Citation: Xueli Song, Jianhua Wu. Non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force and its uniform attractor[J]. AIMS Mathematics, 2020, 5(2): 1484-1504. doi: 10.3934/math.2020102
[1] | R. C. Gilver, S. A. Altobelli, A determination of effective viscosity for the Brinkman-Forchheimer flow model, J. Fluid Mech., 258 (1994), 355-370. doi: 10.1017/S0022112094003368 |
[2] | D. A. Nield, The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface, Int. J. Heat Fluid Fl., 12 (1991), 269-272. doi: 10.1016/0142-727X(91)90062-Z |
[3] | K. Vafai, S. J. Kim, Fluid mechanics of the interface region between a porous medium and a fluid layer-an exact solution, Int. J. Heat Fluid Fl., 11 (1990), 254-256. doi: 10.1016/0142-727X(90)90045-D |
[4] | K. Vafai, S. J. Kim, On the limitations of the Brinkman-Forchheimer-extended Darcy equation, Int. J. Heat Fluid Fl., 16 (1995), 11-15. doi: 10.1016/0142-727X(94)00002-T |
[5] | S. Whitaker, The Forchheimer equation: a theoretical development, Transp. Porous Media, 25 (1996), 27-62. doi: 10.1007/BF00141261 |
[6] | M. M. Bhatti, A. Zeeshan, R. Ellahi, et al. Mathematical modelling of heat and mass transfer effects on MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium, Adv. Powder Technol., 29 (2018), 1189-1197. doi: 10.1016/j.apt.2018.02.010 |
[7] | M. Marin, S. Vlase, R. Ellahi, et al. On the Partition of Energies for the Backward in Time Problem of Thermoelastic Materials with a Dipolar Structure, Symmetry, 11 (2019), 863. |
[8] | H. M. Zhang, C. Yuan, G. S. Yang, et al. A novel constitutive modelling approach measured under simulated freeze-thaw cycles for the rock failure, Engineering with Computers, 2019. |
[9] | A. O. Celebi, V. Kalantarov, Continuous dependence for the covective Brinkman-Forchheimer equations, Appl. Anal., 84 (2005), 877-888. doi: 10.1080/00036810500148911 |
[10] | A. O. Celebi, V. Kalantarov, D. Uğurlu, On continuous dependence on coefficients of the BrinkmanForchheimer equations, Appl. Math. Lett., 19 (2006), 801-807. doi: 10.1016/j.aml.2005.11.002 |
[11] | F. Franchi, B. Straughan, Continuous dependence and decay for the Forchheimer equations, Proc. R. Soc. Lond. A, 459 (2003), 3195-3202. doi: 10.1098/rspa.2003.1169 |
[12] | L. E. Payne, B. Straughan, Convergence and continuous dependence for the BrinkmanForchheimer equations, Stud. Appl. Math., 102 (1999), 419-439. doi: 10.1111/1467-9590.00116 |
[13] | Y. Liu, Convergence and continuous dependence for the Brinkman-Forchheimer equations, Math. Comput. Model., 49 (2009), 1401-1415. doi: 10.1016/j.mcm.2008.11.010 |
[14] | Y. Liu, S. Z. Xiao, Y. W. Lin, Continuous dependence for the Brinkman-Forchheimer fluid interfacing with a Darcy fluid in a bounded domain, Math. Comput. Simulat., 150 (2018), 66-82. doi: 10.1016/j.matcom.2018.02.009 |
[15] | Y. F. Li, C. H. Lin, Continuous dependence for the nonhomogeneous Brinkman-Forchheimer equations in a semi-infinite pipe, Appl. Math. Comput., 244 (2014), 201-208. |
[16] | D. Uğurlu, On the existence of a global attractor for the Brinkman-Forchheimer equation, Nonlinear Anal., 68 (2008), 1986-1992. doi: 10.1016/j.na.2007.01.025 |
[17] | B. Wang, S. Lin, Existence of global attractors for the three-dimensional Brinkman-Forchheimer equation, Math. Method. Appl. Sci., 31 (2008), 1479-1495. doi: 10.1002/mma.985 |
[18] | Y. You, C. Zhao, S. Zhou, The existence of uniform attractors for 3D Brinkman-Forchheimer equations, Discrete Contin. Dyn. Syst., 32 (2012), 3787-3800. doi: 10.3934/dcds.2012.32.3787 |
[19] | X. Song, Pullback $\mathcal{D}$-attractors for a non-autonomous Brinkman-Forchheimer system, J. Math. Res. Application, 33 (2013), 90-100. |
[20] | X. Song, Q. Bao, Uniform attractors for three-dimensional Brinkman-Forchheimer system and some averaging problems, Far East J. Dyn. Syst., 25 (2014), 99-122. |
[21] | L. Zhang, K. Su, S. Wen, Attractors for the 3D autonomous and nonautunomous BrinkmanForchheimer equations, Bound. Value. Probl., 17 (2016), 1-18. |
[22] | Y. Ouyang, L. Yang, A note on the existence of a global attractor for the Brinkman-Forchheimer equations, Nonlinear Anal., 70 (2009), 2054-2059. doi: 10.1016/j.na.2008.02.121 |
[23] | V. V. Chepyzhov, M. I. Vishik, W. L. Wendland, On non-autonomous sine-Gorden type equations with a simple global attractor and some averaging, Discrete Contin. Dyn. Syst., 12 (2005), 27-38. doi: 10.3934/dcds.2005.12.27 |
[24] | M. Efendiev, S. V. Zelik, Attractors of the reaction-diffusion systems with rapidly oscillating coefficients and their homogenenization, Ann. I. H. Poincaré-An, 19 (2002), 961-989. |
[25] | M. Efendiev, S. V. Zelik, The regular attractor for the reaction-diddusion systems with rapidly oscillating in time and its averaging, Adv. Differential Equ., 8 (2003), 673-732. |
[26] | V. V. Chepyzhov, M. I. Vishik, Non-autonomous 2D Navier-Stokes system with singularly oscillating external force and its global attractor, J. Dyn. Differ. Equ., 19 (2007), 655-684. doi: 10.1007/s10884-007-9077-y |
[27] | V. V. Chepyzhov, V. Pata, M. I. Vishik, Averaging of 2D Navier-Stokes equations with singularly oscillating forces, Nonlinearity, 22 (2009), 351-370. doi: 10.1088/0951-7715/22/2/006 |
[28] | V. V. Chepyzhov, M. I. Vishik, Non-autonomous Navier-Stokes system with a simple global attractor and some averaging problems, ESAIM: Control, Optimisation and Calculus of Variations, 8 (2002), 467-487. doi: 10.1051/cocv:2002056 |
[29] | Y. Qin, X. Yang, X. Liu, Averaging of a 3D Navier-Stokes-Voight equation with singularly oscillating forces, Nonlinear Anal-Real, 13 (2012), 893-904. doi: 10.1016/j.nonrwa.2011.08.025 |
[30] | C. T. Anh, N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20-26. doi: 10.1016/j.aml.2014.06.008 |
[31] | T. T. Medjo, Non-autonomous planetary 3D geostrophic equations with oscillating external force and its global attractor, Nonlinear Anal-Real, 12 (2011), 1437-1452. doi: 10.1016/j.nonrwa.2010.10.004 |
[32] | T. T. Medjo, Averaging of the planetary 3D geostrophic equations with oscillating external forces, Appl. Math. Comput., 218 (2012), 5910-5928. |
[33] | T. T. Medjo, A non-autonomous two-phase flow model with oscillating external force and its global attractor, Nonlinear Anal., 75 (2012), 226-243. doi: 10.1016/j.na.2011.08.024 |
[34] | M. Bigert, A priori estimates for the difference of solutions to quasi-linear elliptic equations, Manuscripta Math., 133 (2010), 273-306. doi: 10.1007/s00229-010-0367-z |
[35] | P. Constantin, C. Foias, Navier-Stokes equations, Chicago and London: Univ. Chicago Press, 1989. |
[36] | R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, second ed., in: Appl. Math. Sci., vol. 68, New York: Springe-Verlag, 1988. |