Research article

Decay result in a problem of a nonlinearly damped wave equation with variable exponent

  • Received: 19 August 2021 Accepted: 19 November 2021 Published: 24 November 2021
  • MSC : 35B37, 35L55, 74D05, 93D15, 93D20

  • In this work we study a wave equation with a nonlinear time dependent frictional damping of variable exponent type. The existence and uniqueness results are established using Fadeo-Galerkin approximation method. We also exploit the Komornik lemma to prove the uniform stability result for the energy associated to the solution of the problem under consideration.

    Citation: Mohammad Kafini, Jamilu Hashim Hassan, Mohammad M. Al-Gharabli. Decay result in a problem of a nonlinearly damped wave equation with variable exponent[J]. AIMS Mathematics, 2022, 7(2): 3067-3082. doi: 10.3934/math.2022170

    Related Papers:

  • In this work we study a wave equation with a nonlinear time dependent frictional damping of variable exponent type. The existence and uniqueness results are established using Fadeo-Galerkin approximation method. We also exploit the Komornik lemma to prove the uniform stability result for the energy associated to the solution of the problem under consideration.



    加载中


    [1] S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions: Existence, uniqueness, localization, blow-up, Paris: Atlantis Press, 2015.
    [2] Y. M. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66 (2006), 1383–1406. doi: 10.1137/050624522. doi: 10.1137/050624522
    [3] S. Antontsev, V. Zhikov, Higher integrability for parabolic equations of $p(x, t)$-Laplacian type, Adv. Differ. Equ., 10 (2005), 1053–1080.
    [4] M. Nakao, Decay of solutions of the wave equation with a local nonlinear dissipation, Math. Ann., 305 (1996), 403–417. doi: 10.1007/BF01444231. doi: 10.1007/BF01444231
    [5] A. Benaissa, S. A. Messaoudi, Exponential decay of solutions of a nonlinearly damped wave equation, Nonlinear Differ. Equ. Appl., 12 (2006), 391–399. doi: 10.1007/s00030-005-0008-5. doi: 10.1007/s00030-005-0008-5
    [6] S. A. Messaoudi, M. I. Mustafa, General energy decay rates for a weakly damped wave equation, Commun. Math. Anal., 9 (2010), 67–76.
    [7] S. Ghegal, I. Hamchi, S. A. Messaoudi, Global existence and stability of a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal., 99 (2020), 1333–1343. doi: 10.1080/00036811.2018.1530760. doi: 10.1080/00036811.2018.1530760
    [8] I. Lasiecka, Stabilization of wave and plate-like equation with nonlinear dissipation on the boundary, J. Differ. Equ., 79 (1989), 340–381. doi: 10.1016/0022-0396(89)90107-1. doi: 10.1016/0022-0396(89)90107-1
    [9] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping, Differ. Integral Equ., 6 (1993), 507–533.
    [10] M. Nakao, Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations, Math Z., 206 (1991), 265–275. doi: 10.1007/BF02571342. doi: 10.1007/BF02571342
    [11] M. Kafini, S. A. Messaoudi, On the decay and global nonexistence of solutions to a damped wave equation with variable-exponent nonlinearity and delay, Ann. Pol. Math., 122 (2019), 49–70.
    [12] S. A. Messaoudi, On the decay of solutions of a damped quasilinear wave equation with variable-exponent nonlinearities, Math. Meth. Appl. Sci., 43 (2020), 5114–5126. doi: 10.1002/mma.6254. doi: 10.1002/mma.6254
    [13] S. Antontsev, Wave equation with $p(x, t)$-Laplacian and damping term: Blow-up of solutions, C. R. Mecanique, 339 (2011), 751–755. doi: 10.1016/j.crme.2011.09.001. doi: 10.1016/j.crme.2011.09.001
    [14] S. Antontsev, J. Ferreira, Existence, uniqueness and blowup for hyperbolic equations with nonstandard growth conditions, Nonlinear Anal.-Theor., 93 (2013), 62–77. doi: 10.1016/j.na.2013.07.019. doi: 10.1016/j.na.2013.07.019
    [15] B. Guo, W. J. Gao, Blow-up of solutions to quasilinear hyperbolic equations with $p(x, t)$-Laplacian and positive initial energy, C. R. Mecanique, 342 (2014), 513–519. doi: 10.1016/j.crme.2014.06.001. doi: 10.1016/j.crme.2014.06.001
    [16] S. A. Messaoudi, A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal., 96 (2017), 1509–1515. doi: 10.1080/00036811.2016.1276170. doi: 10.1080/00036811.2016.1276170
    [17] S. A. Messaoudi, A. A. Talahmeh, On wave equation: Review and recent results, Arab. J. Math., 7 (2018), 113–145. doi: 10.1007/s40065-017-0190-4. doi: 10.1007/s40065-017-0190-4
    [18] H. G. Sun, A. L. Chang, Y. Zhang, W. Chen, A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications, Fract. Calc. Appl. Anal., 22 (2018), 27–59. doi: 10.1515/fca-2019-0003. doi: 10.1515/fca-2019-0003
    [19] X. C. Zheng, H. Wang, Analysis and discretization of a variable-order fractional wave equation, Commun. Nonlinear Sci., 104 (2022), 106047. doi: 10.1016/j.cnsns.2021.106047. doi: 10.1016/j.cnsns.2021.106047
    [20] X. C. Zheng, H. Wang, An error estimate of a numerical approximation to a Hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. doi: 10.1137/20M132420X. doi: 10.1137/20M132420X
    [21] X. C. Zheng, H. Wang, A Hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. doi: 10.1137/20M1344962. doi: 10.1137/20M1344962
    [22] X. C. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. doi: 10.1093/imanum/draa013. doi: 10.1093/imanum/draa013
    [23] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Berlin, Heidelberg: Springer-Verlag, 2011. doi: 10.1007/978-3-642-18363-8.
    [24] X. L. Fan, D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $ W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424–446. doi: 10.1006/jmaa.2000.7617. doi: 10.1006/jmaa.2000.7617
    [25] J. L. Lions, Quelques méthodes de résolution des problemes aux limites nonlinéaires, Paris: Dunod, 1969.
    [26] M. T. Lacroix-Sonrier, Distrubutions, espaces de sobolev: Applications, Paris: Ellipses, 1998.
    [27] V. Komornik, Exact controllability and stabilization. The multiplier method, Paris: Masson-John Wiley, 1994.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1318) PDF downloads(89) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog