!q10u5Dq,u  H3,q  (u,v)[5]q![3]q!+q15u6Dq,u  H2,q  (u,v)[2]q![6]q!=q21u7[7]q!
    Summation Formula 5 Dq,v  H9,q  (u,v)[9]q!vDq,v  H7,q  (u,v)[7]q!+qvDq,7H5,q  (u,v)[2]q![5]q!q3v3Dq,v  H3,q  (u,v)[3]q![3]q!=(u)7q[7]q!
    Summation Formula 6 Dq,v  H9,q  (u,v)[9]q!uDq,v  H8,q  (u,v)[8]q!+qu2Dq,v  H7,q  (u,v)[2]q![7]q!q3u3Dq,v  H6,q  (u,v)[3]q![6]q!+q6u4Dq,v  H5,q  (u,v)[4]q![5]q!q10u5Dq,v  H4,q  (u,v)[5]q![4]q!+q15u6Dq,v  H6,q  (u,v)[3]q![6]q!=q21u7[7]q!

     | Show Table
    DownLoad: CSV

    In the next section, we obtain the operational and integral representations for the 2VqHP Hn,q(u,v).

    It has been realized that the use of operational identities have simplified the study of special polynomials. In this section, we obtain the operational and integral representations of 2VqHP Hn,q(u,v).

    First, we establish the following result:

    Theorem 4.1. The operational representation of 2-variable q-Hermite polynomials Hn,q(u,v) is as follows:

    Hn,q(u,v)=eq(vD2q,u)(u)nq. (4.1)

    Proof. In view of Eq (1.12), we have

    D2kq,u(u)nq=[n]q![n2k]q!(u)n2kq . (4.2)

    Using the above equation in the right hand side of Eq (2.3), we have

    Hn,q(u,v)=[n/2]k=0(v)kqD2kq,u(u)nq[k]q!,

    which on using Eq (1.6), gives

    Hn,q(u,v)=[n/2]k=0(vD2q,u)k[k]q!(u)nq. 

    Using Eq (1.7) in the right hand side of above equation, we have the assertion (4.1).

    Remark 4.1 For q1, Eq (4.1) becomes [4]:

    Hn(u,v)=e(v2u2)un. (4.3)

    Now, we obtain the following integral representations for the 2VqHP Hn,q(u,v):

    Theorem 4.2. The definite q-integral of 2VqHP Hn,q(u,v) with respect to u is as follows:

    baHn,q(u,v)dqu=Hn+1,q(b,v)Hn+1,q(a,v)[n+1]q. (4.4)

    Proof. Using Eq (2.7), we have

    baHn,q(u,v)dqu=1[n+1]qbaDq,uHn+1,q(u,v)dqu,

    which on using Eq (1.18) in the right hand side, gives the assertion (4.4).

    Next, we establish the following result:

    Theorem 4.3. The definite q-integral of 2VqHP Hn,q(u,v) with respect to v is as follows:

    dcHn,q(u,v)dqv=Hn+2,q(u,d)Hn+2,q(u,c)[n+1]q[n+2]q. (4.5)

    Proof. Using Eq (2.10), we have

    baHn,q(u,v)dqv=1[n+1]q[n+2]qbaDq,yHn+2,q(u,v)dqv,

    which on using Eq (1.18) in the right hand side, gives assertion (4.5).

    In view of Theorems 4.2 and 4.3, we have the following result:

    Corollary 4.4. The double q-integration of 2VqHP Hn,q(u,v) is as follows:

    dc(baHn,q(u,v)dqu)dqv=ba(dcHn,q(u,v)dqv)dqu=bu=adv=cHn,q(u,v)dqvdqu=[n]q![n+3]q!(Hn+3,q(b,d)+Hn+3,q(a,c)Hn+3,q(b,c)Hn+3,q(a,d)). (4.6)

    Proof. Integrating Eq (4.4) with respect to v by taking limit from c to d and using Eq (1.18), we have

    dc(baHn,q(u,v)dqu)dqv=1[n+1]q(dcHn+1,q(b,v)dqvdcHn+1,q(a,v)dqv),

    which in view of Eq (4.5), gives

    dc(baHn,q(u,v)dqu)dqv=1[n+1]q[n+2]q[n+3]q(Hn+3,q(b,d)+Hn+3,q(a,c)Hn+3,q(b,c)Hn+3,q(a,d)). (4.7)

    Similarly, integrating Eq (4.5) with respect to u by taking limit from a to b and using Eq (1.18), we have

    ba(dcHn,q(u,v)dqv)dqu=1[n+1]q[n+2]q(baHn+2,q(u,d)dqubaHn+2,q(u,c)dqu), (4.8)

    which in view of Eq (4.4), gives

    ba(dcHn,q(u,v)dqv)dqu=1[n+1]q[n+2]q[n+3]q(Hn+3,q(b,d)+Hn+3,q(a,c)Hn+3,q(b,c)Hn+3,q(a,d)). (4.9)

    In view of Eqs (4.7) and (4.9), we have the assertion (4.6).

    Remark 4.2 For q1, Eqs (4.4) and (4.5) reduce to the integral representations for 2VHP Hn(u,v) [4]. Also, for q1, Eq (4.6) gives:

    dc(baHn(u,v)du)dv=ba(dcHn(u,v)dy)du=bu=adv=cHn(u,v)dvdu=n!(n+3)!(Hn+3(b,d)+Hn+3(a,c)Hn+3(b,c)Hn+3(a,d)).

    Examples:

    Now, we consider some examples to show the efficacy of the results obtained, in this section.

    I. First, we take n=6 in Eqs (4.1), (4.4)-(4.6) to obtain the corresponding results for H6,q(u,v).

    For n=6, Eq (4.1), the following operational representation of H6,q(u,v):

    H6,q(u,v)=eq(vD2q,u)(u)6q. (4.10)

    Also, taking n=6,a=1,b=2,c=2,d=3 in Eqs (4.4)-(4.6) and then simplifying by using Eq (2.3), we have the following integral representations of H6,q(u,v):

    21H6,q(u,v)dqu=1[7]q((271)+[7]q[6]q(251)v+[7]q[6]q[5]q(1+q2)(231)v2+[7]q[6]q[5]q[4]q((21))v3)=127[7]q+[6]q31v+[6]q[5]q(1+q2)7v2+[6]q[5]q[4]qv3, (4.11)
    32H6,q(u,v)dqv=1[7]q[8]qu8+[6]qu6+5[6]q[5]q[8]q(1+q2+q4)u4+19[6]q[5]q[4]q[8]q(1+q2+q4)u2+65[6]q[5]q (4.12)

    and

    3221H7,q(u,v)dqudqv=255[8]q+315[7]q[8]q(1+q2+q4)+304[7]q[6]q[5]q[8]q[3]q(1+q2+q4)+195[7]q[6]q[5]q(1+q2+q4). (4.13)

    II. Next, we take n=3 in Eqs (4.1), (4.4)-(4.6) to obtain the corresponding results for H3,q(u,v).

    For n=3, Eq (4.1), the following operational representation of H3,q(u,v):

    H3,q(u,v)=eq(vD2q,u)(u)3q. (4.14)

    Also, taking n=3,a=0,b=2,c=3,d=4 in Eqs (4.4)-(4.6) and then simplifying by using Eq (2.3), we have the following integral representations of H3,q(u,v):

    20H3,q(u,v)dqu=1[4]q((240)+[4]q[3]q(220)v+[4]q[3]qv2)=16[4]q+[3]q4v+[3]qv2, (4.15)
    43H3,q(u,v)dqv=1[4]q[5]qu5+u3+7[3]qu (4.16)

    and

    4320H3,q(u,v)dqudqv=16[4]q+28[3]q[4]q(1+q2). (4.17)

    The post quantum calculus, briefly called (p,q)-calculus, is considered as a generalization of the q-calculus by some mathematicians, as for p=1, the (p,q)-calculus reduces to the q-calculus. The (p,q)-analogues of certain ordinary special functions and q-special functions as well as polynomials like Beta function, Gamma function, Euler polynomials and Bernoulli polynomials have been introduced and studied [5,9,16,18].

    We conclude this paper with the introduction and study of (p,q)-analogue of 2VqHP Hn,q(u,v).

    We recall the (p,q)-number [n]p,q, which is defined as [8]:

    [n]p,q=pnqnpq(0<q<p1), (5.1)

    for any positive integer nN. The (p,q)-factorial is defined as [8]:

    [n]p,q!={nk=1[k]p,q!=[1]p,q[2]p,q[n]p,q,0<q<p1n11,n=0.

    Also, we recall that

    (u)np,q=p(n2)un. (5.2)

    The (p,q)-exponential function, denoted by ep,q(u), is defined as [8]:

    ep,q(u)=n=0p(n2)un[n]p,q!=n=0(u)np,q[n]p,q!. (5.3)

    The (p,q)-derivative of a function f with respect to u, denoted by Dp,q,u f(u), is defined as [7]:

    Dp,q,uf(u)=f(pu)f(qu)(pq)u(x0). (5.4)

    Recently, Duran et al. defined the 1-variable (p,q)-Hermite polynomials as [10]:

    ep,q([2]p,qut)ep,q(t2)=n=0Hn,p,q(u)tn[n]p,q!. (5.5)

    In view of Eqs (2.1) and (5.5), we define the 2-variable (p,q)-Hermite polynomials 2V(p,q)HP Hn,p,q(u,v) by means of the following generating function:

    ep,q(ut)ep,q(vt2)=n=0Hn,p,q(u,v)tn[n]p,q!. (5.6)

    The series on the right hand side of the above equation converges in the finite complex plane.\

    Simplifying and equating the coefficients of equal powers of t from both sides of Eq (5.6), gives the following series definition of 2V(p,q)HP Hn,p,q(u,v):

    Hn,p,q(u,v)=[n]p,q![n/2]k=0(u)n2k p,q(v)kp,q[n2k]p,q![k]p,q!. (5.7)

    Being a finite power series, the series on the right hand side of the above equation converges in the finite complex plane.

    Similar to the Lemma 2.1, we find the following (p,q)-partial derivative of the function ep,q(vt2):

    Dp,q,tep,q(vt2)=pvtep,q(p2vt2)+qvtep,q(pqvt2), (5.8)

    which is used to obtain the following (p,q)-pure and differential recurrence relations for 2V(p,q)HP Hn,p,q(u,v):

    Hn+1,p,q(u,v)=uHn,p,q(pu,p2v)+[n]p,qv(pHn1,p,q(qu,p2v)+qHn1,p,q(qu,pqv))=0(n1), (5.9)
    qHn+1,p,q(u,v)=quHn,p,q(pu,p2v)+puDp,q,u(pHn,p,q(qpu,p2v)+qHn,p,q(qpu,pqv)), (5.10)
    [n]p,qHn,p,q(u,v)=quDp,q,uHn,p,q(u,p2v)+[n]p,qpvDp,q,u(pHn1,p,q(qpu,p2v)+qHn1,p,q(qpu,pqv))(n1), (5.11)
    [n]p,qHn,p,q(u,v)=[n]p,quHn1,p,q(pu,p2v)+vDp,q,v(Hn,p,q(qu,pv)+Hn,p,q(qu,qv))(n1) (5.12)

    and

    [n]p,q[n1]p,qHn1,p,q(u,v)=Dp,q,vuHn,p,q(pu,pv)+[n]p,qpvDp,q,v(Hn1,p,q(qu,pv)+Hn1,p,q(qu,qv))(n1). (5.13)

    Now, in order to establish the operational representation for the 2V(p,q)HP Hn,p,q(u,v), we define a (p,q)-operator Xp,q,u as:

    (Xp,q,u)rp,q:=Lrp,uDrp,q,u(r1), (5.14)

    which, in view of Eqs (2.31), (2.32) and (5.2), acts on a (p,q)-function in the following manner:

    Xrp,q,ufp,q(u)=p(r2)(L1p,u)r(Dp,q,u)rfp,q(u)(r1), (5.15)

    where L1p,u is the inverse shift operator, defined by Eq (2.31). It is easy to verify that the shift-differential operator Xp,q,u satisfies the following:

    X2kp,q,u(u)np,q=[n]p,q![n2k]p,q!(u)n2kp,q . (5.16)

    Using the above equation in the right hand side of Eq (5.7), we have

    Hn,p,q(u,v)=[n/2]k=0(v)kp,qX2kp,q,u(u)np,q[k]p,q!,

    which on using Eq (5.2), gives

    Hn,p,q(u,v)=[n/2]k=0(vX2p,q,u)kp,q[k]p,q!(u)np,q. 

    Using Eq (5.3) in the right hand side of above equation, we have the following operational identity of the 2-variable (p,q)-Hermite polynomials Hn,p,q(u,v):

    Hn,p,q(u,v)=ep,q(vX2p,q,u)(u)np,q, (5.17)

    where the (p,q)-operator X2p,q,u:=p1L2p,uD2p,q,u.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Group Program under Grant No. RGP. 2/51/42.

    The authors declare that they have no competing interest.

    In order to plot the graphs of the 2-variable q-Hermite and (p,q)-Hermite polynomials for certain values of p and q, we obtain the following first few q-Hermite and (p,q)-Hermite polynomials by using Eqs (2.3) and (5.7) respectively:

    H0,q(u,v)=1,

    H1,q(x,y)=u,

    H2,q(u,v)=u2+[2]qv,

    H3,q(u,v)=u3+[3]q[2]quv,

    H4,q(u,v)=u4+[4]q[3]qu2v+[4]q[3]qv2

    and

    H0,p,q(u,v)=1,

    H1,p,q(u,v)=u,

    H2,p,q(u,v)=pu2+[2]p,qv,

    H3,p,q(u,v)=p3u3+[3]p,q[2]p,quv,

    H4,p,q(u,v)=p6u4+[4]p,q[3]p,qp2u2v+[4]p,q[3]p,qpv2.

    The following graphical representations of the first few 2-variable q-Hermite polynomials Hn,q(u,v) and 2-variable (p,q)-Hermite polynomials Hn,p,q(u,v) for certain values of p and q, are obtained by using the above suitable expression in the software MATLAB:

    Figure S1.  The Surface plot for 2VqHP H1,1/3(u,v).
    Figure S2.  The Surface plot for 2VqHP H2,1/3(u,v).
    Figure S3.  The Surface plot for 2VqHP H3,1/2(u,v).
    Figure S4.  The Surface plot for 2VqHP H4,1/2(u,v).
    Figure S5.  The Surface plot for 2V(p,q)HP H3,1/6,1/8(u,v).
    Figure S6.  The Surface plot for 2V(p,q)HP H4,1/2,1/4(u,v).


    [1] L. C. Andrews, Special functions of mathematics for engineers, McGraw-Hill, Inc., New York, second edition, 1992.
    [2] G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, 71, Cambridge, 1999.
    [3] G. E. Andrews, q-hypergeometric and related functions, NIST handbook of mathematical functions, U.S. Dept. Commerce, Washington DC, 2010,419-433.
    [4] P. Appell, J. K. De Fériet, Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite, Gauthier-Villars, 1926.
    [5] R. Askey, The q-Gamma and q-Beta functions, Appl. Anal., 8 (1978), 125-141.
    [6] C. Berg, M. E. H. Ismail, q-Hermite polynomials and classical orthogonal polynomials, Can. J. Math., 48 (1996), 43-63.
    [7] I. M. Burban, A. U. Klimyk, (P,Q)-differentiation, (P,Q)-integration and (P,Q)-hypergeometric functions related to quantum groups, Integr. Transforms Spec. Funct., 2 (1994), 15-36.
    [8] R. Chakrabarti, R. Jagannathan, A (p,q)-oscillator realization of two-parameter quantum algebras, J. Phys. A, 24 (1991), L711-L718. doi: 10.1088/0305-4470/24/13/002
    [9] U. Duran, M. Acikgoz, S. Araci, On (p,q)-Bernoulli, (p,q)-Euler and (p,q)-Genocchi Polynomials, J. Comput. Theor. Nanosci., 13 (2016), 7833-7846.
    [10] U. Duran, M. Acikgoz, A. Esi, S. Araci, A note on the (p,q)- Hermite polynomials, Appl. Math. Inf. Sci., 12 (2018), 227-231.
    [11] T. Ernst, A comprehensive treatment of q-calculus, Springer Science & Business Media, 2012.
    [12] G. Gasper, M. Rahman, Basic hypergeometric series, Second edition, Encyclopedia of Mathematics and its Applications, 96, Cambridge University Press, Cambridge, 2004.
    [13] M. A. Jackson, XI.-On q-functions and a certain difference operator, Earth Environ. Sci. Trans. Royal Soc. Edinburgh, 46 (1909), 253-281. doi: 10.1017/S0080456800002751
    [14] D. O. Jackson, T. Fukuda, O. Dunn, E. Majors, On q-definite integrals, Quart. J. Pure Appl. Math., (1910).
    [15] S. Khan, T. Nahid, Determinant forms, difference equations and zeros of the q-Hermite-Appell polynomials, Mathematics, 6 (2018), 285. doi: 10.3390/math6120285
    [16] T. Kim, On a q-Analogue of the p-Adic Log Gamma Functions and Related Integrals, J. Number Theory, 76 (1996), 320-329.
    [17] S. Nalci, O. K. Pashaev, q-Analog of shock soliton solution, J. Phys. A, 43 (2010), 445205. doi: 10.1088/1751-8113/43/44/445205
    [18] P. N. Sadjang, On the (p,q)-Gamma and the (p,q)-Beta functions, arXiv: 1506.07394, 2015.
    [19] H. M. Srivastava, S. Khan, S. Araci, M. Acikgoz, M. Riyasat, A general class of the three-variable unified Apostol-type q-polynomials and multiple power q-sums, Bull. Iran. Math. Soc., 46 (2020), 519-542. doi: 10.1007/s41980-019-00273-9
  • This article has been cited by:

    1. Muhammad Raees, Artion Kashuri, Muhammad Uzair Awan, Matloob Anwar, Some new post‐quantum integral inequalities involving multi‐parameter and their applications, 2022, 45, 0170-4214, 5965, 10.1002/mma.8151
    2. Mohammed Fadel, Maryam Salem Alatawi, Waseem Ahmad Khan, Two-Variable q-Hermite-Based Appell Polynomials and Their Applications, 2024, 12, 2227-7390, 1358, 10.3390/math12091358
    3. Mohra Zayed, Shahid Ahmad Wani, William Ramírez, Clemente Cesarano, Advancements in q-Hermite-Appell polynomials: a three-dimensional exploration, 2024, 9, 2473-6988, 26799, 10.3934/math.20241303
    4. Mohammed Fadel, Nusrat Raza, Ahmed Al-Gonah, Ugur Duran, Bivariate q -Laguerre–Appell polynomials and their applications , 2024, 32, 2769-0911, 10.1080/27690911.2024.2412545
    5. Nusrat Raza, Mohammed Fadel, Wei-Shih Du, New Summation and Integral Representations for 2-Variable (p,q)-Hermite Polynomials, 2024, 13, 2075-1680, 196, 10.3390/axioms13030196
    6. Jian Cao, Nusrat Raza, Mohammed Fadel, Two-variable q-Laguerre polynomials from the context of quasi-monomiality, 2024, 535, 0022247X, 128126, 10.1016/j.jmaa.2024.128126
    7. Mohammed Fadel, Abdulghani Muhyi, On a family of q -modified-Laguerre-Appell polynomials , 2024, 31, 2576-5299, 165, 10.1080/25765299.2024.2314282
    8. Mohammed Fadel, Nusrat Raza, Wei-Shih Du, On q-Hermite Polynomials with Three Variables: Recurrence Relations, q-Differential Equations, Summation and Operational Formulas, 2024, 16, 2073-8994, 385, 10.3390/sym16040385
    9. Mohammed Fadel, Nusrat Raza, Wei-Shih Du, Characterizing q-Bessel Functions of the First Kind with Their New Summation and Integral Representations, 2023, 11, 2227-7390, 3831, 10.3390/math11183831
    10. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, On generalized Hermite polynomials, 2024, 9, 2473-6988, 32463, 10.3934/math.20241556
    11. Subuhi Khan, Hassan Ali, Mohammed Fadel, Finding identities and q -difference equations for new classes of bivariate q -matrix polynomials , 2025, 33, 2769-0911, 10.1080/27690911.2024.2446563
    12. Umme Zainab, Integro-difference equations and umbral study for q-Appell-Hermite polynomials, 2025, 0022247X, 129269, 10.1016/j.jmaa.2025.129269
    13. Nusrat Raza, Mohammed Fadel, Subuhi Khan, On monomiality property of q -Gould-Hopper-Appell polynomials , 2025, 32, 2576-5299, 21, 10.1080/25765299.2025.2457206
    14. Noor Alam, Waseem Ahmad Khan, Can Kızılateş, Cheon Seoung Ryoo, Two-Variable q-General-Appell Polynomials Within the Context of the Monomiality Principle, 2025, 13, 2227-7390, 765, 10.3390/math13050765
    15. Naeem Ahmad, Waseem Ahmad Khan, Insights into New Generalization of q-Legendre-Based Appell Polynomials: Properties and Quasi Monomiality, 2025, 13, 2227-7390, 955, 10.3390/math13060955
    16. Naeem Ahmad, Waseem Ahmad Khan, A New Generalization of q-Laguerre-Based Appell Polynomials and Quasi-Monomiality, 2025, 17, 2073-8994, 439, 10.3390/sym17030439
    17. Fadel Mohammed, William Ramírez, Clemente Cesarano, Stiven Díaz, q-Legendre based Gould–Hopper polynomials and q-operational methods, 2025, 71, 0430-3202, 10.1007/s11565-025-00587-z
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4086) PDF downloads(265) Cited by(17)

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog