Processing math: 41%
Research article

New subclass of analytic functions defined by q-analogue of p-valent Noor integral operator

  • In this paper, we introduce a certain subclass of analytic functions associated with q-analogue of p-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.

    Citation: Ibtisam Aldawish, Mohamed Aouf, Basem Frasin, Tariq Al-Hawary. New subclass of analytic functions defined by q-analogue of p-valent Noor integral operator[J]. AIMS Mathematics, 2021, 6(10): 10466-10484. doi: 10.3934/math.2021607

    Related Papers:

    [1] Weerawat Sudsutad, Chatthai Thaiprayoon, Sotiris K. Ntouyas . Existence and stability results for ψ-Hilfer fractional integro-differential equation with mixed nonlocal boundary conditions. AIMS Mathematics, 2021, 6(4): 4119-4141. doi: 10.3934/math.2021244
    [2] Weerawat Sudsutad, Wicharn Lewkeeratiyutkul, Chatthai Thaiprayoon, Jutarat Kongson . Existence and stability results for impulsive (k,ψ)-Hilfer fractional double integro-differential equation with mixed nonlocal conditions. AIMS Mathematics, 2023, 8(9): 20437-20476. doi: 10.3934/math.20231042
    [3] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [4] Naimi Abdellouahab, Keltum Bouhali, Loay Alkhalifa, Khaled Zennir . Existence and stability analysis of a problem of the Caputo fractional derivative with mixed conditions. AIMS Mathematics, 2025, 10(3): 6805-6826. doi: 10.3934/math.2025312
    [5] Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301
    [6] Sunisa Theswan, Sotiris K. Ntouyas, Jessada Tariboon . Coupled systems of ψ-Hilfer generalized proportional fractional nonlocal mixed boundary value problems. AIMS Mathematics, 2023, 8(9): 22009-22036. doi: 10.3934/math.20231122
    [7] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [8] Muath Awadalla, Manigandan Murugesan, Manikandan Kannan, Jihan Alahmadi, Feryal AlAdsani . Utilizing Schaefer's fixed point theorem in nonlinear Caputo sequential fractional differential equation systems. AIMS Mathematics, 2024, 9(6): 14130-14157. doi: 10.3934/math.2024687
    [9] Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order (1,2). AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496
    [10] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
  • In this paper, we introduce a certain subclass of analytic functions associated with q-analogue of p-valent Noor integral operator in the open unit disc. A variety of useful properties for this subclass are investigated including coefficient estimates and the familiar Fekete-Szeg ö type inequalities. Several known sequences of the main results are also highlighted.



    Fractional calculus (FC), also known as non-integer calculus, has been widely studied in recent over the past decades (beginning 1695) in fields of applied sciences and engineering. FC deals with fractional-order integral and differential operators, which establishes phenomenon model as an increasingly realistic tool for real-world problems. In addition, it has been properly specified the term "memory" particularly in mathematics, physics, chemistry, biology, mechanics, electricity, finance, economics and control theory, we recommend these books to readers who require to learn more about the core ideas of fractional operators [1,2,3,4,5,6]. However, recently, several types of fractional operators have been employed in research education that mostly focus on the Riemann-Liouville (RL) [3], Caputo [3], Hadamard [3], Katugampola [7], conformable [8] and generalized conformable [9]. In 2017, Jarad et al. [10] introduced generalized RL and Caputo proportional fractional derivatives including exponential functions in their kernels. After that, in 2021, new fractional operators combining proportional and classical differintegrals have been introduced in [11]. Moreover, Akgül and Baleanu [12] studied the stability analysis and experiments of the proportional Caputo derivative.

    Recently, one type of fractional operator that is popular with researchers now is proportional fractional derivative and integral operators (PFDOs/PFIOs) with respect to another function; for more details see [13,14]. For α>0, ρ(0,1], ψC1([a,b]), ψ>0, the PFIO of order α of hL1([a,b]) with respect to ψ is given as:

    ρIα,ψa[h(t)]=1ραΓ(α)taρHα1ψ(t,s)[h(s)]ψ(s)ds, (1.1)

    where Γ(α)=0sα1esds, s>0, and

    ρHα1ψ(t,s)=eρ1ρ(ψ(t)ψ(s))(ψ(t)ψ(s))α1. (1.2)

    The Riemann-Liouville proportional fractional derivative (RL-PFD) of order α of hCn([a,b]) with respect to ψ is given by

    ρDα,ψa[h(t)]=ρDn,ψρaInα,ψ[h(t)]=ρDn,ψtρnαΓ(nα)taρHnα1ψ(t,s)[h(s)]ψ(s)ds, (1.3)

    with n=[α]+1, where [α] denotes the integer part of order α, ρDn,ψ=ρDψρDψρDψntimes, and ρDψ[h(t)]=(1ρ)h(t)+ρh(t))/ψ(t). The PFD in Caputo type is given as in

    CρDα,ψa[h(t)]=ρInα,ψa[ρDn,ψ[h(t)]]=ραnΓ(nα)taρHnα1ψ(t,s)ρDn,ψ[h(s)]ψ(s)ds. (1.4)

    The relation of PFI and Caputo-PFD which will be used in this manuscript as

    ρIα,ψa[CρDα,ψa[h(t)]]=h(t)n1k=0ρDk,ψ[h(a)]ρkk!ρHk+1ψ(t,a). (1.5)

    Moreover, for α, β>0 and ρ(0,1], we have the following properties

    ρIα,ψa[ρHβ1ψ(t,a)]=Γ(β)ραΓ(β+α)ρHβ+α1ψ(t,a), (1.6)
    CρDα,ψa+[ρHβ1ψ(t,a)]=ραΓ(β)Γ(βα)ρHβα1ψ(t,a). (1.7)

    Notice that if we set ρ=1 in (1.1), (1.3) and (1.4), then we have the RL-fractional operators [3] with ψ(t)=t, the Hadamard fractional operators [3] with ψ(t)=logt, the Katugampola fractional operators [7] with ψ(t)=tμ/μ, μ>0, the conformable fractional operators [8] with ψ(t)=(ta)μ/μ, μ>0 and the generalized conformable fractional operators [9] with ψ(t)=tμ+ϕ/(μ+ϕ), respectively. Recent interesting results on PFOs with respect to another function could be mention in [15,16,17,18,19,20,21,22,23,24,25].

    Exclusive investigations in concepts of qualitative property in fractional-order differential equations (FDEs) have recently gotten a lot of interest from researchers as existence property (EP) and Ulam's stability (US). The EP of solutions for FDEs with initial or boundary value conditions has been investigated applying classical/modern fixed point theorems (FPTs). As we know, US is four types like Hyers-Ulam stability (HU), generalized Hyers-Ulam stability (GHU), Hyers-Ulam-Rassias stability (HUR) and generalized Hyers-Ulam-Rassias stability (GHUR). Because obtaining accurate solutions to fractional differential equations problems is extremely challenging, it is beneficial in various of optimization applications and numerical analysis. As a result, it is requisite to develop concepts of US for these issues, since studying the properties of US does not need us to have accurate solutions to the proposed problems. This qualitative theory encourages us to obtain an efficient and reliable technique for solving fractional differential equations because there exists a close exact solution when the purpose problem is Ulam stable. We suggest some interesting papers about qualitative results of fractional initial/boundary value problems (IVPs/BVPs) involving many types of non-integer order, see [26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43] and references therein.

    We are going to present some of the researches that inspired this manuscript. In recent years, pantograph equation (PE) is a type of proportional delay differential equation emerging in deterministic situations which first studied by Ockendon and Taylor [44]:

    {u(t)=μu(t)+κu(λt),a<t<T,u(0)=u0=A,0<λ<1,μ,κR. (1.8)

    The problem (1.8) has been a broad area of applications in applied branchs such as science, medicine, engineering and economics that use the sake of PEs to model some phenomena of the problem at present which depend on the previous states. For more evidences of PEs, see [45,46,47,48,49,50,51]. There are many researches of literature on nonlinear fractional differential equations involving a specific function with initial, boundary, or nonlocal conditions, for examples in 2013, Balachandran et al. [52] discussed the initial nonlinear PEs as follows:

    {CDα[u(t)]=h(t,u(t),u(σt)),α(0,1],0<t<1,u(0)=u0,0<σ<1, (1.9)

    where u0R, CDα denotes the Caputo fractional derivative of order α and hC([0,1]×R2,R). FC and FPTs were applied to discuss the existence properties of the solutions in their work. In 2018, Harikrishman and co-workers [53] examined the existence properties of ψ-Hilfer fractional derivative for nonlocal problem for PEs:

    {HDα,β;ψa+[u(t)]=h(t,u(t),u(σt)),t(a,b),σ(0,1),α(0,1)I1γ;ψa+[u(a)]=ki=1ciu(τi),τi(a,b],αγ=α+βαβ, (1.10)

    where HDα,β;ψa+ represents the ψ-Hilfer fractional derivative of order α and type β[0,1], I1γ;ψa+ is RL-fractional integral of order 1γ with respect to ψ so that ψ>0 and hC([a,b]×R2,R). Asawasamrit and co-workers [54] used Schaefer's and Banach's FPTs to establish the existence properties of FDEs with mixed nonlocal conditions (MNCs) in 2019. In 2021, Boucenna et al. [55] investigated the existence and uniqueness theorem of solutions for a generalized proportional Caputo fractional Cauchy problem. They solved the proposed problem based on the decomposition formula. Amongst important fractional equations, one of the most interesting equations is the fractional integro-differential equations, which provide massive freedom to explain processes involving memory and hereditary properties, see [56,57].

    Recognizing the importance of all parts that we mentioned above, motivated us to generate this paper which deals with the qualitative results to the Caputo proportional fractional integro-differential equation (PFIDE) with MNCs:

    {CρDα,ψa+[u(t)]=f(t,u(t),u(λt),ρIω,ψa+[u(λt)],CρDα,ψa+[u(λt)]),t(a,T),mi=1γiu(ηi)+nj=1κjCρDβj,ψa+[u(ξj)]+kr=1σrρIδr,ψa+[u(θr)]=A, (1.11)

    where CρDq,ψa+ is the Caputo-PFDO with respect to another increasing differentiable function ψ of order q={α,βj} via 0<βj<α1, j=1,2,,n, 0<ρ1, 0<λ<1, ρIp,ψa+ is the PFIO with respect to another increasing differentiable function ψ of order p={ω,δr}>0 for r=1,2,,k, 0<ρ1, γi,κj,σr,AR, 0aηi,ξj,θrT, i=1,2,,m, fC(J×R4,R), J=[a,T]. We use the help of the famous FPTs like Banach's, Leray-Schauder's nonlinear alternative and Krasnoselskii's to discuss the existence properties of the solutions for (1.11). Moreover, we employ the context of different kinds of US to discuss the stability analysis. The results are well demonstrated by numerical examples at last section.

    The advantage of defining MNCs of the problem (1.11) is it covers many cases as follows:

    ● If we set κj=σr=0, then (1.11) is deducted to the proportional multi-point problem.

    ● If we set γi=σr=0, then (1.11) is deducted to the PFD multi-point problem.

    ● If we set γi=κj=0, then (1.11) is deducted to the PFI multi-point problem.

    ● If we set α=ρ=1, (1.11) emerges in nonlocal problems [58].

    This work is collected as follows. Section 2 provides preliminary definitions. The existence results of solutions for (1.11) is studied in Section 3. In Section 4, stability analysis of solution for (1.11) in frame of HU, GHU, HUR and GHUR are given is established. Section 5 contains the example to illustrate the theoretical results. In addition, the summarize is provided in the last part.

    Before proving, assume that E=C(J,R) is the Banach space of all continuous functions from J into R provided with u=suptJ{|u(t)|}. The symbol ρIq,ψa+[Fu(s)(c)] means that

    ρIq,ρ,ψa+[Fu(c)]=1ρqΓ(q)caρHq1ψ(c,s)[Fu(s)]ψ(s)ds,

    where q={α,αβj,α+δr}, c={t,ηi,ξj,θr}, and

    Fu(t):=f(t,u(t),u(λt),ρIω,ψa+[u(λt)],Fu(λt)). (2.1)

    In order to convert the considered problem into a fixed point problem, (1.11) must be transformed to corresponding an integral equation. We discuss the following key lemma.

    Lemma 2.1. Let 0<βj<α1, j=1,2,,n, ρ>0, δr, >0, r=1,2,,k and Ω0. Then, the Caputo-PFIDE with MNCs:

    {CρDα,ψa+[u(t)]=Fu(t),t(a,T),mi=1γiu(ηi)+nj=1κjCρDβj,ψa+[u(ξj)]+kr=1σrρIδr,ψa+[u(θr)]=A, (2.2)

    is equivalent to the integral equation

    u(t)=ρIα,ψa+[Fu(t)]+eρ1ρ(ψ(t)ψ(a))Ω(Ami=1γiρIα,ψa+[Fu(ηi)]nj=1κjρIαβj,ψa+[Fu(ξj)]kr=1σrρIα+δr,ψa+[Fu(θr)]), (2.3)

    where

    Ω=mi=1γieρ1ρ(ψ(ηi)ψ(a))+kr=1σrρHδr+1ψ(θr,a)ρδrΓ(1+δr). (2.4)

    Proof. Suppose u is the solution of (2.2). By using (1.5), the integral equation can be rewritten as

    u(t)=ρIα,ψa+[Fu(t)]+c1eρ1ρ(ψ(t)ψ(a)), (2.5)

    where c1R. Taking CρDβj,ψa+ and ρIδr,ψa+ into (2.5) with (1.6) and (1.7), we obtain

    CρDβj,ψa+[u(t)]=ρIαβj,ψa+[Fu(t)],ρIδr,ψa+[u(t)]=ρIα+δr,ψa+[Fu(t)]+c1ρHδr+1ψ(t,a)ρδrΓ(1+δr).

    Applying the nonlocal conditions in (2.2), we have

    A=mi=1γiρIα,ψa+[Fu(ηi)]+nj=1κjρIαβj,ψa+[Fu(ξj)]+kr=1σrρIα+δr,ψa+[Fu(θr)]+c1(mi=1γieρ1ρ(ψ(ηi)ψ(a))+kr=1σrρHδr+1ψ(θr,a)ρδrΓ(1+δr)).

    Solving the above equation, we get the value

    c1=1Ω(Ami=1γiρIα,ψa+[Fu(ηi)]nj=1κjρIαβj,ψa+[Fu(ξj)]kr=1σrρIα+δr,ψa+[Fu(θr)]),

    where Ω is given as in (2.4). Taking c1 in (2.5), we obtain (2.3).

    On the other hand, it is easy to show by direct computing that u(t) is provided as in (2.3) verifies (2.2) via the given MNCs. The proof is done.

    By using Lemma 2.1, we will set the operator K:EE

    (Ku)(t)=ρIα,ψa+[Fu(t)]+eρ1ρ(ψ(t)ψ(a))Ω(Ami=1γiρIα,ψa+[Fu(ηi)]nj=1κjρIαβj,ψa+[Fu(ξj)]kr=1σrρIα+δr,ψa+[Fu(θr)]), (3.1)

    where K1, K2:EE defined by

    (K1u)(t)=ρIα,ψa+Fu(t), (3.2)
    (K2u)(t)=eρ1ρ(ψ(t)ψ(a))Ω(Ami=1γiρIα,ψa+[Fu(ηi)]nj=1κjρIαβj,ψa+[Fu(ξj)]kr=1σrρIα+δr,ψa+[Fu(θr)]). (3.3)

    Notice that Ku=K1u+K2u. It should be noted that (1.11) has solutions if and only if K has fixed points. Next, we are going to examine the existence properties of solutions for (1.11), which is discussed by employing Banach's FPT, Leray-Schauder's nonlinear alternative and Krasnoselskii's FPT. For the benefit of calculation in this work, we will provide the constants:

    Θ(χ,σ)=(ψ(χ)ψ(a))σρσΓ(σ+1), (3.4)
    Λ=Θ(T,α)+1|Ω|(mi=1|γi|Θ(ηi,α)+nj=1|κj|Θ(ξj,αβj)+kr=1|σr|Θ(θr,α+δr)). (3.5)

    Firstly, the uniqueness result for (1.11) will be stidied by applying Banach's FPT.

    Lemma 3.1. (Banach contraction principle [59]) Assume that B is a non-empty closed subset of a Banach space E. Then any contraction mapping K from B into itself has a unique fixed point.

    Theorem 3.2. Let fC(J×R4,R)so that:

    (H1) there exist constants L1>0, L2>0, 0<L3<1 so that

    |f(t,u1,v1,w1,z1)f(t,u2,v2,w2,z2)|L1(|u1u2|+|v1v2|)+L2|w1w2|+L3|z1z2|,

    ui, vi, wi, ziR, i=1,2, tJ.

    If

    (2L1+L2Θ(T,ω)1L3)Λ<1, (3.6)

    then the Caputo-PFIDE with MNCs (1.11) has a unique solution on J, where (3.4) and (3.5) refers to Θ(T,ω) and Λ.

    Proof. First, we will convert (1.11) into u=Ku, where K is given as in (3.1). Clearly, the fixed points of K are solutions to (1.11). By using the Banach's FPT, we are going to prove that K has a FP which is a unique solution of (1.11).

    Define suptJ|f(t,0,0,0,0)|:=M1< and setting Br1:={uE:ur1} with

    r1M1Λ1L3+|A||Ω|1(2L1+L2Θ(T,ω)1L3)Λ, (3.7)

    where Ω, Θ(T,ω) and Λ are given as in (2.4), (3.4) and (3.5). Clearly, Br1 is a bounded, closed and convex subset of E. We have divided the method of the proof into two steps:

    Step I. We prove that KBr1Br1.

    For each uBr1, we obtain

    |(Ku)(t)|ρIα,ψa+|Fu(t)|+eρ1ρ(ψ(t)ψ(a))|Ω|(|A|+mi=1|γi|ρIα,ψa+|Fu(ηi)|+nj=1|κj|ρIαβj,ψa+|Fu(ξj)|+kr=1|σr|ρIα+δr,ψa+|Fu(θr)|).

    From the assumption (H1), it follows that

    |Fu(t)||f(t,u(t),u(λt),ρIω,ψa+[u(λt)],Fu(λt))f(t,0,0,0,0)|+|f(t,0,0,0,0)|L1(|u(t)|+|u(λt)|)+L2|ρIω,ψa+[u(λt)]|+L3|Fu(λt)|+M12L1u+L2uρIω,ψa+[1](t)+L3Fu()+M1=(2L1+L2(ψ(T)ψ(a))ωρωΓ(ω+1))u+L3Fu()+M1.

    Then

    Fu()(2L1+L2Θ(T,ω))u+M11L3.

    This implies that

    |(Ku)(t)|ρIα,ψa+((2L1+L2Θ(T,ω))u+M11L3)(t)+eρ1ρ(ψ(t)ψ(a))|Ω|[|A|+mi=1|γi|ρIα,ψa+((2L1+L2Θ(T,ω))u+M11L3)(ηi)+nj=1|κj|ρIαβj,ψa+((2L1+L2Θ(T,ω))u+M11L3)(ξj)+kr=1|σr|ρIα+δr,ψa+((2L1+L2Θ(T,ω))u+M11L3)(θr)].

    By using the fact of 0<eρ1ρ(ψ(t)ψ(s))1, as<tT, it follows that

    |(Ku)(t)|((2L1+L2Θ(T,ω))u+M11L3)((ψ(T)ψ(a))αραΓ(α+1)+1|Ω|[mi=1|γi|(ψ(ηi)ψ(a))αραΓ(α+1)+nj=1|κj|(ψ(ξj)ψ(a))αβjραβjΓ(αβj+1)+kr=1|σr|(ψ(θr)ψ(a))α+δrρα+δrΓ(α+δr+1)])+|A||Ω|=((2L1+L2Θ(T,ω))u+M11L3)(Θ(T,α)+1|Ω|[mi=1|γi|Θ(ηi,α)+nj=1|κj|Θ(ξj,αβj)+kr=1|σr|Θ(θr,α+δr)])+|A||Ω|=(2L1+L2Θ(T,ω)1L3)Λr1+M1Λ1L3+|A||Ω|r1,

    which implies that Kur1. Thus, KBr1Br1.

    Step II. We prove that K:EE is contraction.

    For each u, vE, tJ, we obtain

    |(Ku)(t)(Kv)(t)|ρIα,ψa+|FuFv|(T)+eρ1ρ(ψ(T)ψ(a))|Ω|(mi=1|γi|ρIα,ψa+|FuFv|(ηi)+nj=1|κj|ρIαβj,ψa+|FuFv|(ξj)+kr=1|σr|ρIα+δr,ψa+|FuFv|(θr)). (3.8)

    From (H1) again, we can compute that

    |Fu(t)Fv(t)||f(t,u(t),u(λt),ρIω,ψa+[u(λt)],Fu(λt))f(t,v(t),v(λt),ρIω,ψa+[v(λt)],Fv(λt))|L1(|u(t)v(t)|+|u(λt)v(λt)|)+L2ρIω,ψa+|u(λt)v(λt)|+L3|Fu(λt)Fv(λt)|2L1uv+L2(ψ(T)ψ(a))ωρωΓ(ω+1)uv+L3Fu()Fv().

    Then

    Fu()Fv()(2L1+L2Θ(T,ω)1L3)uv. (3.9)

    By inserting (3.9) into (3.8), one has

    |(Ku)(t)(Kv)(t)|ρIα,ψa+((2L1+L2Θ(T,ω)1L3)uv)(T)+eρ1ρ(ψ(T)ψ(a))|Ω|[mi=1|γi|ρIα,ψa+((2L1+L2Θ(T,ω)1L3)uv)(ηi)+nj=1|κj|ρIαβj,ψa+((2L1+L2Θ(T,ω)1L3)uv)(ξj)+kr=1|σr|ρIα+δr,ψa+((2L1+L2Θ(T,ω)1L3)uv)(θr)](2L1+L2Θ(T,ω)1L3)[(ψ(T)ψ(a))αραΓ(α+1)+1|Ω|(mi=1|γi|(ψ(ηi)ψ(a))αραΓ(α+1)+nj=1|κj|(ψ(ξj)ψ(a))αβjραβjΓ(αβj+1)+kr=1|σr|(ψ(θr)ψ(a))α+δrρα+δrΓ(α+δr+1))]uv=(2L1+L2Θ(T,ω)1L3)Λuv,

    also, KuKv(2L1+L2Θ(T,ω))/(1L3)Λuv. It follows from [(2L1+L2Θ(T,ω))/(1L3)]Λ<1, that K is contraction. Then, (from Lemma 3.1), we conclude that K has the unique fixed point, that is the unique solution to (1.11) in E.

    Next, Leray-Schauder's nonlinear alternative is employed to analyze in the second property.

    Lemma 3.3. (Leray-Schauder's nonlinear alternative [59]) Assume that E is a Banach space, C is a closed and convex subset of M, X is an open subset of C and 0X. Assume that F:¯XC is continuous, compact (that is, F(¯X) is a relatively compact subset of C) map. Then either (i) F has a fixed point in ¯X, or (ii) there is xX (the boundary of X in C) and ϱ(0,1) with z=ϱF(z).

    Theorem 3.4. Assume that fC(J×R4,R) so that:

    (H2) there exists ΨC(R+,R+) and Ψ is non-decreasing, p, fC(J,R+), qC(J,R+{0}) so that

    |f(t,u,v,w,z)|p(t)Ψ(|u|+|v|)+f(t)|w|+q(t)|z|,tJ,u,v,w,zR,

    where p0=suptJ{p(t)}, f0=suptJ{f(t)}, q0=suptJ{q(t)}<1.

    (H3) there exists a constant N>0 so that

    N|A||Ω|+(f0Θ(T,ω)N+2p0Ψ(N)1q0)Λ>1,

    where Θ(T,ω) and Λ are given as in (3.4) and (3.5).

    Then the Caputo-PFIDE with MNCs (1.11) has at least one solution.

    Proof. Assume that K is given as in (3.1). Next, we are going to prove that K maps bounded sets (balls) into bounded sets in E. For any r2>0, assume that Br2:={uE:ur2}E, we have, for each tJ,

    |(Ku)(t)|ρIα,ψa+|Fu(T)|+eρ1ρ(ψ(T)ψ(a))|Ω|(|A|+mi=1|γi|ρIα,ψa+|Fu(ηi)|+nj=1|κj|ρIαβj,ψa+|Fu(ξj)|+kr=1|σr|ρIα+δr,ψa+|Fu(θr)|).

    It follows from (H2) that

    |CρDα,ψa+[u(t)]|p(t)Ψ(|u(t)|+|u(λt)|)+f(t)|ρIω,ψa+[u(λt)]|+q(t)|CρDα,ψa+[u(λt)]|p(t)Ψ(2u)+f(t)(ψ(T)ψ(a))ωρωΓ(ω+1)u+q(t)|CρDα,ψa+[u(t)]|.

    Then, we have

    |CρDα,ψa+u(t)|p(t)Ψ(2u)+f(t)Θ(T,ω)u1q(t).

    For any as<tT, we have 0<eρ1ρ(ψ(t)ψ(s))1, then

    |(Ku)(t)|[(ψ(T)ψ(a))αραΓ(α+1)+1|Ω|(mi=1|γi|(ψ(ηi)ψ(a))αραΓ(α+1)+nj=1|κj|(ψ(ξj)ψ(a))αβjραβjΓ(αβj+1)+kr=1|σr|(ψ(θr)ψ(a))α+δrρα+δrΓ(α+δr+1))](p0Ψ(2u)+f0Θ(T,ω)u1q0)+|A||Ω|=(2p0Ψ(u)+f0Θ(T,ω)u1q0)Λ+|A||Ω|,

    which leads to

    \begin{equation*} \Vert \mathcal{K}u \Vert \leq \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right)\Lambda + \frac{|{A}|}{|\Omega|} : = N. \end{equation*}

    Now, we will prove that \mathcal{K} maps bounded sets into equicontinuous sets of \mathcal{E} .

    Given \tau_1 < \tau_2 where \tau_1 , \tau_2 \in \mathcal{J} , and for each u \in B_{r_2} . Then, we obtain

    \begin{eqnarray*} &&\vert (\mathcal{K}u)(\tau_2) - (\mathcal{K}u)(\tau_1) \vert \\ &\leq& \left\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\tau_2)] - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\tau_1)]\right\vert + \frac{\left\vert e^{\frac{\rho-1}{\rho}\left( \psi(\tau_2)-\psi(a) \right)} - e^{\frac{\rho-1}{\rho}\left( \psi(\tau_1)-\psi(a) \right)}\right\vert}{|\Omega|}\Bigg(\vert {A} \vert + \sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert F_u(\eta_i) \vert\\ && + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert F_u (\xi_j)\vert + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert F_u (\theta_r)\vert\Bigg)\\ &\leq& \left(\frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right) \Bigg(\frac{1}{\rho^{\alpha}\Gamma(\alpha)} \int_{\tau_1}^{\tau_2} {_{}^{\rho}}\mathcal{H}_{\psi}^{\alpha-1}(\tau_{2},s) \psi^{\prime}(s)ds\\ && + \frac{1}{\rho^{\alpha}\Gamma(\alpha)} \int_{a}^{\tau_1} \left\vert {_{}^{\rho}}\mathcal{H}_{\psi}^{\alpha-1}(\tau_{2},s) - {_{}^{\rho}}\mathcal{H}_{\psi}^{\alpha-1}(\tau_{1},s) \right\vert \psi^{\prime}(s)ds \Bigg)\\ && + \frac{\left\vert e^{\frac{\rho-1}{\rho}\left( \psi(\tau_2)-\psi(a) \right)} - e^{\frac{\rho-1}{\rho}\left( \psi(\tau_1)-\psi(a) \right)}\right\vert}{|\Omega|}\left(\frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right)\\ && \times\left(\vert {A} \vert + \sum\limits_{i = 1}^{m} \frac{\vert \gamma_{i}\vert \left( \psi(\eta_i)-\psi(a) \right)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{\vert \kappa_{j}\vert \left( \psi(\xi_j)-\psi(a) \right)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)} + \sum\limits_{r = 1}^{k} \frac{\vert \sigma_{r}\vert \left( \psi(\theta_r)-\psi(a) \right)^{\alpha+\delta_r}}{\rho^{\alpha-\delta_r}\Gamma(\alpha+\delta_r+1)}\right)\\ &\leq& \Bigg[ \frac{1}{\rho^{\alpha}\Gamma(\alpha+1)} \Big( \left\vert \left( \psi(\tau_2)-\psi(a) \right)^{\alpha} - \left( \psi(\tau_1)-\psi(a) \right)^{\alpha}\right\vert + 2\left( \psi(\tau_2)-\psi(\tau_1) \right)^{\alpha} \Big)\\ && + \frac{1}{|\Omega|}\left(\vert {A} \vert + \sum\limits_{i = 1}^{m} \vert \gamma_{i}\vert \Theta(\eta_{i},\alpha) + \sum\limits_{j = 1}^{n} \vert \kappa_{j}\vert \Theta(\xi_{j},\alpha-\beta_j) + \sum\limits_{r = 1}^{k} \vert \sigma_{r}\vert \Theta(\theta_r, \alpha+\delta_r)\right)\\ && \times \left\vert e^{\frac{\rho-1}{\rho}\left( \psi(\tau_2)-\psi(a) \right)} - e^{\frac{\rho-1}{\rho}\left( \psi(\tau_1)-\psi(a) \right)}\right\vert \Bigg] \Bigg[\frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\Bigg]. \end{eqnarray*}

    Clearly, which independent of u \in B_{r_{2}} the above inequality, \vert (\mathcal{K}u)(\tau_2) - (\mathcal{K}u)(\tau_1) \vert \to 0 as \tau_2 \to \tau_1 . Hence, by the Arzelá-Ascoli property, \mathcal{K} : \mathcal{E} \to \mathcal{E} is completely continuous.

    Next, we will prove that there is \mathcal{B} \subseteq \mathcal{E} where \mathcal{B} is an open set, u \neq \varrho \mathcal{K}(u) for \varrho \in (0, 1) and u \in \partial \mathcal{B} . Assume that u\in\mathcal{E} is a solution of u = \varrho \mathcal{K}u , \varrho \in (0, 1) . Hence, it follows that

    \begin{eqnarray*} \vert u(t) \vert & = & \vert \varrho(\mathcal{K}u)(t)\vert\\ &\leq& \frac{|{A}|}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|) + f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right)\\ && \times\left[\Theta(T,\alpha) + \frac{1}{\vert\Omega \vert}\left(\sum\limits_{i = 1}^{m} \vert \gamma_{i}\vert \Theta(\eta_{i},\alpha) + \sum\limits_{j = 1}^{n} \vert \kappa_{j}\vert \Theta(\xi_{j},\alpha-\beta_j) + \sum\limits_{r = 1}^{k} \vert \sigma_{r}\vert \Theta(\theta_r, \alpha+\delta_r)\right)\right] \\ & = & \frac{|{A}|}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0}\right)\Lambda, \end{eqnarray*}

    which yields

    \begin{equation*} \|u\| \leq \frac{\vert {A} \vert}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega)\Vert u \Vert}{1 - q_0}\right)\Lambda. \end{equation*}

    Consequently,

    \begin{equation*} \frac{\|u\|}{\frac{|{A}|}{\vert\Omega \vert} + \left( \frac{2p_0 \Psi(\|u\|)+f_0 \Theta(T,\omega) \Vert u \Vert}{1 - q_0} \right)\Lambda} \leq 1. \end{equation*}

    By (H_3) , there is N so that \|u\| \neq N . Define

    \begin{equation*} \mathcal{B} = \{u \in \mathcal{E} : \|u\| < N\} \qquad {\rm{and}} \qquad \mathcal{Q} = \mathcal{B}\cap B_{r_2}. \end{equation*}

    Note that \mathcal{K} : \overline{\mathcal{Q}} \to \mathcal{E} is continuous and completely continuous. By the option of \mathcal{Q} , there is no u \in \partial \mathcal{Q} so that u = \varrho \mathcal{K}u , \exists\varrho \in (0, 1) . Thus, (by Lemma 3.3 ), we conclude that \mathcal{K} has fixed point u\in\overline{\mathcal{Q}} which verifies that (1.11) has at least one solution.

    By applying Krasnoselskii's \mathbb{FPT} , the existence property will be achieved.

    Lemma 3.5. (Krasnoselskii's fixed point theorem [60]) Let \mathcal{M} be a closed, bounded, convex and nonempty subset of a Banach space. Let K_1 , K_2 be the operators such that (i) K_1x+K_2y \in \mathcal{M} whenever x, y \in \mathcal{M} ; (ii) K_1 is compact and continuous; (iii) K_2 is contraction mapping. Then there exists z \in \mathcal{M} such that z = K_1z+K_2z .

    Theorem 3.6. Suppose that (H_1) holds and f \in\mathcal{C}(\mathcal{J}\times\mathbb{R}^{4}, \mathbb{R}) so that:

    (H_4) \exists g \in \mathcal{C}(\mathcal{J}, \mathbb{R}^+) so that

    \begin{equation*} f(t,u,v,w,z)| \leq g(t),\quad \forall (t,u,v,w,z) \in \mathcal{J} \times \mathbb{R}^4. \end{equation*}

    If

    \begin{equation} \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}} \right) \left(\Lambda - \Theta(T,\alpha)\right) < 1, \end{equation} (3.10)

    then the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) has at least one solution.

    Proof. Define \sup_{t \in \mathcal{J}} \vert g(t) \vert = \Vert g \Vert and picking

    \begin{equation} r_3 \geq \frac{\vert {A} \vert}{\vert \Omega \vert} + \Vert g \Vert \Lambda, \end{equation} (3.11)

    we consider B_{r_3} = \left\{ u \in \mathcal{E}: \Vert u \Vert \leq r_3 \right\} . Define \mathcal{K}_1 and \mathcal{K}_2 on B_{r_3} as (3.2) and (3.3).

    For any u, v \in B_{r_3} , we obtain

    \begin{eqnarray*} && \vert (\mathcal{K}_1u)(t) + (\mathcal{K}_2v)(t)\vert\\ &\leq& \sup\limits_{t \in \mathcal{J}}\Bigg\{ {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert F_u(t)\vert + \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\vert \Omega \vert }\Bigg(\vert {A} \vert + \sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert F_v (\eta_i)\vert + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert F_v (\xi_j)\vert\\ && + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert F_v(\theta_r)\vert\Bigg)\Bigg\}\\ &\leq& \frac{\vert {A} \vert}{\vert \Omega \vert} + \Vert g \Vert \Bigg\{\frac{\big( \psi(T)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m} \frac{\vert \gamma_{i} \vert \big( \psi(\eta_i)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{\vert \kappa_{j}\vert \big( \psi(\xi_j)-\psi(a) \big)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)}\\ && + \sum\limits_{r = 1}^{k} \frac{\vert \sigma_{r} \vert \big( \psi(\theta_r)-\psi(a) \big)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)}\Bigg)\Bigg\}\\ & = & \frac{\vert {A} \vert}{\vert \Omega \vert} + \Vert g \Vert \Lambda \leq r_3. \end{eqnarray*}

    This implies that \mathcal{K}_1u+\mathcal{K}_2v \in B_{r_3} , which verifies Lemma 3.5 (i).

    Next, we are going to show that Lemma 3.5 (ii) is verified.

    Assume that u_n is a sequence so that u_n \to u \in \mathcal{E} as n \to \infty . Hence, we get

    \begin{equation*} \left \vert (\mathcal{K}_1u_n)(t)-(\mathcal{K}_1u)(t)\right \vert \leq {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} \vert F_{u_n} - F_u\vert (T) \leq \Theta(T,\alpha) \Vert F_{u_n} - F_u \Vert. \end{equation*}

    Since f is continuous, verifies that F_{u} is also continuous. By the Lebesgue dominated convergent theorem, we have

    \begin{equation*} \vert(\mathcal{K}_1u_n)(t) - (\mathcal{K}_1u)(t)\vert \to 0\quad {\rm{as}}\quad n\to \infty. \end{equation*}

    Therefore,

    \begin{equation*} \Vert\mathcal{K}_1u_n - \mathcal{K}_1u\Vert \to 0\quad {\rm{as}}\quad n\to \infty. \end{equation*}

    Thus, implies that \mathcal{K}_1u is continuous. Also, the set \mathcal{K}_1B_{r_3} is uniformly bounded as

    \begin{equation*} \Vert\mathcal{K}_1u\Vert \leq \Theta(T,\alpha)\Vert g \Vert. \end{equation*}

    Next step, we will show the compactness of \mathcal{K}_1 .

    Define \sup \{\vert f(t, u, v, w, z) \vert; (t, u, v, w, z) \in \mathcal{J}\times \mathbb{R}^4\} = f^* < \infty , thus, for each \tau_1, \tau_2 \in \mathcal{J} with \tau_1 \leq \tau_2 , it follows that

    \begin{array}{l} \left\vert (\mathcal{K}_1u)(\tau_2) - (\mathcal{K}_1u)(\tau_1) \right \vert = \left \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\tau_2)] - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\tau_1)] \right \vert \\ \leq \frac{1}{\rho^\alpha \Gamma(\alpha+1)} \Big( \left| \left( \psi(\tau_2)-\psi(a) \right)^{\alpha}-\left( \psi(\tau_1)-\psi(a) \right)^{\alpha}\right| +2\left( \psi(\tau_2)-\psi(\tau_1) \right)^{\alpha} \Big) \; f^*. \end{array}

    Clearly, the right-hand side of the above inequality is independent of u and \left \vert (\mathcal{K}_1u)(\tau_2)-(\mathcal{K}_1u)(\tau_1) \right \vert \to 0 , as \tau_2 \to \tau_1 . Hence, the set \mathcal{K}_1B_{r_3} is equicontinuous, also \mathcal{K}_1 maps bounded subsets into relatively compact subsets, which implies that \mathcal{K}_1B_{r_3} is relatively compact. By the Arzelá-Ascoli theorem, then \mathcal{K}_1 is compact on B_{r_3} .

    Finally, we are going to show that \mathcal{K}_2 is contraction.

    For each u , v \in B_{r_{3}} and t \in \mathcal{J} , we get

    \begin{eqnarray*} &&\left\vert (\mathcal{K}_2 u)(t) - (\mathcal{K}_2 v)(t) \right\vert\\ &\leq& \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m} \vert \gamma_{i} \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} \vert F_u - F_{v} \vert(\eta_i) + \sum\limits_{j = 1}^{n} \vert \kappa_{j} \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert F_u - F_{v} \vert(\xi_j) + \sum\limits_{r = 1}^{k} \vert \sigma_{r} \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert F_u - F_{v} \vert(\theta_r)\Bigg)\\ &\leq& \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m} \frac{\vert \gamma_{i} \vert \left( \psi(\eta_i)-\psi(a) \right)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{\vert \kappa_{j}\vert \left( \psi(\xi_j)-\psi(a) \right)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)} + \sum\limits_{r = 1}^{k} \frac{\vert \sigma_{r} \vert \left( \psi(\theta_r)-\psi(a) \right)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)}\Bigg)\\ && \times \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}}\right) \Vert u-v\Vert\\ & = & \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}} \right) \left(\Lambda - \Theta(T,\alpha)\right) \Vert u-v\Vert. \end{eqnarray*}

    Since (3.10) holds, implies that \mathcal{K}_2 is contraction and also Lemma 3.5 (iii) verifies.

    Therefore, the assumptions of Lemma 3.5 are verified. Then, (by Lemma 3.5 ) which verifies that (1.11) has at least one solution.

    This part is proving different kinds of \mathbb{US} like \mathbb{HU} stable, \mathbb{GHU} stable, \mathbb{HUR} stable and \mathbb{GHUR} stable of the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11).

    Definition 4.1. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{HU} stable if there is a constant \Delta_{f} > 0 so that for every \epsilon > 0 and the solution z\in \mathcal{E} of

    \begin{equation} \left\vert {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] - f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) \right\vert \leq \epsilon, \end{equation} (4.1)

    there exists the solution u\in \mathcal{E} of (1.11) so that

    \begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Delta_{f}\epsilon ,\quad t\in \mathcal{J}. \end{equation} (4.2)

    Definition 4.2. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{GHU} stable if there is a function \Phi \in \mathcal{C}(\mathbb{R}^{+}, \mathbb{R}^{+}) via \Phi(0) = 0 so that, for every solution z\in \mathcal{E} of

    \begin{equation} \left\vert {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] - f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) \right\vert \leq \epsilon \Phi(t), \end{equation} (4.3)

    there is the solution u\in \mathcal{E} of (1.11) so that

    \begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Phi(\epsilon),\quad t\in \mathcal{J}. \end{equation} (4.4)

    Definition 4.3. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{HUR} stable with respect to \Phi \in \mathcal{C}(\mathcal{J}, \mathbb{R}^{+}) if there is a constant \Delta_{f, \Phi} > 0 such that for every \epsilon > 0 and for any the solution z\in \mathcal{E} of (4.3) there is the solution u\in \mathcal{E} of (1.11) so that

    \begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Delta_{f,\Phi}\epsilon \Phi(t),\quad t\in \mathcal{J}. \end{equation} (4.5)

    Definition 4.4. The Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is called \mathbb{GHUR} stable with respect to \Phi \in \mathcal{C}(\mathcal{J}, \mathbb{R}^{+}) if there is a constant \Delta_{f, \Phi} > 0 so that for any the solution z\in \mathcal{E} of

    \begin{equation} \left\vert {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] - f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) \right\vert \leq \Phi(t), \end{equation} (4.6)

    there is the solution u\in \mathcal{E} of (1.11) so that

    \begin{equation} \left\vert z(t) - u(t)\right\vert \leq \Delta_{f,\Phi}\Phi(t),\quad t\in \mathcal{J}. \end{equation} (4.7)

    Remark 4.5. Cleary, (i) Definition 4.1 \Rightarrow Definition 4.2 ; (ii) Definition 4.3 \Rightarrow Definition 4.4 ; (iii) Definition 4.3 for \Phi(t) = 1 \Rightarrow Definition 4.1 .

    Remark 4.6. z\in \mathcal{E} is the solution of (4.1) if and only if there is the function w\in \mathcal{E} (which depends on z ) so that: (i) |w(t)|\leq \epsilon , \forall t \in \mathcal{J} ; (ii) {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha, \psi}[z(t)] = F_{z}(t) + w(t) , t\in \mathcal{J} .

    Remark 4.7. z\in \mathcal{E} is the solution of (4.3) if and only if there is the function v\in \mathcal{E} (which depends on z ) so that: (i) |v(t)|\leq \epsilon \Phi(t) , \forall t \in \mathcal{J} ; (ii) {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha, \psi}[z(t)] = F_{z}(t) + v(t) , t\in \mathcal{J} .

    From Remark 4.6 , the solution of

    \begin{equation*} {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(t)] = f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi}[z(\lambda t)]) + w(t),\quad t\in \mathcal{J}, \end{equation*}

    can be rewritten as

    \begin{eqnarray} z(t) & = & {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(t)] + \frac{e^{\frac{\rho-1}{\rho} \big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg({A} - \sum\limits_{i = 1}^{m}\gamma_{i} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(\eta_i)] - \sum\limits_{j = 1}^{n}\kappa_{j} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_z(\xi_j)]\\ && - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[F_z(\theta_r)]\Bigg) + {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [w(t)] - \frac{e^{\frac{\rho-1}{\rho} \big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[w(\eta_i)] \\ && + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[w(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_{r} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[w(\theta_r)]\Bigg). \end{eqnarray} (4.8)

    Firstly, the key lemma that will be applied in the presents of \mathbb{HU} stable and \mathbb{GHU} stable.

    Lemma 4.8. Assume that 0 < \epsilon, \rho \leq 1 . If z\in \mathbb{E} verifies (4.1), hence z is the solution of

    \begin{equation} \left\vert z(t) - (\mathcal{K}z)(t)\right\vert \leq \Lambda\epsilon, \end{equation} (4.9)

    where \Lambda is given as in (3.5).

    Proof. By Remark 4.6 with (4.8), it follows that

    \begin{array}{l} \left\vert z(t)-(\mathcal{K}z)(t)\right\vert = \Bigg\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[w(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[w(\eta_i)] + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi} [w(\xi_j)]\\ \qquad + \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[w(\theta_r)]\Bigg) \Bigg \vert \\ \leq {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert w(T)\vert + \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}\vert w(\eta_i) \vert + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}\vert w (\xi_j)\vert\\ \qquad + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}\vert w(\theta_r)\vert\Bigg)\\ \leq \Bigg[ \frac{\big( \psi(T)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \frac{1}{|\Omega|}\Bigg(\sum\limits_{i = 1}^{m} \frac{|\gamma_{i}| \big( \psi(\eta_i)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{|\kappa_{j}| \big( \psi(\xi_j)-\psi(a) \big)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)}\\ \qquad + \sum\limits_{r = 1}^{k} \frac{|\sigma_{r}| \big( \psi(\theta_r)-\psi(a) \big)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)} \Bigg)\Bigg]\epsilon\\ = \Lambda \epsilon, \end{array}

    where \Lambda is given by (3.5), from which (4.9) is achieved.

    Next, we will show the \mathbb{HU} and \mathbb{GHU} stability results.

    Theorem 4.9. Suppose that f \in \mathcal{C}(\mathcal{J}\times\mathbb{R}^4, \mathbb{R}) . If (H_{1}) is verified with (3.6) trues. Hence the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HU} stable as well as \mathbb{GHU} stable on \mathcal{J} .

    Proof. Assume that z\in \mathcal{E} is the solution of (4.1) and assume that u is the unique solution of

    \begin{equation*} \left\{ \begin{array}{l} {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [u(t)] = f(t, u(t),u(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[u(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [u(\lambda t)]),\quad t\in (a,T),\quad \lambda \in (0,1), \\ \sum\limits_{i = 1}^{m}\gamma_{i} u(\eta_i) + \sum\limits_{j = 1}^{n}\kappa_j {_{}^{C\rho}}\mathbb{D}_{a^+}^{\beta_j,\psi} [u(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_r {_{}^{\rho}}\mathbb{I}_{a^+}^{\delta_r,\psi}[u(\theta_r)] = A. \end{array} \right. \end{equation*}

    By using |x-y|\leq |x|+|y| with Lemma 4.8, one has

    \begin{eqnarray*} \left\vert z(t) - u(t)\right\vert & = & \Bigg\vert z(t) - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg({A} - \sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\eta_i)]\\ && \qquad - \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_u(\xi_j)] - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^{+}}^{\alpha+\delta_r,\psi}[F_u(\theta_r)]\Bigg)\Bigg\vert\\ & = & \left\vert z(t)-(\mathcal{K}z)(t)+(\mathcal{K}z)(t)-(\mathcal{K}u)(t)\right\vert\\ &\leq& \left\vert z(t)-(\mathcal{K}z)(t)\right\vert + \left\vert (\mathcal{K}z)(t)-(\mathcal{K}u)(t)\right\vert\\ &\leq& \Lambda \epsilon + \left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda \vert z(t) - u(t) \vert, \end{eqnarray*}

    where \Lambda is given as in (3.5). This offers |z(t)-u(t)|\leq\Delta_{f}\epsilon , where

    \begin{equation} \Delta_{f} = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda }. \end{equation} (4.10)

    Then, the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HU} stable. In addition, if we input \Phi(\epsilon) = \Delta_{f}\epsilon via \Phi(0) = 0 , hence (1.11) is \mathbb{GHU} stable.

    Thanks of Remark 4.7 , the solution

    \begin{equation*} {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [z(t)] = f(t, z(t), z(\lambda t), {_{}^{\rho}}\mathbb{I}_{a^+}^{\omega,\psi}[z(\lambda t)], {_{}^{C\rho}}\mathbb{D}_{a^+}^{\alpha,\psi} [z(\lambda t)])+v(t),\quad t\in (a,T], \end{equation*}

    can be rewritten as

    \begin{eqnarray} z(t) & = & {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(t)] + \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg({A} - \sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_z(\eta_i)] -\sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_z(\xi_j)]\\ && - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[F_z(\theta_r)]\Bigg) + {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [v(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[v(\eta_i)] \\ && + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi} [v(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_{r} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi} [v(\theta_r)]\Bigg). \end{eqnarray} (4.11)

    For the next proving, we state the following assumption:

    (H_5) there is an increasing function \Phi\in \mathcal{C}(\mathcal{J}, \mathbb{R}^+) and there is a constant n_{\Phi} > 0 , so that, for each t\in J ,

    \begin{equation} {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[\Phi(t)] \leq n_{\Phi} \Phi(t). \end{equation} (4.12)

    Lemma 4.10. Assume that z\in \mathcal{E} is the solution of (4.3). Hence, z verifies

    \begin{equation} \left\vert z(t) - (\mathcal{K}z)(t)\right\vert \leq \Lambda \epsilon n_{\Phi} \Phi(t) ,\quad 0 < \epsilon \leq 1. \end{equation} (4.13)

    where \Lambda is given as in (3.5).

    Proof. From (4.11), we have

    \begin{eqnarray*} && \left\vert z(t)-(\mathcal{K}z)(t) \right \vert \\ & = & \Bigg \vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} v(t) - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(\sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[v(\eta_i)] + \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[v(\xi_j)] + \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[v(\theta_r)]\Bigg) \Bigg \vert \\ &\leq& \Bigg[{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [\Phi(T)] + \frac{1}{\vert \Omega \vert}\Bigg(\sum\limits_{i = 1}^{m}\vert \gamma_{i}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi} [\Phi(\eta_i)] + \sum\limits_{j = 1}^{n}\vert \kappa_{j}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi} [\Phi(\xi_j)] + \sum\limits_{r = 1}^{k}\vert \sigma_{r}\vert {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi} [\Phi(\theta_r)]\Bigg)\Bigg]\epsilon\\ &\leq& \Bigg [\frac{\big( \psi(T)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \frac{1}{|\Omega|}\Bigg( \sum\limits_{i = 1}^{m}\frac{|\gamma_{i}| \big( \psi(\eta_i)-\psi(a) \big)^{\alpha}}{\rho^{\alpha}\Gamma(\alpha+1)} + \sum\limits_{j = 1}^{n} \frac{|\kappa_{j}| \big( \psi(\xi_j)-\psi(a) \big)^{\alpha-\beta_j}}{\rho^{\alpha-\beta_j}\Gamma(\alpha-\beta_j+1)}\\ && + \sum\limits_{r = 1}^{k} \frac{|\sigma_{r}| \big( \psi(\theta_r)-\psi(a) big)^{\alpha+\delta_r}}{\rho^{\alpha+\delta_r}\Gamma(\alpha+\delta_r+1)} \Bigg)\Bigg]\epsilon n_{\Phi} \Phi(t)\\ & = & \Lambda \epsilon n_{\Phi} \Phi(t), \end{eqnarray*}

    where \Lambda is given by (3.5), which leads to (4.13).

    Finally, we are going to show \mathbb{HUR} and \mathbb{GHUR} stability results.

    Theorem 4.11. Suppose f \in \mathcal{C}(\mathcal{J}\times\mathbb{R}^4, \mathbb{R}) . If (H_{1}) is satisfied with (3.6) trues. Hence, the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HUR} stable as well as \mathbb{GHUR} stable on \mathcal{J} .

    Proof. Assume that \epsilon > 0 . Suppose that z\in \mathcal{E} is the solution of (4.6) and u is the unique solution of (1.11). By using the triangle inequality, Lemma 4.8 and (4.11), we estamate that

    \begin{eqnarray*} \left\vert z(t)-u(t)\right\vert & = & \Bigg\vert z(t) - {_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(t)] - \frac{e^{\frac{\rho-1}{\rho}\big( \psi(t)-\psi(a) \big)}}{\Omega}\Bigg(A - \sum\limits_{i = 1}^{m}\gamma_{i}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha,\psi}[F_u(\eta_i)] - \sum\limits_{j = 1}^{n}\kappa_{j}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha-\beta_j,\psi}[F_u(\xi_j)]\\ && \qquad - \sum\limits_{r = 1}^{k}\sigma_{r}{_{}^{\rho}}\mathbb{I}_{a^+}^{\alpha+\delta_r,\psi}[F_u(\theta_r)]\Bigg)\Bigg\vert\\ & = & \left\vert z(t)-(\mathcal{K}z)(t)+(\mathcal{K}z)(t)-(\mathcal{K}u)(t)\right\vert\\ &\leq& \left\vert z(t)-(\mathcal{K}z)(t)\right\vert +\left\vert (\mathcal{K}z)(t)-(\mathcal{K}x)(t)\right\vert\\ &\leq& \Lambda \epsilon n_{\Phi} \Phi(t) + \left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda \vert z(t) - u(t) \vert, \end{eqnarray*}

    where \Lambda is given as in (3.5), verifies that |z(t)-u(t)| \leq \Delta_{f, \Phi}\epsilon \Phi(t) , where

    \begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda }. \end{equation*}

    Then, the Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (1.11) is \mathbb{HUR} stable. In addition, if we input \Phi(t) = \epsilon \Phi(t) with \Phi(0) = 0 , then (1.11) is \mathbb{GHUR} stable.

    This part shows numerical instances that demonstrate the exactness and applicability of our main results.

    Example 5.1. Discussion the following nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s of the form:

    \begin{equation} \left\{ \begin{array}{l} {_{}^{{C \frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{1}{2},\sqrt{t}} [u(t)] = f\left(t, u(t), u\left(\frac{t}{\sqrt{3}}\right), {_{}^{\frac{2}{3}}}\mathbb{I}_{0^+}^{\frac{3}{4},\sqrt{t}} \left[u\left(\frac{t}{\sqrt{3}}\right)\right], {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{1}{2},\sqrt{t} \left[u\left(\frac{t}{\sqrt{3}}\right)\right]}\right),\quad t\in (0,1), \\[0.5cm] \sum\limits_{i = 1}^{2}\left(\frac{i+1}{2} \right) u\left( \frac{2i+1}{5} \right) + \sum\limits_{j = 1}^{3} \left(\frac{2j-1}{5}\right) {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{2j+1}{20},\sqrt{t}} \left[u\left(\frac{j}{4}\right) \right] + \sum\limits_{r = 1}^{2} \left(\frac{r}{3}\right) {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{r}{r+1},\sqrt{t}}\left[u \left(\frac{r+1}{4} \right)\right] = 1. \end{array} \right. \end{equation} (5.1)

    Here, \alpha = 1/2 , \rho = 2/3 , \psi(t) = \sqrt{t} , \lambda = 1/\sqrt{3} , \omega = 3/4 , a = 0 , T = 1 , m = 2 , n = 3 , k = 2 , \gamma_{i} = (i+1)/2 , \eta_{i} = (2i+1)/5 , i = 1, 2 , \kappa_j = (2j-1)/5 , \beta_{j} = (2j+1)/20 , \xi_{j} = j/4 , j = 1, 2, 3 , \sigma_{r} = r/3 , \delta_{r} = r/(r+1) , \theta_{r} = (r+1)/4 , r = 1, 2 . By using Python, we obtain that \Omega \approx 2.4309\neq 0 and \Lambda \approx 4.042711 .

    (I) If we set the nonlinear function

    \begin{equation*} f(t,u,v,w) = \frac{1}{3^{t+3}(2+\cos2t)}\left(\frac{\vert u \vert}{1+\vert u \vert}+\frac{\vert v \vert}{1+\vert v \vert}+\frac{\vert w \vert}{1+\vert w \vert}+\frac{\vert z \vert}{1+\vert z \vert} \right). \end{equation*}

    For any u_i , v_i , w_i , z_i\in \mathbb{R} , i = 1, 2 and t\in [0, 1] , one has

    \begin{equation*} \vert f(t,u_1,v_1,w_1,z_1)-f(t,u_2,v_2,w_2,z_2) \vert \leq \frac{1}{3^{t+3}}\left(\left\vert u_1-u_2\right\vert + \left\vert v_1-v_2\right\vert + \vert w_1-w_2 \vert+\vert z_1-z_2 \vert \right). \end{equation*}

    The assumption (H_1) is satisfied with \mathbb{L}_{1} = \mathbb{L}_2 = \mathbb{L}_3 = \frac{1}{27} . Hence

    \begin{equation*} \Bigg(\frac{2\mathbb{L}_1 +\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_3}\Bigg)\Lambda \approx 0.540287 < 1. \end{equation*}

    All conditions of Theorem 3.2 are verified. Hence, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) has a unique solution on [0, 1] . Moreover, we obtain

    \begin{equation*} \Delta_{f} = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 8.793988 > 0. \end{equation*}

    Hence, from Theorem 4.9, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HU} stable and also \mathbb{GHU} stable on [0, 1] . In addition, by taking \Phi(t) = e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(0)\right) , we have

    \begin{equation*} {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{1}{2},\psi}[\Phi(t)] = \frac{2\sqrt{2}}{\sqrt{3\pi}}\, e^{-0.5\psi(t)}\left( \psi(t)-\psi(0) \right)^{\frac{3}{2}} \leq \frac{2\sqrt{2}}{\sqrt{3\pi}} \left( \psi(t)-\psi(0) \right)^{\frac{1}{2}} \Phi(t). \end{equation*}

    Thus, (4.12) is satisfied with n_\Phi = \frac{2\sqrt{2}}{\sqrt{3\pi}} > 0 . Then, we have

    \begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 8.102058 > 0. \end{equation*}

    Hence, from Theorem 4.11, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HUR} stable and also \mathbb{GHUR} stable.

    (II) If we take the nonlinear function

    \begin{equation*} f(t,u,v,w) = \frac{1}{4^{t+2}}\left(\frac{\vert u \vert + \vert v \vert}{1+\vert u \vert+ \vert v \vert} + \frac{1}{2}\right) + \frac{1}{2^{t+3}}\left(\frac{\vert w \vert+ \vert z \vert}{1+\vert w \vert + \vert z \vert} + \frac{1}{2}\right), \end{equation*}

    we have

    \begin{equation*} \vert f(t,u,v,w,z) \vert \leq \frac{1}{4^{t+2}}\left(\left\vert u\right\vert + \left\vert v\right\vert + \frac{1}{2}\right)+ \frac{1}{2^{t+3}} \left(\vert w \vert+\vert z \vert + \frac{1}{2}\right). \end{equation*}

    From the above inequality with (H_2) (H_3) , we get that p(t) = 1 /4^{t+2} , \Psi\left(\vert u \vert +\vert v \vert \right) = \vert u \vert +\vert v \vert +1/2 and h(t) = q(t) = 1 / 2^{t+3} . So, we have p_0 = 1/16 and h_0 = q_0 = 1/8 . From all the datas, we can compute that the constant N > 0.432489 . All assumptions of Theorem 3.4 are verified. Hence, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) has at least one solution on [0, 1] . Moreover,

    \begin{equation*} \Delta_{f} : = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 63.662781 > 0, \end{equation*}

    Hence, from Theorem 4.9, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s 5.1 is \mathbb{HU} stable and also \mathbb{GHU} stable on [0, 1] . In addition, by taking \Phi(t) = e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(0)\right)^{\frac{1}{2}} , we have

    \begin{equation*} {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{1}{2},\psi}[\Phi(t)] = \frac{\sqrt{3 \pi}}{2\sqrt{2}}\, e^{-0.5\psi(t)}\left( \psi(t)-\psi(0) \right) \leq \frac{\sqrt{3\pi}}{2\sqrt{2}} \left( \psi(t)-\psi(0) \right)^{\frac{1}{2}} \Phi(t). \end{equation*}

    Thus, (4.12) is satisfied with n_\Phi = \frac{\sqrt{3\pi}}{2\sqrt{2}} > 0 . Then, we have

    \begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 69.0997 > 0 , \end{equation*}

    Hence, from Theorem 4.11, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s 5.1 is \mathbb{HUR} stable and also \mathbb{GHUR} stable on [0, 1] .

    (III) If we set the nonlinear function

    \begin{equation*} f(t,u,v,w) = \frac{1}{4^{t+2}}\left(\frac{\vert u \vert + \vert v \vert}{1+\vert u \vert+ \vert v \vert}\right) + \frac{1}{2^{t+3}}\left(\frac{\vert w \vert+ \vert z \vert}{1+\vert w \vert + \vert z \vert}\right). \end{equation*}

    For u_i , v_i , w_i , z_i\in \mathbb{R} , i = 1, 2 and t\in [0, 1] , we have

    \begin{equation*} \vert f(t,u_1,v_1,w_1,z_1)-f(t,u_2,v_2,w_2,z_2) \vert \leq \frac{1}{4^{t+2}}\left(\left\vert u_1-u_2\right\vert + \left\vert v_1-v_2\right\vert \right)+ \frac{1}{2^{t+3}} \left(\vert w_1-w_2 \vert+\vert z_1-z_2 \vert \right). \end{equation*}

    The assumption (H_4) is satisfied with \mathbb{L}_{1} = \mathbb{L}_2 = \frac{1}{16} , \mathbb{L}_{3} = \frac{1}{8} and

    \begin{equation*} \vert f(t,u,v,w,z) \vert \leq \frac{1}{4^{t+2}}+ \frac{1}{2^{t+3}}, \end{equation*}

    which yields that

    \begin{equation*} g(t) = \frac{1}{4^{t+2}}+ \frac{1}{2^{t+3}}. \end{equation*}

    Then

    \begin{equation*} \left( \frac{2\mathbb{L}_1+\mathbb{L}_2\Theta(T,\omega)}{1-\mathbb{L}_{3}} \right) \left(\Lambda - \Theta(T,\alpha)\right) \approx 0.660387 < 1. \end{equation*}

    All assumptions of Theorem 3.6 are verified. Hence the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) has at least one solution on [0, 1] .

    Furthermore, we get

    \begin{equation*} \Delta_{f} = \frac{\Lambda }{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 43.1392148 > 0. \end{equation*}

    Hence, from Theorem 4.9, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HU} stable and also \mathbb{GHU} stable on [0, 1] . In addition, by taking \Phi(t) = e^{\frac{\rho-1}{\rho}\psi(t)}\left(\psi(t)-\psi(0)\right)^{2} , we have

    \begin{equation*} {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{1}{2},\psi}[\Phi(t)] = \frac{8\sqrt{6}}{15\sqrt{\pi}}\, e^{-0.5\psi(t)}\left( \psi(t)-\psi(0) \right)^{\frac{5}{2}} \leq \frac{8\sqrt{6}}{15\sqrt{\pi}} \left( \psi(t)-\psi(0) \right)^{\frac{1}{2}} \Phi(t). \end{equation*}

    Thus, (4.12) is satisfied with n_\Phi = \frac{8\sqrt{6}}{15\sqrt{\pi}} > 0 . Then, we have

    \begin{equation*} \Delta_{f,\Phi} : = \frac{\Lambda n_{\Phi}}{1-\left( \frac{2\mathbb{L}_1 + \mathbb{L}_2 \Theta(T,\omega)}{1 - \mathbb{L}_3} \right) \Lambda } \approx 31.79594 > 0. \end{equation*}

    Hence, from Theorem 4.11, the nonlinear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.1) is \mathbb{HUR} stable and also \mathbb{GHUR} stable on [0, 1] .

    Example 5.2. Discussion the following linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s of the form:

    \begin{equation} \left\{ \begin{array}{l} {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\alpha,\psi(t)} [u(t)] = {e^{\frac{-1}{2}\psi(t)}} \big( \psi(t)-\psi(0) \big)^{\frac{1}{2}},\quad t\in (0,1), \\[0.5cm] \sum\limits_{i = 1}^{2}\left(\frac{i+1}{2} \right) u\left( \frac{2i+1}{5} \right) + \sum\limits_{j = 1}^{3} \left(\frac{2j-1}{5}\right) {_{}^{{C\frac{2}{3}}}\mathbb{D}}_{0^+}^{\frac{2j+1}{20},\sqrt{t}} \left[u\left(\frac{j}{4}\right)\right] + \sum\limits_{r = 1}^{2} \left(\frac{r}{3}\right) {_{}^{\frac{2}{3}}\mathbb{I}}_{0^+}^{\frac{r}{r+1},\sqrt{t}}\left[u \left(\frac{r+1}{4} \right)\right] = 1. \end{array} \right. \end{equation} (5.2)

    By Lemma 2.1 , the implicit solution of the problem (5.2)

    \begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)}\; e^{-\frac{1}{2}\psi(t)}\big( \psi(t)-\psi(0) \big)^{\frac{1}{2}+\alpha} \\ && + \frac{e^{-\frac{1}{2}\big( \psi(t)-\psi(0)\big)}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)\; e^{-\frac{1}{2}\psi\big( \frac{2i+1}{5} \big)}\Big( \psi\Big( \frac{2i+1}{5}\Big) - \psi(0) \Big)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} \; e^{-\frac{1}{2}\psi\big( \frac{j}{4} \big)} \Big( \psi\Big( \frac{j}{4} \Big) - \psi(0) \Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} \; e^{-\frac{1}{2}\psi\big( \frac{r+1}{4} \big)} \Big( \psi\Big( \frac{r+1}{4} \Big) - \psi(0) \Big)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*}

    where

    \begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2} \big(\psi(t)-\psi(0) \big)} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big( \psi\big( \frac{r+1}{4} \big) - \psi(0) \Big)^{\frac{r}{r+1}} e^{-\frac{1}{2} \big(\psi( \frac{r+1}{4})-\psi(0) \big)} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*}

    We consider several cases of the following function \psi(t) :

    (I) If \psi(t) = t^{\alpha} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in

    \begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)}e^{-\frac{t^{\alpha}}{2}}\big(t^{\alpha} \big)^{1/2+\alpha} + \frac{e^{-\frac{t^{\alpha}}{2}}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2}\big(\frac{2i+1}{5} \big)^{\alpha}} \big( \frac{2i+1}{5} \big)^{\frac{\alpha}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} e^{-\frac{1}{2}\big(\frac{j}{4} \big)^{\alpha}} \big( \frac{j}{4} \big)^{\alpha \big(\frac{1}{2}+\alpha-\frac{2j+1}{20} \big)}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} e^{-\frac{1}{2}\big(\frac{r+1}{4} \big)^{\alpha}} \big( \frac{r+1}{4} \big)^{\alpha \big( \frac{1}{2}+\alpha+\frac{r}{r+1} \big)}\Bigg), \end{eqnarray*}

    where

    \begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{t^{\alpha}}{2}} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\big( \frac{r+1}{4} \big)^{\frac{\alpha r}{r+1}} e^{-\frac{1}{2}\big( \frac{r+1}{4} \big)^{\alpha}} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*}

    (II) If \psi(t) = \frac{\sin t}{\alpha} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in

    \begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)} \; e^{-\frac{\sin t}{2 \alpha}}\Big( \frac{\sin t}{\alpha} \Big)^{\frac{1}{2}+\alpha} + \frac{e^{-\frac{\sin t}{2 \alpha}}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big) \; e^{-\frac{\sin \big( \frac{2i+1}{5} \big)}{2 \alpha}} \Bigg(\frac{\sin \Big( \frac{2i+1}{5}\Big)}{\alpha} \Bigg)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} \; e^{-\frac{\sin\left(\frac{j}{4}\right)}{2 \alpha}} \Big( \frac{\sin\left(\frac{j}{4}\right)}{\alpha}\Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} \; e^{-\frac{\sin \left( \frac{r+1}{4} \right)}{2 \alpha }} \Bigg(\frac{\sin \left( \frac{r+1}{4} \right)}{\alpha}\Bigg)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*}

    where

    \begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{\sin t}{2 \alpha}} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big(\frac{\sin \big( \frac{r+1}{4} \big)}{\alpha} \Big)^{\frac{r}{r+1}} e^{-\frac{\sin ( \frac{r+1}{4}) }{2 \alpha}} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*}

    (III) If \psi(t) = e^{\alpha t} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in

    \begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)} \; e^{-\frac{e^{\alpha t}}{2}}\big( e^{\alpha t}-1 \big)^{\frac{1}{2}+\alpha} + \frac{e^{-\frac{e^{\alpha t}-1}{2}}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{e^{\alpha \big( \frac{2i+1}{5} \big) }}{2}} \Big( e^{\alpha \big( \frac{2i+1}{5} \big)} - 1 \Big)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} \; e^{-\frac{e^{ \frac{\alpha j}{4} }}{2}} \Big( e^{ \frac{\alpha j}{4}} - 1 \Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} e^{-\frac{e^{\alpha \big( \frac{r+1}{4} \big)}}{2}} \Big(e^{\alpha \big( \frac{r+1}{4} \big)} - 1 \Big)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*}

    where

    \begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2} \big(e^{\alpha t}-1 \big)} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big( e^{\alpha \big(\frac{r+1}{4} \big) } - 1 \Big)^{\frac{r}{r+1}} e^{-\frac{1}{2} \big( e^{\alpha \big( \frac{r+1}{4} \big)-1}\big)} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*}

    (IV) If \psi(t) = \frac{\ln(1+t)}{\alpha} then the solution of linear Caputo- \mathbb{PFIDE} with \mathbb{MNC} s (5.2) is given as in

    \begin{eqnarray*} u(t) & = & \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha} \Gamma(\frac{3}{2}+\alpha)}e^{-\frac{1}{2 \alpha}\ln(1+t)}\Big( \frac{\ln(1+t)}{\alpha} \Big)^{1/2+\alpha} \\ && + \frac{e^{-\frac{1}{2} \ln(1+t)}}{\Omega} \Bigg( 1-\sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2 \alpha}\Big)e^{-\frac{1}{2 \alpha}\ln\big(1+ \frac{2i+1}{5} \big)}\Big(\frac{1}{\alpha} \ln\big( 1+\frac{2i+1}{5} \Big)^{\frac{1}{2}} \\ && - \sum\limits_{j = 1}^{3}\Big(\frac{2j-1}{5}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha-\frac{2j+1}{20}}\Gamma \Big(\frac{3}{2} +\alpha - \frac{2j+1}{20} \Big)} e^{-\frac{1}{2 \alpha}\ln\big(1+ \frac{j}{4} \big)} \Big( \frac{1}{\alpha}\ln\big( 1+\frac{j}{4} \Big)^{\frac{1}{2}+\alpha-\frac{2j+1}{20}}\\ && -\sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Gamma(\frac{3}{2})}{(\frac{2}{3})^{\alpha+\frac{r}{r+1}}\Gamma \Big(\frac{3}{2} +\alpha + \frac{r}{r+1} \Big)} e^{-\frac{1}{2 \alpha}\ln\big(1+ \frac{r+1}{4} \big)} \Big(\frac{1}{\alpha} \ln\big(1+ \frac{r+1}{4} \big) \Big)^{\frac{1}{2}+\alpha+\frac{r}{r+1}}\Bigg), \end{eqnarray*}

    where

    \begin{equation*} \Omega = \sum\limits_{i = 1}^{2}\Big(\frac{i+1}{2}\Big)e^{-\frac{1}{2 \alpha} \ln(1+t)} + \sum\limits_{r = 1}^{2}\Big(\frac{r}{3}\Big) \frac{\Big( \frac{1}{\alpha }\ln\big( 1+\frac{r+1}{4} \big) \Big)^{\frac{r}{r+1}} e^{-\frac{1}{2 \alpha} \ln(1+ \frac{r+1}{4})} }{(\frac{2}{3})^{\frac{r}{r+1}}\Gamma \Big(1+ \frac{r}{r+1} \Big)}. \end{equation*}

    Graph representing the solution of the problem (5.2) with various values \alpha via many the functions \psi(t) = t^{\alpha} , \psi(t) = \frac{\sin t}{\alpha} , \psi(t) = e^{\alpha t} and \psi(t) = \frac{\ln(1+t)}{\alpha} is shown as in Figures 14 by using Python.

    Figure 1.  The graphical of u(t) under \psi(t) = t^{\alpha} .
    Figure 2.  The graphical of u(t) under \psi(t) = \frac{\sin t}{\alpha} .
    Figure 3.  The graphical of u(t) under \psi(t) = e^{\alpha t} .
    Figure 4.  The graphical of u(t) under \psi(t) = \frac{\ln(1+t)}{\alpha} .

    The qualitative analysis is accomplished in this work. The authors proved the existence, uniqueness and stability of solutions for Caputo- \mathbb{PFIDE} with \mathbb{MNC} s which consist of multi-point and fractional multi-order boundary conditions. Some famous theorems are employed to obtain the main results such as the Banach's \mathbb{FPT} is the important theorem to prove the uniqueness of the solution, while Leray-Schauder's nonlinear alternative and Krasnoselskii's \mathbb{FPT} are used to investigate the existence results. Furthermore, we established the various kinds of Ulam's stability like \mathbb{HU} , \mathbb{GHU} , \mathbb{HUR} and \mathbb{GHUR} stables. Finally, by using Python, numerical instances allowed to guarantee the accuracy of the theoretical results.

    This research would be a great work to enrich the qualitative theory literature on the problem of nonlinear fractional mixed nonlocal conditions involving a particular function. For the future works, we shall focus on studying the different types of existence results and stability analysis for impulsive fractional boundary value problems.

    B. Khaminsou was supported by the International Science Programme PhD. Research Scholarship from National University of Laos (NUOL). W. Sudsutad was partially supported by Ramkhamhaeng University. C. Thaiprayoon and J. Kongson would like to thank for funding this work through the Center of Excellence in Mathematics (CEM), CHE, Sri Ayutthaya Road, Bangkok, 10400, Thailand and Burapha University.

    On behalf of all authors, the corresponding author states that there is no conflict of interest.



    [1] M. H. Annaby, Z. Mansour, q-fractional calculus and equation, Springer-Verlag Berlin Heidelberg, 2012.
    [2] M. K. Aouf, p-valent classes related to convex function of complex order, Rocky Mt. J. Math., 15 (1985), 853–863.
    [3] M. K. Aouf, T. M. Seoudy, Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q -analogue of Ruschewegh operator, Constr. Math. Anal., 3 (2020), 36–44.
    [4] M. Arif, M. Ul Haq, J. Liu, A subfamily of univalent function associated with q-analogue of Noor integral operator, J. Funct. Spaces, 2018 (2018), 1–5.
    [5] R. Bharati, R. Paravatham, A. Swaminathan, On subclasses of uniformly convex function and corresponding class of starlike functions, Tamkang J. Math., 28 (1997), 17–32. doi: 10.5556/j.tkjm.28.1997.4330
    [6] F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburugh, 46 (1908), 253–281.
    [7] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [8] S. Kanas, Coefficient estimates in subclasses of Caratheodory class related to conical domains, Acta Math. Univ. Comenian. (N.S.), 74 (2005), 149–161.
    [9] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. doi: 10.1016/S0377-0427(99)00018-7
    [10] S. Kanas, A. Wisniowska, Conic domains and starlike functions, Rev. Roum. Math. Pures Appl., 45 (2000), 647–658.
    [11] J. L. Liu, K. I. Noor, Some properties of Noor integral operator, J. Nat. Geom., 2002 (2002), 81–90.
    [12] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceeding of the conference on complex analysis (Tianjin, 1992), Int. Press (Cambridge, MA), 1 (1994), 157–169.
    [13] K. I. Noor, On new classes of integral operators, J. Nat. Geom., 16 (1999), 71–80.
    [14] K. I. Noor, M. A. Noor, On integral operators, J. Math. Anal. Appl., 238 (1999), 341–352. doi: 10.1006/jmaa.1999.6501
    [15] M. A. Nasr, M. K. Aouf, On convex functions of complex order, Mansoura Sci. Bull., 8 (1982), 565–582.
    [16] M. A. Nasr, M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci., 9 (1983), 97–102.
    [17] M. A. Nasr, M. K. Aouf, Starlike functions of complex order, Nat. Sci. Math., 25 (1985), 1–12.
    [18] K. I. Noor, M. Arif, W. Ul Haq, On k-uniformly colse-to-convex functions of complex order, Appl. Math. comput., 215 (2009), 629–635.
    [19] T. Q. Salim, M. S. Marouf, J. M. Shenan, A subclasses of multivalent uniformly convex functions associated with generalized Sǎl ǎgean and Ruscheweyh differential operators, Acta Univ. Apulensis, 26 (2011), 289–300.
    [20] T. M. Seoudy, M. K. Aouf, Convolution properties for certain classes of analytic functions defined by q-derivative operator, Abstr. Appl. Anal., 2014 (2014), 1–7.
    [21] N. L. Sharma, A note on the coefficient estimates for some classes of p-valent functions, Ukr. Math. J., 70 (2018), 632–648. doi: 10.1007/s11253-018-1521-0
    [22] H. M. Srivastava, M. K. Aouf S. Owa, Certain classes of multivalent functions of order \alpha and type \beta, Bull. Soc. Math. Belg. Ser. B, 42 (1990), 31–66.
    [23] B. Wongsaijai, N. Sukantamala, Mapping properties of generalized q-integral operator of p-valent functions and the generalized Sǎlǎgean operator, Acta Univ. Apulensis, 41 (2015), 31–50.
  • This article has been cited by:

    1. Osama Moaaz, Ahmed E. Abouelregal, Meshari Alesemi, Moore–Gibson–Thompson Photothermal Model with a Proportional Caputo Fractional Derivative for a Rotating Magneto-Thermoelastic Semiconducting Material, 2022, 10, 2227-7390, 3087, 10.3390/math10173087
    2. Shayma Adil Murad, Reny George, Certain Analysis of Solution for the Nonlinear Two-Point Boundary Value Problem with Caputo Fractional Derivative, 2022, 2022, 2314-8888, 1, 10.1155/2022/1385355
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2907) PDF downloads(141) Cited by(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog