Processing math: 52%
Research article

The existence of uniform attractors for the 3D micropolar equations with nonlinear damping term

  • Received: 10 December 2023 Revised: 08 February 2024 Accepted: 29 February 2024 Published: 08 March 2024
  • MSC : 35B40, 35B41, 35Q35

  • This paper studies the existence of uniform attractors for 3D micropolar equation with damping term. When β>3, with initial data (uτ,ωτ)V1×V2 and external forces (f1,f2)H(f01)×H(f02), some uniform estimates of the solution in different function spaces are given. Based on these uniform estimates, the ((V1×V2)×(H(f01)×H(f02)),V1×V2)-continuity of the family of processes {U(f1,f2)(t,τ)}tτ is demonstrated. Meanwhile, the (V1×V2,H2(Ω)×H2(Ω))-uniform compactness of {U(f1,f2)(t,τ)}tτ is proved. Finally, the existence of a (V1×V2,V1×V2)-uniform attractor and a (V1×V2,H2(Ω)×H2(Ω))-uniform attractor are obtained. Furthermore, the (V1×V2,V1×V2)-uniform attractor and the (V1×V2,H2(Ω)×H2(Ω))-uniform attractor are verified to be the same.

    Citation: Xue-li Song, Yuan-yuan Liu, Xiao-tian Xie. The existence of uniform attractors for the 3D micropolar equations with nonlinear damping term[J]. AIMS Mathematics, 2024, 9(4): 9608-9630. doi: 10.3934/math.2024470

    Related Papers:

    [1] Jianlong Wu . Regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. AIMS Mathematics, 2024, 9(6): 16250-16259. doi: 10.3934/math.2024786
    [2] Xiaoming Peng, Yadong Shang . Attractors for a quasilinear viscoelastic equation with nonlinear damping and memory. AIMS Mathematics, 2021, 6(1): 543-563. doi: 10.3934/math.2021033
    [3] Xueli Song, Jianhua Wu . Non-autonomous 3D Brinkman-Forchheimer equation with singularly oscillating external force and its uniform attractor. AIMS Mathematics, 2020, 5(2): 1484-1504. doi: 10.3934/math.2020102
    [4] Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi . Blow-up criteria for different fluid models in anisotropic Lorentz spaces. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232
    [5] Feng Zhou, Hongfang Li, Kaixuan Zhu, Xin Li . Dynamics of a damped quintic wave equation with time-dependent coefficients. AIMS Mathematics, 2024, 9(9): 24677-24698. doi: 10.3934/math.20241202
    [6] Xiaoxia Wang, Jinping Jiang . The pullback attractor for the 2D g-Navier-Stokes equation with nonlinear damping and time delay. AIMS Mathematics, 2023, 8(11): 26650-26664. doi: 10.3934/math.20231363
    [7] Ruonan Liu, Tomás Caraballo . Random dynamics for a stochastic nonlocal reaction-diffusion equation with an energy functional. AIMS Mathematics, 2024, 9(4): 8020-8042. doi: 10.3934/math.2024390
    [8] Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040
    [9] Joseph L. Shomberg . On the upper semicontinuity of global attractors for damped wave equations. AIMS Mathematics, 2017, 2(3): 557-561. doi: 10.3934/Math.2017.2.557
    [10] Mohammad Kafini, Jamilu Hashim Hassan, Mohammad M. Al-Gharabli . Decay result in a problem of a nonlinearly damped wave equation with variable exponent. AIMS Mathematics, 2022, 7(2): 3067-3082. doi: 10.3934/math.2022170
  • This paper studies the existence of uniform attractors for 3D micropolar equation with damping term. When β>3, with initial data (uτ,ωτ)V1×V2 and external forces (f1,f2)H(f01)×H(f02), some uniform estimates of the solution in different function spaces are given. Based on these uniform estimates, the ((V1×V2)×(H(f01)×H(f02)),V1×V2)-continuity of the family of processes {U(f1,f2)(t,τ)}tτ is demonstrated. Meanwhile, the (V1×V2,H2(Ω)×H2(Ω))-uniform compactness of {U(f1,f2)(t,τ)}tτ is proved. Finally, the existence of a (V1×V2,V1×V2)-uniform attractor and a (V1×V2,H2(Ω)×H2(Ω))-uniform attractor are obtained. Furthermore, the (V1×V2,V1×V2)-uniform attractor and the (V1×V2,H2(Ω)×H2(Ω))-uniform attractor are verified to be the same.



    In this paper, we consider the 3D nonlinear damped micropolar equation

    {ut+(u)u(ν+κ)Δu+σ|u|β1u+p=2κ×ω+f1(x,t),ωt+(u)ω+4κωγΔωμω=2κ×u+f2(x,t),u=0,u(x,t)|t=τ=uτ(x),   ω(x,t)|t=τ=ωτ(x), (1.1)

    where (x,t)Ω×[τ,+), τR, ΩR3 is a bounded domain, u=u(x,t) is the fluid velocity, ω=ω(x,t) is the angular velocity, σ is the damping coefficient, which is a positive constant, f1=f1(x,t) and f2=f2(x,t) represent external forces, ν, κ, γ, μ are all positive constants, γ and μ represent the angular viscosities.

    Micropolar flow can describe a fluid with microstructure, that is, a fluid composed of randomly oriented particles suspended in a viscous medium without considering the deformation of fluid particles. Since Eringen first published his paper on the model equation of micropolar fluids in 1966 [5], the formation of modern theory of micropolar fluid dynamics has experienced more than 40 years of development. For the 2D case, many researchers have discussed the long time behavior of micropolar equations (such as [2,4,10,24]). It should be mentioned that some conclusions in the 2D case no longer hold for the 3D case due to different structures of the system. In the 3D case, the work of micropolar equations (1.1) with σ=0, f1=0, and f2=0 has attracted a lot of attention (see [6,14,19]). Galdi and Rionero [6] proved the existence and uniqueness of solutions of 3D incompressible micropolar equations. In a 3D bounded domain, for small initial data Yamaguchi [19] investigated the existence of a global solution to the initial boundary problem for the micropolar system. In [14], Silva and Cruz et al. studied the L2-decay of weak solutions for 3D micropolar equations in the whole space R3. When f1=f2=0, for the Cauchy problem of the 3D incompressible nonlinear damped micropolar equations, Ye [22] discussed the existence and uniqueness of global strong solutions when β=3 and 4σ(ν+κ)>1 or β>3. In [18], Wang and Long showed that strong solutions exist globally for any 1β3 when initial data satisfies some certain conditions. Based on [22], Yang and Liu [20] obtained uniform estimates of the solutions for 3D incompressible micropolar equations with damping, and then they proved the existence of global attractors for 3<β<5. In [7], Li and Xiao investigated the large time decay of the L2-norm of weak solutions when β>145, and considered the upper bounds of the derivatives of the strong solution when β>3. In [21], for 1β<73, Yang, Liu, and Sun proved the existence of trajectory attractors for 3D nonlinear damped micropolar fluids.

    To the best of our knowledge, there are few results on uniform attractors for the three-dimensional micropolar equation with nonlinear damping term. The purpose of this paper is to consider the existence of uniform attractors of system (1.1). When ω=0,κ=0, system (1.1) is reduced to the Navier-Stokes equations with damping. In recent years, some scholars have studied the three-dimensional nonlinear damped Navier-Stokes equations (see [1,13,15,16,23,25]). In order to obtain the desired conclusion, we will use some proof techniques which have been used in the 3D nonlinear damped Navier Stokes equations. Note that, in [20], for the convenience of discussion the authors choose κ,μ=12,γ=1, and ν=32. In this work, we do not specify these parameters, but only require them to be positive real numbers. More importantly, we obtain the existence of uniform attractors in the case of β>3, which undoubtedly expands the range of β when the global attractor exists in [20], i.e., 3<β<5. For the convenience of discussion, similar to [3,8,9,11,16], we make some translational compactness assumption on the external forces term in this paper.

    The organizational structure of this article is as follows: In Section 2, we give some basic definitions and properties of function spaces and process theory which will be used in this paper. In Section 3, using various Sobolev inequalities and Gronwall inequalities, we make some uniform estimates from the space with low regularity to high regularity on the solution of the equation. Based on these uniform estimates, in Section 4 we prove that the family of processes {U(f1,f2)(t,τ)}tτ corresponding to (1.1) has uniform attractors A1 in V1×V2 and A2 in H2(Ω)×H2(Ω), respectively. Furthermore, we prove A1=A2.

    We define the usual functional spaces as follows:

    V1={u(C0(Ω))3:divu=0,Ωudx=0},V2={ω(C0(Ω))3:Ωωdx=0},H1=the closure of V1 in (L2(Ω))3,H2=the closure of V2 in (L2(Ω))3,V1=the closure of V1 in (H1(Ω))3,V2=the closure of V2 in (H1(Ω))3.

    For H1 and H2 we have the inner product

    (u,υ)=Ωuυdx,   u,vH1,or u,vH2,

    and norm 2=22=(,). In this paper, Lp(Ω)=(Lp(Ω))3, and p represents the norm in Lp(Ω).

    We define operators

    Au=PΔu=Δu,   Aω=Δω,  (u,ω)H2×H2,B(u)=B(u,u)=P((u)u),   B(u,ω)=(u)ω,  (u,ω)V1×V2,b(u,υ,ω)=B(u,υ),ω=3i,j=1Ωui(Diυj)ωjdx,  uV1,υ,ωV2,

    where P is the orthogonal projection from L2(Ω) onto H1. Hs(Ω)=(Hs(Ω))3 is the usual Sobolev space, and its norm is defined by Hs=∥As2; as s=2, H2=∥A.

    Let us rewrite system (1.1) as

    {ut+B(u)+(ν+κ)Au+G(u)=2κ×ω+f1(x,t),ωt+B(u,ω)+4κω+γAωμω=2κ×u+f2(x,t),u=0,u(x,t)|t=τ=uτ(x),  ω(x,t)|t=τ=ωτ(x), (2.1)

    where we let G(u)=P(σ|u|β1u).

    The Poincarˊe inequality [17] gives

    λ1uu,λ2ωω,(u,ω)V1×V2, (2.2)
    λ1u∥≤∥Au, λ2ω∥≤∥Aω,(u,ω)H2(Ω)×H2(Ω), (2.3)

    where λ1 is the first eigenvalue of Au, and λ2 is the first eigenvalue of Aω. Let λ=min{λ1,λ2}. Then, we have

    λ(u2+ω2)u2+ω2, (u,ω)V1×V2,λ(u2+ω2)Au2+Aω2,(u,ω)H2(Ω)×H2(Ω).

    Agmon's inequality [17] gives

    ud1u12Δu12, uH2(Ω).

    The trilinear inequalities [12] give

    |b(u,v,w)|≤∥uv∥∥w,uL(Ω),vV1 or V2,wH1 or H2, (2.4)
    |b(u,v,w)|ku14u34v∥∥w14w34,u,v,wV1 or V2, (2.5)
    |b(u,v,w)|ku∥∥v12Av12w,uV1 or V2,vH2,wH1 or H2. (2.6)

    Recall that a function f(t) is translation bounded (tr.b.) in L2loc(R;L2(Ω)) if

    f2L2b=∥f2L2b(R;L2(Ω))=suptRt+1tf(t)2dt<,

    where L2b(R;L2(Ω)) represents the collection of functions that are tr.b. in L2loc(R;L2(Ω)). We say that H(f0)=¯{f0(+t):tR} is the shell of f0 in L2loc(R;L2(Ω)). If H(f0) is compact in L2loc(R;L2(Ω)), then we say that f0(x,t)L2loc(R;L2(Ω)) is translation compact (tr.c.). We use L2c(R;L2(Ω)) to express the collection of all translation compact functions in L2loc(R;L2(Ω)).

    Next, we will provide the existence and uniqueness theorems of the solution of Eq (2.1).

    Definition 2.1. A function pair (u,ω) is said to be a global strong solution to system (2.1) if it satisfies

    (u,ω)L(τ,T;V1×V2)L2(τ,T;H2(Ω)×H2(Ω)),
    |u|β12uL2(τ,T;L2(Ω)), |u|β+12L2(τ,T;L2(Ω)),

    for any given T>τ.

    Theorem 2.1. Suppose (uτ,ωτ)V1×V2 with uτ=0,f1,f2L2b(R;L2(Ω)). If β=3 and 4σ(ν+κ)>1 or β>3, then there exists a unique global strong solution of (2.1).

    Proof. Since the proof method is similar to that of Theorem 1.2 in [22], we omit it here.

    Let Σ be a metric space. X, Y are two Banach spaces, and YX is continuous. {Uσ(t,τ)}tτ, σΣ is a family of processes in Banach space X, i.e., u(t)=Uσ(t,τ)uτ, Uσ(t,s)Uσ(s,τ)=Uσ(t,τ),tsτ,τR,Uσ(τ,τ)=I, where σΣ is a time symbol space. B(X) is the set of all bounded subsets of X. Rτ=[τ,+).

    For the basic concepts of bi-space uniform absorbing set, uniform attracting set, uniform attractor, uniform compact, and uniform asymptotically compact of the family of processed {Uσ(t,τ)}tτ,σΣ, one can refer to [9,16].

    Let T(h) be a family of operators acting on Σ, satisfying: T(h)σ(s)=σ(s+h),sR. In this paper, we assume that Σ satisfies

    (C1) T(h)Σ=Σ, hR+;

    (C2) translation identity:

    Uσ(t+h,τ+h)=UT(h)σ(t,τ),   σΣ,tτ,τR,h0.

    Theorem 2.2. [3] If the family of processes {Uσ(t,τ)}tτ,σΣ is (X,Y)-uniformly (w.r.t. σΣ) asymptotically compact, then it has a (X,Y)-uniform (w.r.t. σΣ) attractor AΣ, AΣ is compact in Y, and it attracts all bounded subsets of X in the topology of Y.

    In this paper, the letter C represents a positive constant. It may represent different values in different lines, or even in the same line.

    In this paper, we chose H(f01)×H(f02) as the symbol space. Obviously, T(t)(H((f01)×H(f02))=H(f01)×H(f02), for all t0. {T(t)}t0 is defined by

    T(h)(f1(),f2())=(f1(+h),f2(+h)),   h0,(f1,f2)H(f01)×H(f02),

    which is a translation semigroup and is continuous on H(f01)×H(f02).

    Thanks to Theorem 2.1, when (uτ,ωτ)V1×V2, f1,f2L2loc(R;L2(Ω)), and β>3, we can define a process {U(f1,f2)(t,τ)}tτ in V1×V2 by

    U(f1,f2)(t,τ)(uτ,ωτ)=(u(t),ω(t)), tτ,

    where (u(t),ω(t)) is the solution of Eq (1.1) with external forces f1,f2 and initial data (uτ,ωτ).

    Next, let us assume that the external forces f01(x,t),f02(x,t) are tr.c. in L2loc(R;L2(Ω)). Then, f01,f02 are tr.b. in L2loc(R;L2(Ω)), and

    f12L2b=∥f12L2b(R;L2(Ω))=suptRt+1tf1(s)2ds≤∥f012L2b<+,f1H(f01),
    f22L2b=∥f22L2b(R;L2(Ω))=suptRt+1tf2(s)2ds≤∥f022L2b<+,f2H(f02).

    Furthermore, we assume f01,f02 are uniformly bounded in L2(Ω), i.e., there exists a positive constant K, which satisfies

    suptRf01(x,t)∥≤K, suptRf02(x,t)∥≤K.

    Meanwhile, we suppose the derivatives df01dt, df02dt, labeled as h1,h2, also belong to L2c(R;L2(Ω)).

    Lemma 3.1. Suppose (uτ,ωτ)V1×V2 and (f1,f2)H(f01)×H(f02). If β>3 then there exists a time t0 and constants ρ1,I1 such that, for any tt0,

    u(t)2+ω(t)2ρ1, (3.1)
    t+1t[u(s)2+ω(s)2+u(s)β+1β+1+ω(s)2]dsI1. (3.2)

    Proof. Multiplying (1.1)1 and (1.1)2 with external forces f1H(f01), f2H(f02) by u and ω, respectively, and integrating the results equations on Ω, using H¨older's inequality, Young's inequality, and Poincarˊe's inequality, it yields

    12ddt(u(t)2+ω(t)2)+(ν+κ)u2+γω2+4κω(t)2+σu(t)β+1β+1+μω2=4κΩ×uωdx+(f1,u(t))+(f2,ω(t))κu2+4κω2+νλ2u2+γλ2ω2+12νλf12+12γλf22(ν2+κ)u2+γ2ω2+4κω(t)2+12νλf12+12γλf22. (3.3)

    So, we can obtain that

    ddt(u(t)2+ω(t)2)+νu2+γω2+2σu(t)β+1β+1+2μω21νλf1(t)2+1γλf2(t)2, (3.4)

    and by Poincarˊe's inequality, it yields

    ddt(u(t)2+ω(t)2)+λα(u(t)2+ω(t)2)1λα(f1(t)2+f2(t)2), (3.5)

    where α=min{ν,γ}. So, by Gronwall's inequality, we get

    u(t)2+ω(t)2(uτ2+ωτ2)eλα(tτ)+1λαtτeλα(ts)(f1(s)2+f2(s)2)ds(uτ2+ωτ2)eλα(tτ)+1λα[tt1eλα(ts)(f1(s)2+f2(s)2)ds+t1t2eλα(ts)(f1(s)2+f2(s)2)ds+...](uτ2+ωτ2)eλα(tτ)+1λα[1+eλα+e2λα+...](f12L2b+f22L2b)(uτ2+ωτ2)eλα(tτ)+1λα(1eλα)1(f12L2b+f22L2b)(uτ2+ωτ2)eλα(tτ)+1λα(1+1λα)(f12L2b+f22L2b),   tτ.

    Therefore, there must exists a time t0τ+1λαlnλ2α2(uτ2+ωτ2)(1+λα)(f12L2b+f22L2b), such that, tt0,

    u(t)2+ω(t)22λα(1+1λα)(f12L2b+f22L2b)ρ1. (3.6)

    Taking tt0, integrating (3.4) from t to t+1, and noticing (3.6), we get

    t+1t[νu(s)2+γω(s)2+2σu(s)β+1β+1+2μω(s)2]ds(u(t)2+ω(t)2)+1νλt+1tf1(s)2ds+1γλt+1tf2(s)2dsρ1+1λα(f12L2b+f22L2b),   tt0. (3.7)

    Letting δ1=min{ν,γ,2σ,2μ}, we have

    δ1t+1t[u(s)2+ω(s)2+u(s)β+1β+1+ω(s)2]dsρ1+1λα(f12L2b+f22L2b),   tt0.

    Letting I1=1δ1(ρ1+1λα(f12L2b+f22L2b)), we have

    t+1t[u(s)2+ω(s)2+u(s)β+1β+1+ω(s)2]dsI1,   tt0.

    This completes the proof of Lemma 3.1.

    Lemma 3.2. Assume β>3, (uτ,ωτ)V1×V2 and (f1,f2)H(f01)×H(f02). Then, there exists a time t2 and a constant ρ2 such that

    u(t)2+ω(t)2+t+1t(Au(s)2+Aω(s)2+|u|β12u2+|u|β+122)dsρ2, (3.8)

    for any tt2.

    Proof. Taking the inner product of Δu in H1 with the first equation of (1.1), we obtain

    12ddtu2+(ν+κ)Au2+σ|u|β12u2+4σ(β1)(β+1)2|u|β+122=b(u,u,Au)+2κΩ×ωAudx+(f1(t),Au). (3.9)

    In [18], we find that, when β>3,

    Ω(uu)Δudxν+κ4Δu2+σ2|u|β12u2+C1u2, (3.10)

    where C1=N2ν+κ+N2(ν+κ)(Nβ1+1), and N is sufficiently large such that

    N(2β3)1β1 and  N2(ν+κ)(Nβ1+1)σ2.

    And, because

    |2κΩ×ωAudx|ν+κ4Δu2+4κ2ν+κω2, (3.11)
    |(f1(t),Au)|ν+κ4Δu2+f1(t)2ν+κ, (3.12)

    so combining (3.10)–(3.12) with (3.9), we have

    ddtu2+ν+κ2Au2+σ|u|β12u2+8σ(β1)(β+1)2|u|β+1222C1u2+8κ2ν+κω2+2f1(t)2ν+κC2(u2+ω2+f1(t)2), (3.13)

    where C2=max{2C1,8κ2ν+κ,2ν+κ}.

    Applying uniform Gronwall's inequality to (3.13), we obtaint, tt0+1t1,

    u(t)2+t+1t(ν+κ2Au(s)2+σ|u(s)|β12u(s)2+8σ(β1)(β+1)2|u(s)|β+122)dsC3, (3.14)

    where C3 is a positive constant dependent on C2, I1, and f012L2b.

    Taking the inner product of Δω in H2 with the second equation of (1.1), we get

    12ddtω2+4κω2+γAω2+μω2=b(u,ω,Aω)+2κΩ×uAωdx+(f2(t),Aω)3γ4Aω2+d21γuAuω2+4κ2γu2+1γf2(t)2. (3.15)

    In the last inequality of (3.15), we used Agmon's inequality and the trilinear inequality. Then,

    ddtω2+γ2Aω2+2μω2C4(uAuω2+u2+f2(t)2), (3.16)

    where C4=max{2d21γ,8κ2γ,2γ}.

    By the uniform Gronwall's inequality, we easily obtain that, for tt1+1t2,

    ω(t)2+t+1t(γ2Aω(s)2+2μω(s)2)dsC5, for tt1+1t2, (3.17)

    where C5 is a positive constant dependent on C3,C4, and f022L2b.

    Adding (3.14) with (3.17) yields

    u(s)2+ω(s)2+t+1t(Au(s)2+Aω(s)2+|u(s)|β12u(s)2+|u(s)|β+122)dsC,

    for tt2. Hence, Lemma 3.2 is proved.

    Lemma 3.3. Suppose that (uτ,ωτ)V1×V2 and (f1,f2)H(f01)×H(f02). Then, for β>3, there exists a time t3 and a constant ρ3 such that

    u(t)β+1+ω(t)2ρ3, (3.18)

    for any tt3.

    Proof. Multiplying (1.1)1 by ut, then integrating the equation over Ω, we have

    ut2+ν+κ2ddtu2+σβ+1ddtu(t)β+1β+1=b(u,u,ut)+2κΩ×ωutdx+(f1(t),ut)12ut2+3d212λ1u2Au2+6κ2ω2+32f1(t)2. (3.19)

    The trilinear inequality (2.4), Agmon's inequality, and Poincarˊe's inequality are used in the last inequality of (3.19).

    Hence,

    (ν+κ)ddtu2+2σβ+1ddtu(t)β+1β+1C6(u2Au2+ω2+f1(t)2), (3.20)

    where C6=max{3d21λ1,12κ2,3}.

    By (3.20), using Lemmas 3.1 and 3.2 and the uniform Gronwall's inequality, we have

    u(t)β+1C,  tt2+1t3. (3.21)

    Similar to (3.19), multiplying (1.1)2 by ωt and integrating it over Ω, we get

    ωt2+2κddtω2+γ2ddtω2+μ2ddtω2=b(u,ω,ωt)+2κΩ×uωtdx+(f2(t),ωt)12ωt2+3d212λ1Au2ω2+6κ2u2+32f2(t)2. (3.22)

    Hence,

    4κddtω2+γddtω2+μddtω2C6(Au2ω2+u2+f2(t)2). (3.23)

    By (3.23), using Lemma 3.2 and the uniform Gronwall's inequality, we infer that

    ω(t)2C,  tt3. (3.24)

    The proof of Lemma 3.3 is finished.

    Lemma 3.4. Suppose (uτ,ωτ)V1×V2 and (f1,f2)H(f01)×H(f02). If β>3, then there exists a time t4 and a constant ρ5, such that

    ut(s)2+ωt(s)2ρ5, (3.25)

    for any st4.

    Proof. Taking the inner products of ut and ωt with the first and second equations of (1.1), respectively, and using (3.19) and (3.22), we find

    ut2+ωt2+ν+κ2ddtu2+γ2ddtω2+2κddtω(t)2+σβ+1ddtu(t)β+1β+1+μ2ddtω2=b(u,u,ut)b(u,ω,ωt)+2κΩ×ωutdx+2κΩ×uωtdx+(f1(t),ut)+(f2(t),ωt)12(ut2+ωt2)+C7(f1(t)2+f2(t)2+u2+ω2+u2Au2+ω2Au2), (3.26)

    where C7=max{3d212λ1,6κ2,32}. The trilinear inequality (2.4), Agmon's inequality, and Poincarˊe's inequality are used in the last inequality of (3.26).

    Integrating (3.26) over [t,t+1] and using Lemmas 3.1–3.3, we get

    t+1t(ut(s)2+ωt(s)2)dsρ4, tt3, (3.27)

    where ρ4 is a positive constant dependent on C7,ρ2,ρ3, f012L2b, and f022L2b.

    We now differentiate (2.1)1 with respect to t, then take the inner product of ut with the resulting equation to obtain

    12ddtut2+(ν+κ)ut2=b(ut,u,ut)ΩG(u)ututdx+2κΩ×ωtutdx+(f1t,ut). (3.28)

    Then, we differentiate (2.1)2 with respect to t and take the inner product with ωt to obtain

    12ddtωt2+4κωt2+γωt2+μωt2=b(ut,ω,ωt)+2κΩ×utωtdx+(f2t,ωt). (3.29)

    Adding (3.28) with (3.29), we have

    12ddt(ut2+ωt2)+(ν+κ)ut2+γωt2+4κωt2+μωt2|b(ut,u,ut)|+|b(ut,ω,ωt)|+2κΩ×ωtutdx+2κΩ×utωtdx+(f1t,ut)+(f2t,ωt)ΩG(u)ututdx:=7i=1Li. (3.30)

    From Lemma 2.4 in [15], we know that G(u) is positive definite, so

    L7=ΩG(u)ututdx0. (3.31)

    For L1, using the trilinear inequality (2.5) and Lemma 3.2, we have

    L1kut12ut32uν+κ4ut2+Cut2u4ν+κ4ut2+Cut2, for tt2. (3.32)

    For L2, by H¨older's inequality, Gagliardo-Nirenberg's inequality, and Young's inequality, we have

    L2Cut4ωt4ωCut14ut34ωt14ωt34ων+κ4ut2+γ4ωt2+C(ut2+ωt2), for tt2. (3.33)
    \begin{align} L_{3}+L_{4}&\leq\frac{\nu+\kappa}{4}\|\nabla u_{t}\|^{2}+\frac{\gamma}{2}\|\nabla \omega_{t}\|^{2}+C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2}). \end{align} (3.34)

    By (3.30)–(3.34), we get

    \begin{align} \frac{d}{dt}(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})&\leq C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})+(f_{1t},u_{t})+(f_{2t},\omega_{t})\\ &\leq C(\|u_{t}\|^{2}+\|\omega_{t}\|^{2})+\|f_{1t}\|^{2}+\|f_{2t}\|^{2}. \end{align} (3.35)

    Thanks to

    \int_t^{t+1}\parallel f_{1t}(s)\parallel^2ds\leq\parallel f_{1t}\parallel_{L_b^2}^2\leq\parallel h_1\parallel_{L_b^2}^2, \int_t^{t+1}\parallel f_{2t}(s)\parallel^2ds\leq\parallel f_{2t}\parallel_{L_b^2}^2\leq\parallel h_2\parallel_{L_b^2}^2,

    and applying uniform Gronwall's inequality to (3.35), we have for any s\geq t_{3}+1\equiv t_{4} ,

    \begin{eqnarray} \|u_{t}(s)\|^{2}+\|\omega_{t}(s)\|^{2}\leq C. \end{eqnarray} (3.36)

    Thus, Lemma 3.4 is proved.

    Lemma 3.5. Suppose (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . Then, for \beta > 3 , there exists a constant \rho_6 such that

    \begin{eqnarray} \|Au(t)\|^{2}+\|A\omega(t)\|^{2}\leq \rho_6, \end{eqnarray} (3.37)

    for any t\geq t_{4} .

    Proof. Taking the inner product of -\Delta u in H_1 with the first equation of (1.1), we have

    \begin{align} &\quad(\nu+\kappa)\parallel Au\parallel^2+\sigma\parallel|u|^{\frac{\beta-1}{2}}\nabla u\parallel^2+\frac{4\sigma(\beta-1)}{(\beta+1)^2}\parallel\nabla|u|^{\frac{\beta+1}{2}}\parallel^2\\ & = -(u_t,Au)-(B(u),Au)+2\kappa\int_\Omega \nabla\times\omega\cdot Audx+(f_1(t),Au)\\ &\leq\frac{4(\nu+\kappa)}{6}\parallel Au\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel u_t\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel B(u)\parallel^2\\ &\quad+\frac{6\kappa^2}{\nu+\kappa}\parallel\nabla\omega\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel f_1(t)\parallel^2. \end{align} (3.38)

    Because

    \begin{align} \frac{3}{2(\nu+\kappa)}\parallel B(u)\parallel^2&\leq\frac{3}{2(\nu+\kappa)}\parallel u\parallel_\infty^2\parallel\nabla u\parallel^2\\ &\leq \frac{3d_1^2}{2(\nu+\kappa)}\parallel\nabla u\parallel^3\parallel\Delta u\parallel\\ &\leq\frac{\nu+\kappa}{6}\parallel Au\parallel^2+C\parallel\nabla u\parallel^6, \end{align} (3.39)

    combining (3.39) with (3.38), we obtain

    \begin{equation} \frac{\nu+\kappa}{6}\parallel Au\parallel^2\leq \frac{3}{2(\nu+\kappa)}\parallel u_t\parallel^2+C\parallel\nabla u\parallel^6+\frac{6\kappa^2}{\nu+\kappa}\parallel\nabla\omega\parallel^2+\frac{3}{2(\nu+\kappa)}\parallel f_1(t)\parallel^2. \end{equation} (3.40)

    From the assumption of f_1^0(t) , we can easily get

    \begin{equation} \sup\limits_{t\in\mathbb{R}}\parallel f_1(t)\parallel\leq\sup\limits_{t\in\mathbb{R}}\parallel f_{1}^0(t)\parallel\leq K, \forall f_1\in\mathcal{H}(f_1^0). \end{equation} (3.41)

    By Lemmas 3.2 and 3.4, we obtain

    \begin{eqnarray} \|Au(t)\|\leq C,\ \text{for any}\ t\geq t_4. \end{eqnarray} (3.42)

    Taking the inner product of A\omega with (2.1)_{2} , we get

    \begin{align} &\quad\gamma\|A\omega\|^{2}+4\kappa\parallel\nabla \omega\parallel^2+\mu\parallel\nabla\nabla\cdot\omega\parallel^2\\ & = -(\omega_t,A\omega)-(B(u,\omega),A\omega)+2\kappa(\nabla\times u,A\omega)+(f_2(t),A\omega)\\ &\leq\frac{\gamma}{2}\parallel A\omega\parallel^2+C(\parallel \omega_t\parallel^2+\parallel B(u,\omega)\parallel^2+\parallel\nabla u\parallel^2+\parallel f_2(t)\parallel^2). \end{align} (3.43)

    And, by Agmon's inequality,

    \begin{align} \|B(u,\omega)\|^2&\leq C\|u\|_{\infty}^2\|\nabla \omega\|^2\\ &\leq C\|\nabla u\|\|\Delta u\|\|\nabla\omega\|^2\\ &\leq\|Au\|^2+C\parallel\nabla u\parallel^2\parallel\nabla\omega\parallel^4. \end{align} (3.44)

    From the assumption on f_2^0(t) , we can easily obtain

    \begin{equation} \sup\limits_{t\in\mathbb{R}}\parallel f_2(t)\parallel\leq\sup\limits_{t\in\mathbb{R}}\parallel f_{2}^0(t)\parallel\leq K, \forall f_2\in\mathcal{H}(f_2^0). \end{equation} (3.45)

    By Lemma 3.2, Lemma 3.4, (3.42), (3.43), (3.44), and (3.45), we get

    \begin{eqnarray} \|A\omega(t)\|\leq C,\ \text{for any }t\geq t_{4}. \end{eqnarray} (3.46)

    By (3.42) and (3.46), Lemma 3.5 is proved for all t\geq t_{4} .

    Lemma 3.6. Suppose (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} and (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) . Then, for \beta > 3 , there exists a time t_5 and a constant \rho_{7} satisfying

    \begin{eqnarray} \|\nabla u_{t}(t)\|^{2}+\|\nabla\omega_{t}(t)\|^{2}\leq \rho_7, \forall t\geq t_{5}. \end{eqnarray} (3.47)

    Proof. In the proof of Lemma 3.4, from (3.30)–(3.34) we can also get

    \begin{align} &\quad\frac{d}{dt}(\parallel u_t\parallel^2+\parallel\omega_t\parallel^2)+\frac{\nu+\kappa}{2}\parallel\nabla u_t\parallel^2+\frac{\gamma}{2}\parallel\nabla\omega_t\parallel^2+2\mu\parallel \nabla\cdot\omega_t\parallel^2\\ &\leq C(\parallel u_t\parallel^2+\parallel\omega_t\parallel^2)+\parallel f_1(t)\parallel^2+\parallel f_2(t)\parallel^2. \end{align} (3.48)

    Integrating (3.48) from t to t+1 , and according to Lemma 3.4, we have

    \begin{align} &\quad\int^{t+1}_{t}(\|\nabla u_{t}(s)\|^{2}+\|\nabla\omega_{t}(s)\|^{2}+\|\nabla\cdot\omega_{t}(s)\|^{2})ds\\ &\leq C(\|u_{t}(t)\|^{2}+\|\omega_{t}(t)\|^{2}+\int^{t+1}_{t}(\|u_{t}(s)\|^{2}+\|\omega_{t}(s)\|^{2})ds+\int^{t+1}_{t}\|f_{1t}(s)\|^{2}ds+\int^{t+1}_{t}\|f_{2t}(s)\|^{2}ds)\\ &\leq C+\|h_{1}\|^{2}_{L^{2}_{b}}+\|h_{2}\|^{2}_{L^{2}_{b}}\\ &\leq C,\ \forall t\geq t_4. \end{align} (3.49)

    By Lemma 3.5, we get

    \begin{eqnarray} \|u(t)\|_{H^{2}}+\|\omega(t)\|_{H^{2}}\leq C, \forall t\geq t_4. \end{eqnarray} (3.50)

    So, by Lemma 3.2, applying Agmon's inequality, we get

    \begin{eqnarray} \|u(t)\|_{\infty}+\|\omega(t)\|_{\infty}\leq C, \forall t\geq t_4. \end{eqnarray} (3.51)

    Taking the derivative of (2.1)_{1} and (2.1)_{2} with respect to t , then multiplying by Au_{t} and A\omega_{t} , respectively, and integrating the resulting equations over \Omega , we then have

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2})+(\nu+\kappa)\|Au_{t}\|^{2}+\gamma\|A\omega_{t}\|^{2}+4\kappa\|\nabla\omega_{t}\|^{2}+\mu\parallel\nabla\nabla\cdot\omega_t\parallel^2\\ &\leq|b(u_t,u,Au_t)|+|b(u,u_{t},Au_{t})|+|b(u,\omega_{t},A\omega_{t})|+|b(u_{t},\omega,A\omega_{t})|\\ &\ \ \ \ +2\kappa\int_{\Omega}|\nabla\times\omega_{t}\cdot Au_{t}|dx+2\kappa\int_{\Omega}|\nabla\times u_{t}\cdot A\omega_{t}|dx+|\int_{\Omega}G'(u)u_{t}\cdot Au_{t}dx|\\ &\ \ \ \ +(f_{1t},Au_{t})+(f_{2t},A\omega_{t})\\ &: = \sum^{9}_{i = 1}J_{i}. \end{align} (3.52)

    For J_{1} , J_2 , using (2.6) and Lemmas 3.2 and 3.5, we have

    \begin{align} J_{1}&\leq k\|\nabla u_{t}\|\|\nabla u\|^{\frac{1}{2}}\|Au\|^{\frac{1}{2}}\|Au_{t}\|\\ &\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|\nabla u_{t}\|^{2},\ \forall t\geq t_4, \end{align} (3.53)

    and

    \begin{align} J_{2}&\leq k\|\nabla u\|\|\nabla u_{t}\|^{\frac{1}{2}}\|A u_{t}\|^{\frac{1}{2}}\|Au_{t}\|\\ &\leq k\|\nabla u\|\|\nabla u_{t}\|^{\frac{1}{2}}\|Au_{t}\|^{\frac{3}{2}}\\ &\leq \frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|\nabla u_{t}\|^{2},\ \forall t\geq t_4. \end{align} (3.54)

    For J_{3} and J_{4} , similar to (3.53) and (3.54), we get

    \begin{align} J_{3}&\leq k\|\nabla u\|\|\nabla\omega_t\|^{\frac{1}{2}}\|A\omega_{t}\|^{\frac{1}{2}}\|A\omega_{t}\|\\ &\leq \frac{\gamma}{4}\|A\omega_{t}\|^{2}+C\|\nabla \omega_{t}\|^{2},\ \forall t\geq t_4, \end{align} (3.55)
    \begin{align} J_{4}&\leq k\|\nabla u_{t}\|\|\nabla\omega\|^{\frac{1}{2}}\|A\omega\|^{\frac{1}{2}}\|A\omega_{t}\|\\ &\leq\frac{\gamma}{4}\|A\omega_{t}\|^{2}+C\|\nabla u_{t}\|^{2},\ \forall t\geq t_4. \end{align} (3.56)

    For J_{5} , J_6 , and J_{7} , applying Hölder's inequality and Young's inequality, we have

    \begin{align} J_{5}+J_{6}\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+\frac{\gamma}{4}\|A\omega_{t}\|^{2}+C(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2}), \end{align} (3.57)

    and thanks to (3.51),

    \begin{align} J_{7}&\leq C\|u\| ^{\beta-1}_{\infty}\|u_{t}\|\|Au_{t}\|\\ &\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|u_{t}\|^{2},\ \forall t\geq t_4. \end{align} (3.58)

    For J_8 and J_9 , we have

    \begin{align} J_{8}&\leq\frac{\nu+\kappa}{5}\|Au_{t}\|^{2}+C\|f_{1t}\|^{2}, \end{align} (3.59)
    \begin{align} J_{9}&\leq\frac{\gamma}{4}\|A\omega_{t}\|^{2}+C\|f_{2t}\|^{2}. \end{align} (3.60)

    By (3.52)–(3.60), we obtain

    \begin{eqnarray} \frac{d}{dt}(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2})\leq C(\|\nabla u_{t}\|^{2}+\|\nabla\omega_{t}\|^{2})+C\|u_{t}\|^{2}+C(\|f_{1t}\|^{2}+\|f_{2t}\|^{2}). \end{eqnarray} (3.61)

    Then, by (3.27), (3.49), and using the uniform Gronwall's lemma, we get

    \begin{eqnarray} \|\nabla u_{t}(s)\|^{2}+\|\nabla\omega_{t}(s)\|^{2}\leq C,\ \forall s\geq t_{4}+1\equiv t_{5}. \end{eqnarray} (3.62)

    Thus, Lemma 3.6 is proved.

    In this section, we consider the existence of the (V_1\times V_2, V_1\times V_2) -uniform (w.r.t. (f_1, f_2)\in \mathcal{H}(f_1^0)\times\mathcal{H}(f_2^0) ) attractor and the (V_1\times V_2, \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega)) -uniform attractor for \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau}, f_1\times f_2\in \mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) .

    Lemma 4.1. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , corresponding to (2.1) is ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) -continuous for \tau\geq t_5.

    Proof. Let \tau_n\subset [\tau, +\infty) be a time sequence, U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t, \tau)(u_{\tau_n}, \omega_{\tau_n}) = (u^{(n)}(t), \omega^{(n)}(t)) , U_{(f_{1}, f_{2})}(t, \tau)(u_{\tau}, \omega_{\tau}) = (u(t), \omega(t)) and

    \begin{align*} (\bar{u}^{(n)}(t),\bar{\omega}^{(n)}(t))& = (u(t)-u^{(n)}(t),\omega(t)-\omega^{(n)}(t))\\ & = U_{(f_{1},f_{2})}(t,\tau)(u_{\tau},\omega_{\tau})-U_{(f_{1}^{(n)},f_{2}^{(n)})}(t,\tau)(u_{\tau_n},\omega_{\tau_n}). \end{align*}

    It is evident that \bar{u}^{(n)}(t) is the solution of

    \begin{align} \frac{\partial\bar{u}^{(n)}(t)}{\partial t}+B(u)-B(u^{(n)}(t))+(\nu+\kappa)A\bar{u}^{(n)}+G(u)-G(u^{(n)}) = 2\kappa\nabla\times\bar{\omega}^{(n)}+(f_{1}-f_{1}^{(n)}), \end{align} (4.1)

    and \bar{\omega}^{(n)}(t) is the solution of the following system

    \begin{align} \frac{\partial\bar{\omega}^{(n)}(t)}{\partial t}&+B(u,\omega)-B(u^{(n)},\omega^{(n)})+4\kappa\bar{\omega}^{(n)}+\gamma A\bar{\omega}^{(n)}-\mu\nabla\nabla\cdot\bar{\omega}^{(n)} = 2\kappa\nabla\times\bar{u}^{(n)}+(f_{2}-f_{2}^{(n)}), \end{align} (4.2)

    for each n .

    Taking the inner product of (4.1) with A\bar{u}^{(n)} in H_1 , we get

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}\|\nabla\bar{u}^{(n)}\|^{2}+b(u,u,A\bar{u}^{(n)})-b(u^{(n)},u^{(n)},A\bar{u}^{(n)}) +(\nu+\kappa)\parallel A\bar{u}^{(n)}\parallel^2+(G(u)-G(u^{(n)}),A\bar{u}^{(n)})\\& = 2\kappa(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})+(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)}). \end{align} (4.3)

    Taking the inner product of (4.2) with A\bar{\omega}^{(n)} in H_2 , we have

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}\|\nabla\bar{\omega}^{(n)}\|^{2}+b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)}) +4\kappa\|\nabla\bar{\omega}^{(n)}\|^2+\gamma\parallel A\bar{\omega}^{(n)}\parallel^2+\mu\parallel\nabla\nabla\cdot\bar{\omega}^{(n)}\parallel^2\\ & = 2\kappa(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})+(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)}). \end{align} (4.4)

    Combining (4.3) with (4.4), we get

    \begin{align} &\quad\frac{1}{2}\frac{d}{dt}(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})+b(u,u,A\bar{u}^{(n)})-b(u^{(n)},u^{(n)},A\bar{u}^{(n)})+(\nu+\kappa)\|A\bar{u}^{(n)}\|^{2}\\ &\quad+(G(u)-G(u^{(n)}),A\bar{u}^{(n)})+b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)})\\ &\quad+4\kappa\parallel\nabla\bar{\omega}^{(n)}\parallel^2+\gamma\parallel A\bar{\omega}^{(n)}\parallel^2+\mu\parallel\nabla\nabla\cdot\bar{\omega}^{(n)}\parallel^2\\ & = 2\kappa(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})+2\kappa(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})+(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)}) +(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)}). \end{align} (4.5)

    Due to

    \begin{align} b(u,u,A\bar{u}^{(n)})-b(u^{(n)},u^{(n)},A\bar{u}^{(n)})& = b(\bar{u}^{(n)},u,A\bar{u}^{(n)})+b({u}^{(n)},\bar{u}^{(n)},A\bar{u}^{(n)}), \end{align} (4.6)
    \begin{align} b(u,\omega,A\bar{\omega}^{(n)})-b(u^{(n)},\omega^{(n)},A\bar{\omega}^{(n)})& = b(\bar{u}^{(n)},\omega,A\bar{\omega}^{(n)})+b(u^{(n)},\bar{\omega}^{(n)},A\bar{\omega}^{(n)}), \end{align} (4.7)

    and

    \begin{align} |b(\bar{u}^{(n)},u,A\bar{u}^{(n)})|&\leq k\|\nabla\bar{u}^{(n)}\|\|\nabla u\|^{\frac{1}{2}}\|Au\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|\\&\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}\|\nabla u\|\|Au\|, \end{align} (4.8)
    \begin{align} |b({u}^{(n)},\bar{u}^{(n)},A\bar{u}^{(n)})|&\leq k\|\nabla{u}^{(n)}\|\|\nabla\bar{u}^{(n)}\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|^{\frac{1}{2}}\|A\bar{u}^{(n)}\|\\ &\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla{u}^{(n)}\|^{4}\|\nabla\bar{u}^{(n)}\|^{2}, \end{align} (4.9)
    \begin{align} b(\bar{u}^{(n)},\omega,A\bar{\omega}^{(n)})&\leq k\|\nabla\bar{u}^{(n)}\|\|\nabla\omega\|^{\frac{1}{2}}\|A\omega\parallel^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}\|\nabla\omega\|\|A\omega\|, \end{align} (4.10)
    \begin{align} b(u^{(n)},\bar{\omega}^{(n)},A\bar{\omega}^{(n)})&\leq k\|\nabla u^{(n)}\|\|\nabla\bar{\omega}^{(n)}\|^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|^{\frac{1}{2}}\|A\bar{\omega}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\parallel\nabla u^{(n)}\parallel^4\parallel\nabla\bar{\omega}^{(n)}\parallel^2, \end{align} (4.11)
    \begin{align} 2\kappa|(\nabla\times\bar{\omega}^{(n)},A\bar{u}^{(n)})|&\leq 2\kappa\|A\bar{u}^{(n)}\|\|\nabla\bar{\omega}^{(n)}\|\\ &\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+C\|\nabla\bar{\omega}^{(n)}\|^{2}, \end{align} (4.12)
    \begin{align} 2\kappa|(\nabla\times\bar{u}^{(n)},A\bar{\omega}^{(n)})\|&\leq 2\kappa\parallel A\bar{\omega}^{(n)}\|\|\nabla\bar{u}^{(n)}\|\\ &\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+C\|\nabla\bar{u}^{(n)}\|^{2}, \end{align} (4.13)
    \begin{align} |(f_{1}-f_{1}^{(n)},A\bar{u}^{(n)})|&\leq\frac{\nu+k}{5}\|A\bar{u}^{(n)}\|^{2}+\frac{5}{4(\nu+\kappa)}\|f_{1}-f_{1}^{(n)}\|^{2}, \end{align} (4.14)
    \begin{align} |(f_{2}-f_{2}^{(n)},A\bar{\omega}^{(n)})|&\leq\frac{\gamma}{4}\|A\bar{\omega}^{(n)}\|^{2}+\frac{1}{\gamma}\|f_{2}-f_{2}^{(n)}\|^{2}, \end{align} (4.15)
    \begin{align} \|G(u)-G(u^{(n)})\|^{2}& = \int_\Omega \big|\sigma|u|^{\beta-1}u-\sigma|u^{(n)}|^{\beta-1}u^{(n)}\big|^2dx\\ &\leq C\int_\Omega [|u|^{\beta-1}|\bar{u}^{(n)}|+\big||u|^{\beta-1}-|u^{(n)}|^{\beta-1}\big|\cdot|u^{(n)}|]^2dx\\ &\leq C\int_\Omega |u|^{2(\beta-1)}|\bar{u}^{(n)}|^2dx+C\int_\Omega[|u|^{\beta-2}+|u^{(n)}|^{\beta-2}]^2|u^{(n)}|^2|\bar{u}^{(n)}|^2dx\\ &\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2]\parallel\nabla \bar{u}^{(n)}\parallel^2, \end{align} (4.16)

    where \bar{u}^{(n)}(t) = u(t)-u^{n}(t) . In the above inequality, we used the fact that

    |x^p-y^p|\leq cp(|x|^{p-1}+|y|^{p-1})|x-y|

    for any x, y\geq 0 , where c is an absolute constant.

    Therefore,

    \begin{align} (G(u)-G(u^{(n)}),A\bar{u}^{(n)})&\leq\frac{\nu+\kappa}{5}\|A\bar{u}^{(n)}\|^{2}+\frac{5}{4(\nu+\kappa)}\|G(u)-G(u^{(n)})\|^{2}\\ &\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2]\parallel\nabla \bar{u}^{(n)}\parallel^2\\ &\quad+\frac{\nu+k}{5}\parallel A\bar{u}^{(n)}\parallel^2. \end{align} (4.17)

    By (4.5)–(4.15) and (4.17), we obtain

    \begin{align} \frac{d}{dt}(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})&\leq C[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2\\ &\quad+\|\nabla u\|\|Au\|+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]\\ &\quad \cdot(\|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2})+\frac{5}{2(\nu+\kappa)}\|f_{1}-f_{1}^{(n)}\|^{2}\\ &\quad +\frac{2}{\gamma}\|f_{2}-f_{2}^{(n)}\|^{2}. \end{align} (4.18)

    Using Gronwall's inequality in (4.18) yields

    \begin{align} \|\nabla\bar{u}^{(n)}\|^{2}+\|\nabla\bar{\omega}^{(n)}\|^{2} &\leq\Big(\|\nabla\bar{u}_{\tau}^{(n)}\|^{2}+\|\nabla\bar{\omega}_{\tau}^{(n)}\|^{2}+\frac{5}{2(\nu+\kappa)}\int^{t}_{\tau}\|f_{1}-f_{1}^{(n)}\|^{2}ds\\ &\ \ \ \ +\frac{2}{\gamma}\int_\tau^t \|f_{2}-f_{2}^{(n)}\|^{2}ds\Big)\\ &\ \ \ \ \cdot\exp\Big\{C\int^{t}_{\tau}[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2\\ &\ \ \ \ +\|\nabla u\|\|Au\|+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]ds\Big\}. \end{align} (4.19)

    From Lemmas 3.2 and 3.5, and using Agmon's inequality, we know that

    \parallel u\parallel_\infty < C, \parallel u^{(n)}\parallel_\infty < C, \forall t\geq t_5.

    So, from Lemmas 3.2–3.5, we have

    \begin{align*} &\exp\Big\{C\int^{t}_{\tau}[\parallel u\parallel_\infty^{2(\beta-1)}+(\parallel u\parallel_\infty^{2(\beta-2)}+\parallel u^{(n)}\parallel_{\infty}^{2(\beta-2)})\parallel u^{(n)}\parallel_\infty^2+\|\nabla u\|\|Au\|\nonumber\\ &+\|\nabla u^{(n)}\|^{4}+\|\nabla\omega\|\|A\omega\|+1]ds\Big\} < +\infty, \end{align*}

    for any given t and \tau , t\geq\tau , \tau\geq t_5 .

    Thus, from (4.19), we have that \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) is ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) -continuous, for \tau\geq t_5 .

    By Lemma 3.5, the fact of compact imbedding \mathbf{H}^2\times \mathbf{H}^2\hookrightarrow V_{1}\times V_{2} , and Theorem 3.1 in [16], we have the following theorems.

    Theorem 4.1. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) with respect to problem (1.1) has a (V_1\times V_2, V_1\times V_2) uniform attractor \mathcal{A}_{1} . Moreover,

    \begin{eqnarray} \mathcal{A}_{1} = \bigcup\limits_{(f_{1},f_{2})\in \mathcal{H}(f_1^0)\times\mathcal{H}(f_2^0)}\mathcal{K}_{(f_1,f_2)}(0), \end{eqnarray} (4.20)

    where \mathcal{K}_{(f_{1}, f_{2})}(0) is the section at t = 0 of kernel \mathcal{K}_{(f_{1}, f_{2})} of the processes \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} .

    Theorem 4.2. Suppose \beta > 3 . The family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) with respect to problem (1.1) has a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} . \mathcal{A}_{2} is compact in \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) , and it attracts every bounded subset of V_{1}\times V_{2} in the topology of \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) .

    Proof. By Theorem 2.2, we only need to prove that \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) acting on V_{1}\times V_{2} is (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform (w.r.t.\ \ f_{1}\times f_{2}\in \mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})) asymptotically compact.

    Thanks to Lemma 3.5, we know that B = \{(u\times\omega)\in \mathbf{H}^2\times \mathbf{H}^2: \|Au\|^{2}+\|A\omega\|^{2}\leq C\} is a bounded (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform absorbing set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} . Then, we just need to prove that, for any \tau_{n}\in\mathbb{R} , any t\rightarrow +\infty , and (u_{\tau_{n}}, \omega_{\tau_n})\in B , \{(u_{n}(t), \omega_{n}(t))\}_{n = 0}^{\infty} is precompact in \textbf{H}^{2}(\Omega)\times\textbf{H}^{2}(\Omega) , where (u_{n}(t), \omega_{n}(t)) = U_{(f_{1}, f_{2})}(t, \tau_{n})(u_{\tau_{n}}, \omega_{\tau_{n}}) .

    Because V_1\hookrightarrow H_1, V_2\hookrightarrow H_2 are compact, from Lemma 3.6 we obtain that \{\frac{d}{dt}u_{n}(t)\}_{n = 0}^{\infty} , \{\frac{d}{dt}\omega_{n}(t)\}_{n = 0}^{\infty} are precompact in H_1 and H_2 , respectively.

    Next, we will prove \{u_{n}(t)\}_{n = 0}^{\infty} , \{\omega_{n}(t)\}_{n = 0}^{\infty} are Cauchy sequences in \mathbf{H}^{2}(\Omega) . From (2.1), we have

    \begin{align} &(\nu+\kappa)(Au_{n_k}(t)-Au_{n_j}(t)) = -\frac{d}{dt}u_{n_k}(t)+\frac{d}{dt}u_{n_j}(t)-B(u_{n_k}(t))+B(u_{n_j}(t))\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad-G(u_{n_k}(t))+G(u_{n_j}(t))+2\kappa\nabla\times\omega_{n_k}(t)-2\kappa\nabla\times\omega_{n_j}(t). \end{align} (4.21)
    \begin{align} &\gamma(A\omega_{n_k}(t)-A\omega_{n_j}(t))-\mu\nabla\nabla\cdot\omega_{n_k}(t)+\mu\nabla\nabla\cdot\omega_{n_j}(t) = -\frac{d}{dt}\omega_{n_k}(t)+\frac{d}{dt}\omega_{n_j}(t)-B(u_{n_k}(t),\omega_{n_k}(t))\\&\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+B(u_{n_j}(t),\omega_{n_j}(t))-4\kappa\omega_{n_k}(t)\\ &\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+4\kappa\omega_{n_j}(t)+2\kappa\nabla\times u_{n_k}(t)-2\kappa\nabla\times u_{n_j}(t). \end{align} (4.22)

    Multiplying (4.21) by Au_{n_k}(t)-Au_{n_j}(t) , we obtain

    \begin{align*} (\nu+\kappa)\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2&\leq\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel+\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel\nonumber\\ & \cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel+\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel\nonumber\\ &\ \ \ +2\kappa\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel\cdot\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel\nonumber\\ &\leq\frac{4(\nu+\kappa)}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2\nonumber\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\nonumber\\ &\ \ \ +\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2, \end{align*}

    so we have

    \begin{align} \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2 &\leq\frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2\\&\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\\&\ \ \ +\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2. \end{align} (4.23)

    Multiplying (4.22) by A\omega_{n_k}(t)-A\omega_{n_j}(t) we obtain

    \begin{align*} &\quad\gamma\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\mu\parallel\nabla\nabla\cdot(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\nonumber\\ &\leq \parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel+\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel\nonumber\\ &\ \ \ \cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel+4\kappa\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel\nonumber\\ &\ \ \ +2\kappa\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel\cdot\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel\nonumber\\ &\leq\frac{4\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2\nonumber\\ &\ \ \ +\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2+\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\nonumber\\ &\ \ \ +\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2, \end{align*}

    so we get

    \begin{align} &\ \ \ \frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2+\mu\parallel\nabla\nabla\cdot(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2\\ &\leq\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel^2+\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2. \end{align} (4.24)

    Combining (4.23) with (4.24), we have

    \begin{align} &\ \ \ \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2\\ &\leq \frac{5}{4(\nu+\kappa)}\parallel\frac{d}{dt}u_{n_k}(t)-\frac{d}{dt}u_{n_j}(t)\parallel^2+\frac{5}{4(\nu+\kappa)}\parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{5}{4(\nu+\kappa)}\parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2+\frac{5\kappa^2}{\nu+\kappa}\parallel\nabla\omega_{n_k}(t)-\nabla\omega_{n_j}(t)\parallel^2\\ &\ \ \ +\frac{5}{4\gamma}\parallel\frac{d}{dt}\omega_{n_k}(t)-\frac{d}{dt}\omega_{n_j}(t)\parallel^2+\frac{5}{4\gamma}\parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\ \ \ +\frac{20\kappa^2}{\gamma}\parallel\omega_{n_k}(t)-\omega_{n_j}(t)\parallel^2+\frac{5\kappa^2}{\gamma}\parallel\nabla u_{n_k}(t)-\nabla u_{n_j}(t)\parallel^2. \end{align} (4.25)

    Because V_2\hookrightarrow H_2 is compact, from Lemma 3.2 we know that \{\omega_n(t)\}_{n = 0}^\infty is precompact in H_2 . And, using the compactness of embedding \mathbf{H}^2(\Omega)\hookrightarrow V_1, \mathbf{H}^2(\Omega)\hookrightarrow V_2 and Lemma 3.5, we have that \{u_{n}(t)\}_{n = 0}^\infty, \{\omega_n(t)\}_{n = 0}^\infty are precompact in V_1 and V_2 , respectively. Considering V_1\hookrightarrow H_1, V_2\hookrightarrow H_2 are compact, from Lemma 3.6 we know that \{\frac{d}{dt}u_n(t)\}_{n = 0}^\infty , \{\frac{d}{dt}\omega_n(t)\}_{n = 0}^\infty are precompact in H_1 and H_2 , respectively.

    Using (2.6), we have

    \begin{align} &\ \ \ \parallel B(u_{n_k}(t))-B(u_{n_j}(t))\parallel^2\\ &\leq C(\parallel B(u_{n_k}(t),u_{n_k}(t)-u_{n_j}(t))\parallel^2+\parallel B(u_{n_k}(t)-u_{n_j}(t),u_{n_j}(t))\parallel^2)\\ &\leq C(\parallel\nabla u_{n_k}(t)\parallel^2\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel\parallel A(u_{n_k}(t)-u_{n_j}(t))\parallel\\ &\ \ \ \ +\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel^2\parallel\nabla u_{n_j}(t)\parallel\parallel Au_{n_j}(t)\parallel)\rightarrow 0, \text {as}\ k,j\rightarrow +\infty, \end{align} (4.26)

    and

    \begin{align} &\ \ \ \ \parallel B(u_{n_k}(t),\omega_{n_k}(t))-B(u_{n_j}(t),\omega_{n_j}(t))\parallel^2\\ &\leq C(\parallel B(u_{n_k}(t),\omega_{n_k}(t)-\omega_{n_j}(t))\parallel^2+\parallel B(u_{n_k}(t)-u_{n_j}(t),\omega_{n_j}(t))\parallel^2)\\ &\leq C(\parallel\nabla u_{n_k}(t)\parallel^2\parallel\nabla(\omega_{n_k}(t)-\omega_{n_j}(t))\parallel\parallel A(\omega_{n_k(t)}-\omega_{n_j}(t))\parallel\\ &\ \ \ \ +\parallel\nabla(u_{n_k}(t)-u_{n_j}(t))\parallel^2\parallel\nabla\omega_{n_j}(t)\parallel\parallel A\omega_{n_j}(t)\parallel)\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{align} (4.27)

    From the proof of Lemma 4.2 in [15], we have

    \begin{equation} \parallel G(u_{n_k}(t))-G(u_{n_j}(t))\parallel^2\leq C\parallel u_{n_k}(t)-u_{n_j}(t)\parallel^2\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{equation} (4.28)

    Taking into account (4.25)–(4.28), we have

    \begin{equation} \frac{\nu+\kappa}{5}\parallel Au_{n_k}(t)-Au_{n_j}(t)\parallel^2+\frac{\gamma}{5}\parallel A\omega_{n_k}(t)-A\omega_{n_j}(t)\parallel^2\rightarrow 0,\ \text{as}\ k,j\rightarrow +\infty. \end{equation} (4.29)

    (4.29) indicates that the processes \{U_{(f_1, f_2)}(t, \tau)\}_{t\geq\tau} are uniformly asymptotically compact in \mathbf{H}^2(\Omega)\times\mathbf{H}^2(\Omega) . So, by Theorem 2.2, it has a (V_1\times V_2, \mathbf{H}^2(\Omega)\times \mathbf{H}^2(\Omega)) -uniform attractor \mathcal{A}_2 .

    Theorem 4.3. Suppose \beta > 3 . The (V_{1}\times V_{2}, V_{1}\times V_{2}) -uniform attractor \mathcal{A}_{1} of the family of processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) is actually the (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} , i.e., \mathcal{A}_{1} = \mathcal{A}_{2} .

    Proof. First, we will prove \mathcal{A}_{1}\subset\mathcal{A}_{2} . Because \mathcal{A}_{2} is bounded in \mathbf{H}^2(\Omega)\times \mathbf{\mathbf{H}}^2(\Omega) , and the embedding \mathbf{H}^2(\Omega)\times \mathbf{\mathbf{H}}^2(\Omega)\hookrightarrow V_{1}\times V_{2} is continuous, \mathcal{A}_{2} is bounded in V_{1}\times V_{2} . From Theorem 4.2, we know that \mathcal{A}_{2} attracts uniformly all bounded subsets of V_{1}\times V_{2} , so \mathcal{A}_{2} is a bounded uniform attracting set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) in V_{1}\times V_{2} . By the minimality of \mathcal{A}_{1} , we have \mathcal{A}_{1}\subset\mathcal{A}_{2} .

    Now, we will prove \mathcal{A}_{2}\subset\mathcal{A}_{1} . First, we will prove \mathcal{A}_{1} is a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniformly attracting set of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) . That is to say, we will prove

    \begin{equation} \lim\limits_{t\rightarrow +\infty}( \sup\limits_{(f_{1},f_{2})\in\mathcal{H}(f^{0}_{1})\times\mathcal{H}(f^{0}_{2})} \mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1},f_{2})}(t,\tau)B,\mathcal{A}_{1})) = 0, \end{equation} (4.30)

    for any \tau\in\mathbb{R} and B\in \mathcal{B}(V_{1}\times V_{2}) .

    If we suppose (4.30) is not valid, then there must exist some \tau\in\mathbb{R} , B\in \mathcal{B}(V_{1}\times V_{2}) , \varepsilon_{0} > 0 , (f_{1}^{(n)}, f_{2}^{(n)})\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , and t_{n}\rightarrow +\infty , when n\rightarrow +\infty , such that, for all n\geq 1 ,

    \begin{equation} \mathrm{dis t}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)B,\mathcal{A}_{1})\geq 2\varepsilon_{0}. \end{equation} (4.31)

    This shows that there exists (u_{n}, \omega_{n})\in B such that

    \begin{eqnarray} \mathrm{dis t}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) ,\mathcal{A}_{1})\geq \varepsilon_{0}. \end{eqnarray} (4.32)

    In the light of Theorem 4.2, \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) has a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor \mathcal{A}_{2} which attracts any bounded subset of V_{1}\times V_{2} in the topology of \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) . Therefore, there exists (\zeta, \eta)\in\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega) and a subsequence of U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t_{n}, \tau)(u_{n}, \omega_{n}) such that

    \begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n})\rightarrow (\zeta,\eta )\quad\text{strongly in}\ \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega). \end{eqnarray} (4.33)

    On the other side, the processes \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) have a (V_{1}\times V_{2}, V_1\times V_2) -uniform attractor \mathcal{A}_{1} , which attracts uniformly any bounded subsets of V_{1}\times V_{2} in the topology of V_{1}\times V_{2} . So, there exists (u, \omega)\in V_{1}\times V_{2} and a subsequence of U_{(f_{1}^{(n)}, f_{2}^{(n)})}(t_{n}, \tau)(u_n, \omega_n) such that

    \begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) \rightarrow (u,\omega)\ \text{strongly in}\ V_{1}\times V_{2}. \end{eqnarray} (4.34)

    From (4.33) and (4.34), we have (u, \omega) = (\zeta, \eta) , so (4.33) can also be written as

    \begin{eqnarray} U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n})\rightarrow (u,\omega)\ \text{strongly in}\ \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega). \end{eqnarray} (4.35)

    And, from Theorem 4.1, we know that \mathcal{A}_{1} attracts B , so

    \begin{eqnarray} \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{V_{1}\times V_{2}}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}) ,\mathcal{A}_{1}) = 0. \end{eqnarray} (4.36)

    By (4.34), (4.36), and the compactness of \mathcal{A}_{1} in V_{1}\times V_{2} , we have (u, \omega)\in\mathcal{A}_{1} . Considering (4.35), we have

    \begin{eqnarray*} &\quad \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}), \mathcal{A}_{1})\nonumber\\ &\leq \lim\limits_{n\rightarrow +\infty}\mathrm{dist}_{\mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)}(U_{(f_{1}^{(n)},f_{2}^{(n)})}(t_{n},\tau)(u_{n},\omega_{n}), (u,\omega))\nonumber\\ & = 0, \end{eqnarray*}

    which contradicts (4.32). Therefore, \mathcal{A}_{1} is a (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) -uniform attractor of \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} , f_{1}\times f_{2}\in\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2}) , and by the minimality of \mathcal{A}_{2} , we have \mathcal{A}_{2}\subset\mathcal{A}_{1} .

    In this paper, we discussed the existence of uniform attractors of strong solutions for 3D incompressible micropolar equations with nonlinear damping. Based on some translation-compactness assumption on the external forces, and when \beta > 3 , we made a series of uniform estimates on the solutions in various functional spaces. According to these uniform estimates, we proved the existence of uniform attractors for the process operators corresponding to the solution of the equation in V_1\times V_2 and \mathbf{H}^2\times\mathbf{H}^2 , and verified that the uniform attractors in V_1\times V_2 and \mathbf{H}^2\times\mathbf{H}^2 are actually the same.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are thankful to the editors and the anonymous reviewers for their valuable suggestions and comments on the manuscript. This work is supported by National Natural Science Foundation of China (Nos. 11601417, 12001420).

    The authors declare no conflict of interest in this paper.



    [1] X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041
    [2] J. W. Chen, Z. M. Chen, B. Q. Dong, Existence of H^2-global attractors of two-dimensional micropolar fluid flows, J. Math. Anal. Appl., 332 (2006), 512–522. https://doi.org/10.1016/j.jmaa.2005.09.011 doi: 10.1016/j.jmaa.2005.09.011
    [3] G. X. Chen, C. K. Zhong, Uniform attractors for non-autonomous p-Laplacian equations, Nonlinear Anal., 68 (2008), 3349–3367. https://doi.org/10.1016/j.na.2007.03.025 doi: 10.1016/j.na.2007.03.025
    [4] B. Q. Dong, Z. M. Chen, On upper and lower bounds of higher order derivatives for solutions to the 2D micropolar fluid equations, J. Math. Anal. Appl., 334 (2007), 1386–1399. https://doi.org/10.1016/j.jmaa.2007.01.047 doi: 10.1016/j.jmaa.2007.01.047
    [5] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18.
    [6] G. P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105–108.
    [7] H. Li, Y. Xiao, Large time behavior of solutions to the 3D micropolar equations with nonlinear damping, Nonlinear Anal. Real World Appl., 65 (2022), 103493. https://doi.org/10.1016/j.nonrwa.2021.103493 doi: 10.1016/j.nonrwa.2021.103493
    [8] S. S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differ. Equ., 230 (2006), 196–212. https://doi.org/10.1016/j.jde.2006.07.009 doi: 10.1016/j.jde.2006.07.009
    [9] S. S. Lu, H. Q. Wu, C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external force, Discrete Contin. Dyn. Syst., 13 (2005), 701.
    [10] G. Lukaszewicz, Long time behavior of 2D micropolar fluid flows, Math. Comput. Model., 34 (2001), 487–509. https://doi.org/10.1016/S0895-7177(01)00078-4 doi: 10.1016/S0895-7177(01)00078-4
    [11] S. Ma, C. Zhong, H. Song, Attractors for non-auronomous 2D Navier-Stokes equations with less regular symbols, Nonlinear Anal., 71 (2009), 4215–4222. https://doi.org/10.1016/j.na.2009.02.107 doi: 10.1016/j.na.2009.02.107
    [12] J. C. Robinson, Infinite-dimensional dynamical systems: An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge: Cambridge University Press, 2001.
    [13] W. Shi, X. Yang, X. Yan, Determination of the 3D Navier-Stokes equations with damping, Electron. Res. Arch., 30 (2022), 3872–3886. http://dx.doi.org/10.3934/era.2022197 doi: 10.3934/era.2022197
    [14] P. B. Silva, F. W. Cruz, L. B. S. Freitas, P. R. Zingano, On the L^2-decay of weak solutions for the 3D asymmetric fluid equations, J. Differ. Equ., 267 (2019), 3578–3609. https://doi.org/10.1016/j.jde.2019.04.012 doi: 10.1016/j.jde.2019.04.012
    [15] X. L. Song, Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. http://dx.doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239
    [16] X. L. Song, Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337–351. https://doi.org/10.1016/j.jmaa.2014.08.044 doi: 10.1016/j.jmaa.2014.08.044
    [17] R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0645-3
    [18] W. Wang, Y. Long, A note on global existence of strong solution to the 3D micropolar equations with a damping term, Bound. Value Probl., 2021 (2021), 72. https://doi.org/10.1186/s13661-021-01548-z doi: 10.1186/s13661-021-01548-z
    [19] N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Math. Methods Appl. Sci., 28 (2005), 1507–1526. https://doi.org/10.1002/mma.617 doi: 10.1002/mma.617
    [20] X. J. Yang, H. Liu, C. F. Sun, Global attractors of the 3D micropolar equations with damping term, Math. Found. Comput., 4 (2021), 117–130. https://doi.org/10.3934/mfc.2021007 doi: 10.3934/mfc.2021007
    [21] X. Yang, H. Liu, C. Sun, Trajectory attractors of the 3D micropolar equations with damping term, Mediterr. J. Math., 19 (2022), 48. https://doi.org/10.1007/s00009-021-01965-5 doi: 10.1007/s00009-021-01965-5
    [22] Z. Ye, Global existence of solution to the 3D micropolar equations with a damping term, Appl. Math. Lett., 83 (2018), 188–193. https://doi.org/10.1016/j.aml.2018.04.002 doi: 10.1016/j.aml.2018.04.002
    [23] H. Yu, X. Zheng, Asymptotic behavior of weak solutions to the damped Navier-Stokes equations, J. Math. Anal. Appl., 477 (2019), 1009–1018. https://doi.org/10.1016/j.jmaa.2019.04.068 doi: 10.1016/j.jmaa.2019.04.068
    [24] C. D. Zhao, S. F. Zhou, X. Z. Lian, H^1-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains, Nonlinear Anal. Real World Appl., 9 (2008), 608–627. https://doi.org/10.1016/j.nonrwa.2006.12.005 doi: 10.1016/j.nonrwa.2006.12.005
    [25] Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822–1825. https://doi.org/10.1016/j.aml.2012.02.029 doi: 10.1016/j.aml.2012.02.029
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(992) PDF downloads(64) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog