In this study, we introduced several types of higher-order difference equations involving $ q $-SINE Euler (QSE) and $ q $-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the $ q $-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures.
Citation: Jung Yoog Kang, Cheon Seoung Ryoo. Exploring variable-sensitive $ q $-difference equations for $ q $-SINE Euler polynomials and $ q $-COSINE-Euler polynomials[J]. AIMS Mathematics, 2024, 9(6): 16753-16772. doi: 10.3934/math.2024812
In this study, we introduced several types of higher-order difference equations involving $ q $-SINE Euler (QSE) and $ q $-COSINE Euler (QCE) polynomials. Depending on the parameters selected, these higher-order difference equations exhibited properties of trigonometric functions or related Euler numbers. Approximate root construction focused on the QSE polynomial, which was the solution of the $ q $-difference equations obtained earlier. We also showed the structure of the approximate roots of higher-order polynomials among the QSE polynomials, understood them, and considered the associated conjectures.
[1] | W. H. Abdi, On $q$-Laplace transforms, Proc. Natl. Acad. Sci. India, 29 (1961), 389–408. |
[2] | G. Bangerezako, An Introduction to $q$-Difference Equations, Preprint, Bujumbura: University of Burundi, 2007. |
[3] | L. Carlitz, $q$-Bernoulli numbers and polynomials, Duke Math. J., 15 (1948), 987–1000. |
[4] | L. Carlitz, $q$-Bernoulli and Eulerian numbers, Trans. Amer. Math. Soc., 76 (1954), 332–350. |
[5] | T. Ernst, A Comprehensive Treatment of $q$-Calculus, New York: Springer Science, Business Media, 2012. |
[6] | J. A. Ganie, A. A. Bhat, S. A. Wani, Natural transform of two variables in $q$-calculus with applications, Bollettino dell'Unione Matematica Italian, 17 (2024), 101–117. |
[7] | R. N. Goldman, P. Simenov, Y. Simsek, Generating Functions For The Q-Bernstein Bases, Siam J. Discrete Math., 28 (2014), 1009–1025. |
[8] | H. F. Jackson, $q$-Difference equations, Am. J. Math., 32 (1910), 305–314. |
[9] | H. F. Jackson, On $q$-functions and a certain difference operator, Earth Environ. Sci. Trans. R. Soc. Edinb., 46 (2013), 253–281. |
[10] | A. Kemp, Certain $q$-analogues of the binomial distribution, Sankhya Indian J. Stat. Ser. A, 64 (2002), 293–305. |
[11] | N. Kilar, Y. Simsek, Computational formulas and identities for new classes of Hermite-based Milne–Thomson type polynomials: Analysis of generating functions with Euler's formula, Math. Appl. Sci., 44 (2021), 6731–6762. |
[12] | N. Kilar, Y. Simsek, H. M. Srivastava, Recurrence relations, associated formulas, and combinatorial sums for some parametrically generalized polynomials arising from an analysis of the Laplace transform and generating functions, Ramanujan J., 61 (2023), 731–756. |
[13] | N. Kilar, Y. Simsek, Identities and relations for Hermite-based Milne–Thomson polynomials associated with Fibonacci and Chebyshev polynomials, RACSAM, 115 (2021), 28. https://doi.org/10.1007/s13398-020-00968-3 doi: 10.1007/s13398-020-00968-3 |
[14] | J. Konvalina, A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients, Am. Math. Mon., 107 (2000), 901–910. https://doi.org/10.1080/00029890.2000.12005290 doi: 10.1080/00029890.2000.12005290 |
[15] | T. Kim, C. S. Ryoo, Some identities for Euler and Bernoulli polynomials and their zeros, Axioms, 7 (2018), 56. https://doi.org/10.3390/axioms7030056 doi: 10.3390/axioms7030056 |
[16] | J. Y. Kang, C. S. Ryoo, Various structures of the roots and explicit properties of $q$-cosine Bernoulli polynomials and $q$-sine Bernoulli polynomials, Mathematics, 8 (2020), 463. https://doi.org/10.3390/math8040463 doi: 10.3390/math8040463 |
[17] | Q. Luo, H. M. Srivastava, $q$-extensions of some relationships between the Bernoulli and Euler polynomials, Taiwan. J. Math., 15 (2011), 241–257. |
[18] | S. Picoli Jr., R. S. Mendes, L. C. Malacarne, R. P. B. Santos, $q$-distributions in complex systems: A brief review, Braz. J. Phys., 39 (2009), 468–474. https://doi.org/10.1590/S0103-97332009000400023 doi: 10.1590/S0103-97332009000400023 |
[19] | C. S. Ryoo, J. Y. Kang, Explicit Properties of $q$-Cosine and $q$-Sine Euler Polynomials Containing Symmetric Structures, Symmetry, 12 (2020), 1274. https://doi.org/10.3390/sym12081247 doi: 10.3390/sym12081247 |
[20] | C. S. Ryoo, J. Y. Kang, Various Types of $q$-Differential Equations of Higher Order for $q$-Euler and $q$-Genocchi Polynomials, Mathematics, 10 (2022), 1181. https://doi.org/10.3390/math10071181 doi: 10.3390/math10071181 |
[21] | P. S. Rodrigues, G. Wachs-Lopes, R. M. Santos, E. Coltri, G. A. Giraldi, A $q$-extension of sigmoid functions and the application for enhancement of ultrasound images, Entropy, 21 (2019), 430. https://doi.org/10.3390/e21040430 doi: 10.3390/e21040430 |
[22] | E. Schrödinger, A method for determining quantum mechanical eigenvalues and eigenfunctions, Proc. Roy. Irish. Acad. A, 46 (1940), 9–16. |
[23] | K. Victor, C. Pokman, Quantum Calculus Universitext, New York: Springer, 2002. |