Research article

The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type

  • Received: 23 July 2023 Revised: 12 September 2023 Accepted: 21 September 2023 Published: 27 September 2023
  • MSC : 35B37, 35L55, 74D05, 93D15, 93D20

  • In this paper, we study the asymptotic behavior of solutions of the dissipative coupled system where we have interactions between a Kirchhoff plate and a Euler-Bernoulli plate. We investigate the interaction between the internal strong damping acting in the Kirchhoff equation and internal weak damping of variable-exponent type acting in the Euler-Bernoulli equation. By using the potential well, the energy method (multiplier method) combined with the logarithmic Sobolev inequality, we prove the global existence and derive the stability results. We show that the solutions of this system decay to zero sometimes exponentially and other times polynomially. We find explicit decay rates that depend on the weak damping of the variable-exponent type. This outcome extends earlier results in the literature.

    Citation: Adel M. Al-Mahdi. The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type[J]. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404

    Related Papers:

  • In this paper, we study the asymptotic behavior of solutions of the dissipative coupled system where we have interactions between a Kirchhoff plate and a Euler-Bernoulli plate. We investigate the interaction between the internal strong damping acting in the Kirchhoff equation and internal weak damping of variable-exponent type acting in the Euler-Bernoulli equation. By using the potential well, the energy method (multiplier method) combined with the logarithmic Sobolev inequality, we prove the global existence and derive the stability results. We show that the solutions of this system decay to zero sometimes exponentially and other times polynomially. We find explicit decay rates that depend on the weak damping of the variable-exponent type. This outcome extends earlier results in the literature.



    加载中


    [1] J. E. Lagnese, Boundary stabilization of thin plates, SIAM, 1989. https://doi.org/10.1137/1.9781611970821
    [2] M. M. Cavalcanti, V. N. D. Cavalcanti, J. Ferreira, Existence and uniform decay for a non-linear viscoelastic equation with strong damping, Math. Method. Appl. Sci., 24 (2001), 1043–1053. https://doi.org/10.1002/mma.250 doi: 10.1002/mma.250
    [3] S. A. Messaoudi, N. Tatar, Global existence and uniform stability of solutions for a quasilinear viscoelastic problem, Math. Method. Appl. Sci., 30 (2007), 665–680. https://doi.org/10.1002/mma.804 doi: 10.1002/mma.804
    [4] X. Han, M. Wang, Global existence and blow-up of solutions for a system of nonlinear viscoelastic wave equations with damping and source, Nonlinear Anal., 71 (2009), 5427–5450. https://doi.org/10.1016/j.na.2009.04.031 doi: 10.1016/j.na.2009.04.031
    [5] W. Liu, General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms, J. Math. Phys., 50 (2009), 113506–113506. http://doi.org/10.1063/1.3254323 doi: 10.1063/1.3254323
    [6] M. M. Al-Gharabli, A. Guesmia, S. A. Messaoudi, Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity, Appl. Anal., 99 (2020), 50–74. https://doi.org/10.1080/00036811.2018.1484910 doi: 10.1080/00036811.2018.1484910
    [7] A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Bound. Value Probl., 2020 (2020), 84. https://doi.org/10.1186/s13661-020-01382-9 doi: 10.1186/s13661-020-01382-9
    [8] B. K. Kakumani, S. P. Yadav, Decay estimate in a viscoelastic plate equation with past history, nonlinear damping, and logarithmic nonlinearity, Bound. Value Probl., 2022 (2022), 95. https://doi.org/10.1186/s13661-022-01674-2 doi: 10.1186/s13661-022-01674-2
    [9] Y. Chen, R. Xu, Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity, Nonlinear Anal., 192 (2020), 111664. https://doi.org/10.1016/j.na.2019.111664 doi: 10.1016/j.na.2019.111664
    [10] W. Lian, V. D. Rădulescu, R. Xu, Y. Yang, N. Zhao, Global well-posedness for a class of fourth-order nonlinear strongly damped wave equations, Adv. Calc. Var., 14 (2021), 589–611. https://doi.org/10.1515/acv-2019-0039 doi: 10.1515/acv-2019-0039
    [11] G. Liu, The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term, Electron. Res. Arch., 28 (2020), 263–289. https://doi.org/10.3934/era.2020016 doi: 10.3934/era.2020016
    [12] W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2019), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016
    [13] Y. Liu, B. Moon, V. D. Rădulescu, R. Xu, C. Yang, Qualitative properties of solution to a viscoelastic kirchhoff-like plate equation, J. Math. Phys., 64 (2023), 051511. https://doi.org/10.1063/5.0149240 doi: 10.1063/5.0149240
    [14] Y. Luo, R. Xu, C. Yang, Global well-posedness for a class of semilinear hyperbolic equations with singular potentials on manifolds with conical singularities, Calc. Var. Partial Differ. Equ., 61 (2022), 210. https://doi.org/10.1007/s00526-022-02316-2 doi: 10.1007/s00526-022-02316-2
    [15] W. Liu, Uniform decay of solutions for a quasilinear system of viscoelastic equations, Nonlinear Anal., 71 (2009), 2257–2267. https://doi.org/10.1016/j.na.2009.01.060 doi: 10.1016/j.na.2009.01.060
    [16] L. He, On decay of solutions for a system of coupled viscoelastic equations, Acta Appl. Math., 167 (2020), 171–198. https://doi.org/10.1007/s10440-019-00273-1 doi: 10.1007/s10440-019-00273-1
    [17] Z. Hajjej, Asymptotic stability for solutions of a coupled system of quasi-linear viscoelastic kirchhoff plate equations, Electron. Res. Arch., 31 (2023), 3471–3494. http://doi.org/10.3934/era.2023176 doi: 10.3934/era.2023176
    [18] H. P. Oquendo, M. Astudillo, Optimal decay for plates with rotational inertia and memory, Math. Nachr., 292 (2019), 1800–1810. https://doi.org/10.1002/mana.201800170 doi: 10.1002/mana.201800170
    [19] A. M. Al-Mahdi, General stability result for a viscoelastic plate equation with past history and general kernel, J. Math. Anal. Appl., 490 (2020), 124216. https://doi.org/10.1016/j.jmaa.2020.124216 doi: 10.1016/j.jmaa.2020.124216
    [20] J. E. M. Rivera, E. C. Lapa, R. Barreto, Decay rates for viscoelastic plates with memory, J. Elasticity, 44 (1996), 61–87. https://doi.org/10.1007/BF00042192 doi: 10.1007/BF00042192
    [21] M. A. J. Silva, J. E. M. Rivera, R. Racke, On a class of nonlinear viscoelastic kirchhoff plates: Well-posedness and general decay rates, Appl. Math. Optim., 73 (2016), 165–194. https://doi.org/10.1007/s00245-015-9298-0 doi: 10.1007/s00245-015-9298-0
    [22] X. Lin, F. Li, Asymptotic energy estimates for nonlinear petrovsky plate model subject to viscoelastic damping, Abstr. Appl. Anal., 2012 (2012), 419717. https://doi.org/10.1155/2012/419717 doi: 10.1155/2012/419717
    [23] Y. Liu, Decay of solutions to an inertial model for a semilinear plate equation with memory, J. Math. Anal. Appl., 394 (2012), 616–632. https://doi.org/10.1016/j.jmaa.2012.04.003 doi: 10.1016/j.jmaa.2012.04.003
    [24] Z. Liu, Q. Zhang, A note on the polynomial stability of a weakly damped elastic abstract system, Z. Angew. Math. Phys., 66 (2015), 1799–1804. https://doi.org/10.1007/s00033-015-0517-y doi: 10.1007/s00033-015-0517-y
    [25] J. E. M. Rivera, M. G. Naso, Optimal energy decay rate for a class of weakly dissipative second-order systems with memory, Appl. Math. Lett., 23 (2010), 743–746. https://doi.org/10.1016/j.aml.2010.02.016 doi: 10.1016/j.aml.2010.02.016
    [26] D. L. Russell, A general framework for the study of indirect damping mechanisms in elastic systems, J. Math. Anal. Appl., 173 (1993), 339–358. https://doi.org/10.1006/jmaa.1993.1071 doi: 10.1006/jmaa.1993.1071
    [27] F. Alabau, P. Cannarsa, V. Komornik, Indirect internal stabilization of weakly coupled evolution equations, J. Evol. Equ., 2 (2002), 127–150. https://doi.org/10.1007/s00028-002-8083-0 doi: 10.1007/s00028-002-8083-0
    [28] A. Hajej, Z. Hajjej, L. Tebou, Indirect stabilization of weakly coupled kirchhoff plate and wave equations with frictional damping, J. Math. Anal. Appl., 474 (2019), 290–308. https://doi.org/10.1016/j.jmaa.2019.01.046 doi: 10.1016/j.jmaa.2019.01.046
    [29] A. Guesmia, Asymptotic behavior for coupled abstract evolution equations with one infinite memory, Appl. Anal., 94 (2015), 184–217. https://doi.org/10.1080/00036811.2014.890708 doi: 10.1080/00036811.2014.890708
    [30] K.-P. Jin, J. Liang, T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554–575. https://doi.org/10.1016/j.jmaa.2019.02.055 doi: 10.1016/j.jmaa.2019.02.055
    [31] R. G. Almeida, M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, Nonlinear Anal. Real World Appl., 12 (2011), 1023–1032. https://doi.org/10.1016/j.jmaa.2019.02.055 doi: 10.1016/j.jmaa.2019.02.055
    [32] G. F. Tyszka, M. R. Astudillo, H. P. Oquendo, Stabilization by memory effects: Kirchhoff plate versus euler-bernoulli plate, Nonlinear Anal. Real World Appl., 68 (2022), 103655. https://doi.org/10.1016/j.nonrwa.2022.103655 doi: 10.1016/j.nonrwa.2022.103655
    [33] A. E. H. Love, A treatise on the mathematical theory of elasticity, 4 Eds., Dover Publications, 1927.
    [34] S. Antontsev, S. Shmarev, Anisotropic parabolic equations with variable nonlinearity, Publ. Mat., 53 (2009), 355–399.
    [35] A. M. Al-Mahdi, M. M. Al-Gharabli, N.-E. Tatar, On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results, AIMS Mathematics, 8 (2023), 19971–19992. http://doi.org/10.3934/math.20231018 doi: 10.3934/math.20231018
    [36] L. Gross, Logarithmic sobolev inequalities, Amer. J. Math., 97 (1975), 1061–1083. https://doi.org/10.2307/2373688 doi: 10.2307/2373688
    [37] H. Chen, P. Luo, G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030 doi: 10.1016/j.jmaa.2014.08.030
    [38] H. Chen, G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo Differ. Oper. Appl., 3 (2012), 329–349. https://doi.org/10.1007/s11868-012-0046-9 doi: 10.1007/s11868-012-0046-9
    [39] Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011
    [40] A. M. Al-Mahdi, M. M. Al-Gharabli, Energy decay estimates of a timoshenko system with two nonlinear variable exponent damping terms, Mathematics, 11 (2023), 538. https://doi.org/10.3390/math11030538 doi: 10.3390/math11030538
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(964) PDF downloads(64) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog