Citation: Serap Özcan. Some integral inequalities of Hermite-Hadamard type for multiplicatively preinvex functions[J]. AIMS Mathematics, 2020, 5(2): 1505-1518. doi: 10.3934/math.2020103
[1] | M. A. Ali, M. Abbas, Z. Zhang, et al. On Integral Inequalities for Product and Quotient of Two Multiplicatively Convex Functions, Asian Research Journal of Mathematics, 12 (2019), 1-11. |
[2] | T. Antczak, Mean Value in Invexity and Analysis, Nonlinear Analysis, 60 (2005), 1471-1484. |
[3] | A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard Inequality Through Prequasiinvex Functions, RGMIA Res. Rep. Collect., 14 (2011). |
[4] | A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard Inequality for Functions Whose Derivatives Absolute Values are Preinvex, J. Inequal. Appl., 2012 (2012), 247. |
[5] | A. E. Bashirov, E. M. Kurpınar, A. Özyapıcı, Multiplicative Calculus and Applications, J. Math. Anal. Appl., 337 (2008), 36-48. |
[6] | A. Ben-Israel and B. Mond, What is Invexity, J. Aust. Math. Soc., Ser. B, 28 (1986), 1-9. doi: 10.1017/S0334270000005142 |
[7] | S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Mathematics Preprint Archive, 2003 (2003), 463-817. |
[8] | S. S. Dragomir, Some New Inequalities of Hermite-Hadamard Type for GA-Convex Functions, Ann. Univ. Mariae Curie-Sklodowska, sec. A, 72 (2018), 55-68. |
[9] | M. A. Hanson, On Sufficiency of the Kuhn-Tucker Conditions, J. Math. Anal. Appl., 1 (1981), 545-550. |
[10] | İ. İşcan Hermite-Hadamard Type Inequalities for Harmonically Convex Functions, Hacettepe J. Math. Stat., 43 (2014), 935-942. |
[11] | İ. İşcan, M. Kadakal and H. Kadakal, On Two Times Differentiable Preinvex and Prequasiinvex Functions, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68 (2019), 950-963. |
[12] | H. Kadakal, n-Times Differentiable Preinvex and Prequasiinvex Functions, Sigma J. Eng. Nat. Sci., 37 (2019), 529-540. |
[13] | M. Kunt and İ. İşcan, Hermite-Hadamard-Fejer Type Inequalities for p-Convex Functions, Arab J. Math. Sci., 23 (2017), 215-230. |
[14] | M. A. Latif and M. Shoaib, Hermite-Hadamard Type Integral Inequalities for Differentiable mPreinvex and (α, m)-Preinvex Functions, J. Egyptian Math. Soc., 23 (2015), 236-241. doi: 10.1016/j.joems.2014.06.006 |
[15] | S. R. Mohan and S. K. Neogy, On Invex Sets and Preinvex Functions, J. Math. Anal. Appl., 189 (1995), 901-908. doi: 10.1006/jmaa.1995.1057 |
[16] | M. A. Noor, Hermite-Hadamard Integral Inequalities for Log-Preinvex Functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131. |
[17] | M. A. Noor, On Hadamard Integral Inequalities Involving Two Log-Preinvex Functions, J. Ineq. in Pure Appl. Math., 8 (2007), 1-14. |
[18] | M. A. Noor, Variational Like Inequalities, Optimization, 30 (1994), 323-330. doi: 10.1080/02331939408843995 |
[19] | S. Özcan, Some Integral Inequalities for Harmonically (α, s)-Convex Functions, J. Func. Spaces, 2019 (2019), 1-8. |
[20] | S. Özcan and İ. İşcan, Some New Hermite-Hadamard Type Inequalities for s-Convex Functions and Their Applications, J. Ineq. Appl., 2019 (2019), 201. |
[21] | J. E. Pecaric, F. Proschan and Y. L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. |
[22] | R. Pini, Invexity and Generalized Convexity, Optimization, 22 (1991), 513-523. doi: 10.1080/02331939108843693 |
[23] | E. Set, İ. İşcan, M. Z. Sarıkaya, et al. On New Inequalities of Hermite-Hadamard-Fejer Type for Convex Functions via Fractional Integrals, Appl. Math. Comput., 259 (2015), 875-881. |
[24] | M. Tunç, Hermite-Hadamard Type Inequalities via m and (α, m)-Convexity, Demonstratio Math., 46 (2013), 475-483. |
[25] | T. Weir and B. Mond, Preinvex Functions in Multiple Objective Optimization, J. Math. Anal. Appl., 136 (1998), 29-38. |
[26] | B. Y. Xi, F. Qi and T. Y. Zhang, Some Inequalities of Hermite-Hadamard Type for m-HarmonicArithmetically Convex Functions, ScienceAsia, 41 (2015), 357-361. doi: 10.2306/scienceasia1513-1874.2015.41.357 |
[27] | X. M. Yang and D. Li, On Properties of Preinvex Functions, J. Math. Anal. Appl., 256 (2001), 229-241. doi: 10.1006/jmaa.2000.7310 |
[28] | X. M. Yang, X. Q. Yang and K. L. Teo, Generalized Invexity and Generalized Invariant Monotonicity, J. Optim. Theory. Appl., 117 (2003), 607-625. doi: 10.1023/A:1023953823177 |