In this paper, we introduce a certain subclass of analytic functions associated with $ q $-analogue of $ p $-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.
Citation: Ibtisam Aldawish, Mohamed Aouf, Basem Frasin, Tariq Al-Hawary. New subclass of analytic functions defined by $ q $-analogue of $ p $-valent Noor integral operator[J]. AIMS Mathematics, 2021, 6(10): 10466-10484. doi: 10.3934/math.2021607
In this paper, we introduce a certain subclass of analytic functions associated with $ q $-analogue of $ p $-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.
[1] | M. H. Annaby, Z. Mansour, $q$-fractional calculus and equation, Springer-Verlag Berlin Heidelberg, 2012. |
[2] | M. K. Aouf, $p$-valent classes related to convex function of complex order, Rocky Mt. J. Math., 15 (1985), 853–863. |
[3] | M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by $q$ -analogue of Ruschewegh operator, Constr. Math. Anal., 3 (2020), 36–44. |
[4] | M. Arif, M. Ul Haq, J. Liu, A subfamily of univalent function associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–5. |
[5] | R. Bharati, R. Paravatham, A. Swaminathan, On subclasses of uniformly convex function and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17–32. doi: 10.5556/j.tkjm.28.1997.4330 |
[6] | F. H. Jackson, On $q$-functions and a certain difference operator, Trans. Royal Soc. Edinburugh, 46 (1908), 253–281. |
[7] | F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203. |
[8] | S. Kanas, Coefficient estimates in subclasses of Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005), 149–161. |
[9] | S. Kanas, A. Wisniowska, Conic regions and $k$-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7 |
[10] | S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45 (2000), 647–658. |
[11] | J. L. Liu, K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom., 2002 (2002), 81–90. |
[12] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the conference on complex analysis (Tianjin, 1992), Int. Press (Cambridge, MA), 1 (1994), 157–169. |
[13] | K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16 (1999), 71–80. |
[14] | K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. doi: 10.1006/jmaa.1999.6501 |
[15] | M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull., 8 (1982), 565–582. |
[16] | M. A. Nasr, M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci., 9 (1983), 97–102. |
[17] | M. A. Nasr, M. K. Aouf, Starlike functions of complex order, Nat. Sci. Math., 25 (1985), 1–12. |
[18] | K. I. Noor, M. Arif, W. Ul Haq, On $k$-uniformly colse-to-convex functions of complex order, Appl. Math. comput., 215 (2009), 629–635. |
[19] | T. Q. Salim, M. S. Marouf, J. M. Shenan, A subclasses of multivalent uniformly convex functions associated with generalized Sǎl ǎgean and Ruscheweyh differential operators, Acta Univ. Apulensis, 26 (2011), 289–300. |
[20] | T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by $q$-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1–7. |
[21] | N. L. Sharma, A note on the coefficient estimates for some classes of $p$-valent functions, Ukr. Math. J., 70 (2018), 632–648. doi: 10.1007/s11253-018-1521-0 |
[22] | H. M. Srivastava, M. K. Aouf S. Owa, Certain classes of multivalent functions of order $\alpha $ and type $\beta$, Bull. Soc. Math. Belg. Ser. B, 42 (1990), 31–66. |
[23] | B. Wongsaijai, N. Sukantamala, Mapping properties of generalized $q$-integral operator of $p$-valent functions and the generalized Sǎlǎgean operator, Acta Univ. Apulensis, 41 (2015), 31–50. |