This paper studies the existence of uniform attractors for 3D micropolar equation with damping term. When $ \beta > 3 $, with initial data $ (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} $ and external forces $ (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) $, some uniform estimates of the solution in different function spaces are given. Based on these uniform estimates, the $ ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) $-continuity of the family of processes $ \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} $ is demonstrated. Meanwhile, the $ (V_{1}\times V_{2}, \mathbf{H}^2(\Omega)\times\mathbf{H}^2(\Omega)) $-uniform compactness of $ \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} $ is proved. Finally, the existence of a $ (V_{1}\times V_{2}, V_{1}\times V_{2}) $-uniform attractor and a $ (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) $-uniform attractor are obtained. Furthermore, the $ (V_{1}\times V_{2}, V_{1}\times V_{2}) $-uniform attractor and the $ (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) $-uniform attractor are verified to be the same.
Citation: Xue-li Song, Yuan-yuan Liu, Xiao-tian Xie. The existence of uniform attractors for the 3D micropolar equations with nonlinear damping term[J]. AIMS Mathematics, 2024, 9(4): 9608-9630. doi: 10.3934/math.2024470
This paper studies the existence of uniform attractors for 3D micropolar equation with damping term. When $ \beta > 3 $, with initial data $ (u_{\tau}, \omega_{\tau})\in V_{1}\times V_{2} $ and external forces $ (f_{1}, f_{2})\in \mathcal{H}(f_{1}^{0})\times \mathcal{H}(f_{2}^{0}) $, some uniform estimates of the solution in different function spaces are given. Based on these uniform estimates, the $ ((V_{1}\times V_{2})\times(\mathcal{H}(f^{0}_{1})\times \mathcal{H}(f^{0}_{2})), V_{1}\times V_{2}) $-continuity of the family of processes $ \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} $ is demonstrated. Meanwhile, the $ (V_{1}\times V_{2}, \mathbf{H}^2(\Omega)\times\mathbf{H}^2(\Omega)) $-uniform compactness of $ \{U_{(f_{1}, f_{2})}(t, \tau)\}_{t\geq\tau} $ is proved. Finally, the existence of a $ (V_{1}\times V_{2}, V_{1}\times V_{2}) $-uniform attractor and a $ (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) $-uniform attractor are obtained. Furthermore, the $ (V_{1}\times V_{2}, V_{1}\times V_{2}) $-uniform attractor and the $ (V_{1}\times V_{2}, \mathbf{H}^{2}(\Omega)\times \mathbf{H}^{2}(\Omega)) $-uniform attractor are verified to be the same.
[1] | X. Cai, Q. Jiu, Weak and strong solutions for the incompressible Navier-Stokes equations with damping, J. Math. Anal. Appl., 343 (2008), 799–809. https://doi.org/10.1016/j.jmaa.2008.01.041 doi: 10.1016/j.jmaa.2008.01.041 |
[2] | J. W. Chen, Z. M. Chen, B. Q. Dong, Existence of $H^2$-global attractors of two-dimensional micropolar fluid flows, J. Math. Anal. Appl., 332 (2006), 512–522. https://doi.org/10.1016/j.jmaa.2005.09.011 doi: 10.1016/j.jmaa.2005.09.011 |
[3] | G. X. Chen, C. K. Zhong, Uniform attractors for non-autonomous p-Laplacian equations, Nonlinear Anal., 68 (2008), 3349–3367. https://doi.org/10.1016/j.na.2007.03.025 doi: 10.1016/j.na.2007.03.025 |
[4] | B. Q. Dong, Z. M. Chen, On upper and lower bounds of higher order derivatives for solutions to the 2D micropolar fluid equations, J. Math. Anal. Appl., 334 (2007), 1386–1399. https://doi.org/10.1016/j.jmaa.2007.01.047 doi: 10.1016/j.jmaa.2007.01.047 |
[5] | A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. |
[6] | G. P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the micropolar fluid equations, Internat. J. Engrg. Sci., 15 (1977), 105–108. |
[7] | H. Li, Y. Xiao, Large time behavior of solutions to the 3D micropolar equations with nonlinear damping, Nonlinear Anal. Real World Appl., 65 (2022), 103493. https://doi.org/10.1016/j.nonrwa.2021.103493 doi: 10.1016/j.nonrwa.2021.103493 |
[8] | S. S. Lu, Attractors for nonautonomous 2D Navier-Stokes equations with less regular normal forces, J. Differ. Equ., 230 (2006), 196–212. https://doi.org/10.1016/j.jde.2006.07.009 doi: 10.1016/j.jde.2006.07.009 |
[9] | S. S. Lu, H. Q. Wu, C. K. Zhong, Attractors for nonautonomous 2D Navier-Stokes equations with normal external force, Discrete Contin. Dyn. Syst., 13 (2005), 701. |
[10] | G. Lukaszewicz, Long time behavior of 2D micropolar fluid flows, Math. Comput. Model., 34 (2001), 487–509. https://doi.org/10.1016/S0895-7177(01)00078-4 doi: 10.1016/S0895-7177(01)00078-4 |
[11] | S. Ma, C. Zhong, H. Song, Attractors for non-auronomous 2D Navier-Stokes equations with less regular symbols, Nonlinear Anal., 71 (2009), 4215–4222. https://doi.org/10.1016/j.na.2009.02.107 doi: 10.1016/j.na.2009.02.107 |
[12] | J. C. Robinson, Infinite-dimensional dynamical systems: An introduction to dissipative parabolic PDEs and the theory of global attractors, Cambridge: Cambridge University Press, 2001. |
[13] | W. Shi, X. Yang, X. Yan, Determination of the 3D Navier-Stokes equations with damping, Electron. Res. Arch., 30 (2022), 3872–3886. http://dx.doi.org/10.3934/era.2022197 doi: 10.3934/era.2022197 |
[14] | P. B. Silva, F. W. Cruz, L. B. S. Freitas, P. R. Zingano, On the $L^2$-decay of weak solutions for the 3D asymmetric fluid equations, J. Differ. Equ., 267 (2019), 3578–3609. https://doi.org/10.1016/j.jde.2019.04.012 doi: 10.1016/j.jde.2019.04.012 |
[15] | X. L. Song, Y. R. Hou, Attractors for the three-dimensional incompressible Navier-Stokes equations with damping, Discrete Contin. Dyn. Syst., 31 (2011), 239–252. http://dx.doi.org/10.3934/dcds.2011.31.239 doi: 10.3934/dcds.2011.31.239 |
[16] | X. L. Song, Y. R. Hou, Uniform attractors for three-dimensional Navier-Stokes equations with nonlinear damping, J. Math. Anal. Appl., 422 (2015), 337–351. https://doi.org/10.1016/j.jmaa.2014.08.044 doi: 10.1016/j.jmaa.2014.08.044 |
[17] | R. Temam, Infinite-dimensional dynamical systems in mechanics and physics, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0645-3 |
[18] | W. Wang, Y. Long, A note on global existence of strong solution to the 3D micropolar equations with a damping term, Bound. Value Probl., 2021 (2021), 72. https://doi.org/10.1186/s13661-021-01548-z doi: 10.1186/s13661-021-01548-z |
[19] | N. Yamaguchi, Existence of global strong solution to the micropolar fluid system in a bounded domain, Math. Methods Appl. Sci., 28 (2005), 1507–1526. https://doi.org/10.1002/mma.617 doi: 10.1002/mma.617 |
[20] | X. J. Yang, H. Liu, C. F. Sun, Global attractors of the 3D micropolar equations with damping term, Math. Found. Comput., 4 (2021), 117–130. https://doi.org/10.3934/mfc.2021007 doi: 10.3934/mfc.2021007 |
[21] | X. Yang, H. Liu, C. Sun, Trajectory attractors of the 3D micropolar equations with damping term, Mediterr. J. Math., 19 (2022), 48. https://doi.org/10.1007/s00009-021-01965-5 doi: 10.1007/s00009-021-01965-5 |
[22] | Z. Ye, Global existence of solution to the 3D micropolar equations with a damping term, Appl. Math. Lett., 83 (2018), 188–193. https://doi.org/10.1016/j.aml.2018.04.002 doi: 10.1016/j.aml.2018.04.002 |
[23] | H. Yu, X. Zheng, Asymptotic behavior of weak solutions to the damped Navier-Stokes equations, J. Math. Anal. Appl., 477 (2019), 1009–1018. https://doi.org/10.1016/j.jmaa.2019.04.068 doi: 10.1016/j.jmaa.2019.04.068 |
[24] | C. D. Zhao, S. F. Zhou, X. Z. Lian, $H^1$-uniform attractor and asymptotic smoothing effect of solutions for a nonautonomous micropolar fluid flow in 2D unbounded domains, Nonlinear Anal. Real World Appl., 9 (2008), 608–627. https://doi.org/10.1016/j.nonrwa.2006.12.005 doi: 10.1016/j.nonrwa.2006.12.005 |
[25] | Y. Zhou, Regularity and uniqueness for the 3D incompressible Navier-Stokes equations with damping, Appl. Math. Lett., 25 (2012), 1822–1825. https://doi.org/10.1016/j.aml.2012.02.029 doi: 10.1016/j.aml.2012.02.029 |