We construct a new type of Genocchi polynomials using degenerate quantum exponential functions and find various forms of $ (q, h) $-difference equations with these polynomials as solutions. This paper includes properties of the symmetric structures of $ (q, h) $-difference equations and also presents $ (q, h) $-difference equations with other polynomials as coefficients. By understanding the approximate roots structure of degenerate quantum Genocchi polynomials (DQG), which are common solutions to various forms of $ (q, h) $-difference equations, we identify the properties of the solutions.
Citation: Jung Yoog Kang, Cheon Seoung Ryoo. The forms of $ (q, h) $-difference equation and the roots structure of their solutions with degenerate quantum Genocchi polynomials[J]. AIMS Mathematics, 2024, 9(11): 29645-29661. doi: 10.3934/math.20241436
We construct a new type of Genocchi polynomials using degenerate quantum exponential functions and find various forms of $ (q, h) $-difference equations with these polynomials as solutions. This paper includes properties of the symmetric structures of $ (q, h) $-difference equations and also presents $ (q, h) $-difference equations with other polynomials as coefficients. By understanding the approximate roots structure of degenerate quantum Genocchi polynomials (DQG), which are common solutions to various forms of $ (q, h) $-difference equations, we identify the properties of the solutions.
[1] | H. F. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[2] | H. F. Jackson, On $q$-functions and a certain difference operator, T. Roy. Soc. Edin., 46 (2013), 253–281. http://dx.doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751 |
[3] | V. Kac, P. Cheung, Quantum calculus, Part of the Universitext book series(UTX), Switzerland: Springer Nature, 2002. |
[4] | G. Bangerezako, Variational $q$-calculus, J. Math. Anal. Appl., 289 (2004), 650–665. https://doi.org/10.1016/j.jmaa.2003.09.004 doi: 10.1016/j.jmaa.2003.09.004 |
[5] | R. D. Carmichael, The general theory of linear $q$-difference equations, Am. J. Math., 34 (1912), 147–168. https://doi.org/10.2307/2369887 doi: 10.2307/2369887 |
[6] | T. E. Mason, On properties of the solution of linear $q$-difference equations with entire function coefficients, Am. J. Math., 37 (1915), 439–444. https://doi.org/10.2307/2370216 doi: 10.2307/2370216 |
[7] | J. Choi, N. Khan, T. Usman, M. Aman, Certain unified polynomials, Integr. Transf. Spec. F., 30 (2019), 28–40. https://doi.org/10.1080/10652469.2018.1534847 doi: 10.1080/10652469.2018.1534847 |
[8] | U. Duran, M. Acikgoz, S. Araci, A study on some new results arising from $(p, q)$-calculus, Preprints, 2018. http://dx.doi.org/10.20944/preprints201803.0072.v1 |
[9] | H. B. Benaoum, $(q, h)$-analogue of Newton's binomial Formula, J. Phys. A-Math. Gen., 32 (1999), 2037–2040. https://doi.org/10.48550/arXiv.math-ph/9812028 doi: 10.48550/arXiv.math-ph/9812028 |
[10] | J. Cermak, L. Nechvatal, On $(q, h)$-analogue of fractional calculus, J. Nonlinear Math. Phy., 17 (2010), 51–68. https://doi.org/10.1142/S1402925110000593 doi: 10.1142/S1402925110000593 |
[11] | B. Silindir, A. Yantir, Generalized quantum exponential function and its applications, Filomat, 33 (2019), 4907–4922. http://doi.org/10.2298/FIL19159075 doi: 10.2298/FIL19159075 |
[12] | M. R. S. Rahmat, The $(q, h)$-Laplace transform on discrete time scales, Comput. Math. Appl., 62 (2011), 272–281. https://doi.org/10.1016/j.camwa.2011.05.008 doi: 10.1016/j.camwa.2011.05.008 |
[13] | C. S. Ryoo, J. Y. Kang, Various types of $q$-differential equations of higher order for $q$-Euler and $q$-Genocchi polynomials, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10071181 doi: 10.3390/math10071181 |
[14] | D. Lim, Some identities of degenerate Genocchi polynomials, B. Korean Math. Soc., 53 (2016), 569–579. https://doi.org/10.4134/BKMS.2016.53.2.569 doi: 10.4134/BKMS.2016.53.2.569 |
[15] | A. Isah, C. Phang, Genocchi wavelet-like operational matrix and its application for solving non-linear fractional differential equations, Open Phys., 14 (2016), 463–472. https://doi.org/10.1515/phys-2016-0050 doi: 10.1515/phys-2016-0050 |
[16] | M. Cinar, A. Secer, M. Bayram, An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equation, Alex. Eng. J., 60 (2021), 5331–5340. https://doi.org/10.1016/j.aej.2021.04.037 doi: 10.1016/j.aej.2021.04.037 |
[17] | S. Sadeghi, H. Jafari, S. Nemati, Operational matrix for Atangana-Baleanu derivative based on Genocchi polynomials for solving FDEs, Chaos Soliton. Fract., 135 (2020), 109736. https://doi.org/10.1016/j.chaos.2020.109736 doi: 10.1016/j.chaos.2020.109736 |
[18] | S. Husain, N. Khan, T. Usman, J. Choi, The $(p, q)$-sine and $(p, q)$-cosine polynomials and their associated $(p, q)$-polynomials, Analysis, 44 (2024), 47–65. http://dx.doi.org/10.1515/anly-2023-0042 doi: 10.1515/anly-2023-0042 |