Research article

New subclass of analytic functions defined by $ q $-analogue of $ p $-valent Noor integral operator

  • Received: 29 March 2021 Accepted: 07 July 2021 Published: 19 July 2021
  • MSC : 30C45

  • In this paper, we introduce a certain subclass of analytic functions associated with $ q $-analogue of $ p $-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.

    Citation: Ibtisam Aldawish, Mohamed Aouf, Basem Frasin, Tariq Al-Hawary. New subclass of analytic functions defined by $ q $-analogue of $ p $-valent Noor integral operator[J]. AIMS Mathematics, 2021, 6(10): 10466-10484. doi: 10.3934/math.2021607

    Related Papers:

  • In this paper, we introduce a certain subclass of analytic functions associated with $ q $-analogue of $ p $-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.



    加载中


    [1] M. H. Annaby, Z. Mansour, $q$-fractional calculus and equation, Springer-Verlag Berlin Heidelberg, 2012.
    [2] M. K. Aouf, $p$-valent classes related to convex function of complex order, Rocky Mt. J. Math., 15 (1985), 853–863.
    [3] M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by $q$ -analogue of Ruschewegh operator, Constr. Math. Anal., 3 (2020), 36–44.
    [4] M. Arif, M. Ul Haq, J. Liu, A subfamily of univalent function associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–5.
    [5] R. Bharati, R. Paravatham, A. Swaminathan, On subclasses of uniformly convex function and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17–32. doi: 10.5556/j.tkjm.28.1997.4330
    [6] F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburugh, 46 (1908), 253–281.
    [7] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [8] S. Kanas, Coefficient estimates in subclasses of Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005), 149–161.
    [9] S. Kanas, A. Wisniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7
    [10] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45 (2000), 647–658.
    [11] J. L. Liu, K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom., 2002 (2002), 81–90.
    [12] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the conference on complex analysis (Tianjin, 1992), Int. Press (Cambridge, MA), 1 (1994), 157–169.
    [13] K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16 (1999), 71–80.
    [14] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. doi: 10.1006/jmaa.1999.6501
    [15] M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull., 8 (1982), 565–582.
    [16] M. A. Nasr, M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci., 9 (1983), 97–102.
    [17] M. A. Nasr, M. K. Aouf, Starlike functions of complex order, Nat. Sci. Math., 25 (1985), 1–12.
    [18] K. I. Noor, M. Arif, W. Ul Haq, On $k$-uniformly colse-to-convex functions of complex order, Appl. Math. comput., 215 (2009), 629–635.
    [19] T. Q. Salim, M. S. Marouf, J. M. Shenan, A subclasses of multivalent uniformly convex functions associated with generalized Sǎl ǎgean and Ruscheweyh differential operators, Acta Univ. Apulensis, 26 (2011), 289–300.
    [20] T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1–7.
    [21] N. L. Sharma, A note on the coefficient estimates for some classes of $p$-valent functions, Ukr. Math. J., 70 (2018), 632–648. doi: 10.1007/s11253-018-1521-0
    [22] H. M. Srivastava, M. K. Aouf S. Owa, Certain classes of multivalent functions of order $\alpha $ and type $\beta$, Bull. Soc. Math. Belg. Ser. B, 42 (1990), 31–66.
    [23] B. Wongsaijai, N. Sukantamala, Mapping properties of generalized $q$-integral operator of $p$-valent functions and the generalized Sǎlǎgean operator, Acta Univ. Apulensis, 41 (2015), 31–50.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2526) PDF downloads(139) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog