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1. Introduction

In this work we are concerned with the decay rate of the following problem with nonlinear damping
of variable exponent

ty (1) = A (x, £) + @ (1) [, 1) + wy(x, Dl "2, )] =0, in Qx (0, T),
u=0, on 0Qx(0,7T), (L.1)
u(x,0) = up(x), u(x,0) = u(x), in  Q,

where T > Oand Qis a bou_nded domain of R"(n > 1). The functions u, u; are initial data and the
variable exponent m(-) € C (Q) is a given functions satisfying

1 <m; <m(x) <my <27, (1.2)
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where
my = infm(x), m; := supm(x),
xeQ xeQ)
and also satisfies the log-Holder continuity condition:

Im(x) — m(y)| < (1.3)

loglx =y’
for x,y € Q, with [x —y| < 6,A > 0 and 0 < ¢ < 1. The function @ : [0, c0) — (0,00) is a bounded
nonincreasing C'—function and

dag > 0 such that a(¥) > @y, ¥Vt > 0. (1.4)

Problems with variable exponents appear as a direct consequence of the advancement of science
and technology. Many physical and engineering models require more sophisticated mathematical
functional spaces to be studied and well understood. For example, in fluid dynamics, the
electrorheological fluids (smart fluids) have the property that the viscosity changes when exposed to
an electrical field. More examples are found in studying models of the image processing and filtration
processes through a porous media. The Lebesgue and Sobolev spaces with variable exponents proved
to be efficient tools to study such problems. More details on applications of these problems can be
found in ( [1-3]).

A lot of papers in the literature dealt with stabilization of wave equations with different types of
nonlinearities such as linear, polynomial and logarithmic. For instance, the following problem was
studied by Nakao [4].

Uy — Au+ )" 2u, + P 2u =0, in Q x (0, ),

where m,p > 2 and Q C R" (n > 1) is a bounded domain. He showed that, with Dirichlet-boundary
conditions, the problem has a unique global weak solutionif 2 < p <2(n—-1)/(n—2),n > 3 and
a global unique strong solution if p > 2(n—1)/(n—2), n > 3. In both cases, he proved that the

energy of the solution decays algebraically if m > 2 and decays exponentially if m = 2. Benaissa and
Messaoudi [5] considered

u, — Au+a (1 n |u,|m-2) u, = |u’2u, in Q x (0, ),

where m, p > 2 and showed, for small initial data in an appropriate function space, that the problem
has a global weak solution which decays exponentially even if m > 2. We also mention here the work
of Mustafa and Messaoudi [6], where they considered

Uy —Au+a(t)g(u,) =0, in QX (0, ),

and established an explicit and general decay rate result, without imposing any restrictive growth
assumption on the frictional damping term.

As we mentioned earlier, modern technology and engineering required the use of variable exponents
nonlinearities and the Lebesgue and Sobolev spaces with variable exponents as well. In this regard, we
mention the work of Ghegal et al. [7] where, in a bounded domain, the following equation is considered

Uy — Au+ "0 2u, = [ufPOu, in Q x (0, ).
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Under suitable conditions on the initial data and the variable exponents, the authors used stable-set
method to prove a global existence result. Then, by applying an integral inequality due to Komornik,
they obtained the stability result. More results can be found in ( [8—10]).

Hyperbolic problems involving variable-exponent nonlinearities with delay are also considered. For
instance, Kafini and Messaoudi [11] studied the problem

= At "2+ ool = Dt = 7) = b

For b > 0, they established a global nonexistence result under suitable conditions on iy, us, m(-), p(+)
and the initial data. While, for » = 0, they obtained a decay result which is of either polynomial or
exponential type depending on the nature of m(-).

Recently, Messaoudi in [12] considered the problem

U, — div(|vu|’<'>-2vu) — Au; + "2, =0, Qx(0,T),

and established several decay results depending on the nature of variable exponents »(-) and m (-).
See [13—17], for more results on the local existence and blow up for some problems with variable
exponent nonlinearities.

Fractional derivatives have been also influenced by variable orders. One can see variable-order
fractional differential equations: mathematical foundations, physical models, numerical methods and
applications as in [18]. Analyzing a variable-order time-fractional wave equation, which models, e.g.,
the vibration of a membrane in a viscoelastic environment examined in [19]. See also [20-22] for more
details.

In our work, we aim to study the nonlinear wave Eq (1.1) with nonlinear feedback having a variable
exponent m(x) and a time-dependent coefficient a(#). We establish a decay result of an exponential
and polynomial type under specific conditions on both m(-) and a () and the initial data. This paper
consists of three sections in addition to the introduction. In Section 2, we recall the basic definitions of
the variable exponent Lebesgue spaces L)(Q), the Sobolev spaces W!(Q), as well as some of their
properties. Section 3 is devoted to the existence and uniqueness of a weak global solution. In the last
section, we show the decay result.

2. Preliminaries

In this section, we present some materials needed for the statement and the proof of our results. In
what follows, we give definitions and properties related to Lebesgue and Sobolev spaces with variable
exponents, see [23,24] for more details.

Let Q be a domain of R” withn > 2 and p : Q — [1, co] be a measurable function. The Lebesgue
space LP"(Q) with a variable exponent p(-) is defined by

L'OQ) = {v : Q — R; measurable such that ,,(1v) < +oo, for some 1 > 0},

where

0py(V) = fg v(x)|P™ dx.
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The Luxembourg-type norm is given by

p(x)
VIl ::inf{/l>0: f dx < 1}.
Q

The space LPY(Q), equipped with the above norm, is a Banach space.

v(x)

Lemma 2.1. (Holder’s inequality) Let p, g, s > 1 be measurable functions defined on Q such that

L_t 1
s p» g

If f € LPO(Q) and g € LIV(Q), then fg € L*Y(Q) and

fora.e. yeQ.

Fgllsy < 21 A1y gl -

Lemma 2.2. If p : Q — [1, 00) is a measurable function and 1 < p; < p(x) < p, < oo, then
min {2 V22, < 00 (v) < max (iM% IvIP2, )

for a.e. x € Q and for any v € LPO(Q).

Lemma 2.3. [12]If p: Q — [1, o0) is a measurable function and 1 < p; < p(x) < p, < oo, then

P2’

f VPP dx < VB + VP2, Vv e LPO(Q).
Q

The variable-exponent Sobolev space W'”(Q) is defined as
WHrO@Q) = {v € L"(Q) such that Vv exists and [Vv| € L'(Q)}.
This space is a Banach space with respect to the norm
IVllwrro@) = IVllpe + VYL -

Suppose p(-) satisfies (1.3). Then the space Wé’p (')(Q) is defined to be the closure of C7(€2) in
WP0O(Q). The definition of the space Wé’p (')(Q) is usually different from the constant exponent case.
However, under condition (1.3) both definitions coincide. The dual space of Wé’p © Q) is W, Lp ,(')(Q)
defined in the same way as in the classical Sobolev spaces, where

1 N I 1
rC¢)  pC)
Lemma 2.4. (Poincaré’s inequality) Let Q be a bounded domain of R” and p(-) satisfies (1.2) and
(1.3), then

Vi) < C VYl s for all v e Wy (@),

where C is a positive constant depends on p(-) and €. In particular, the space Wé’p O(Q) has an
equivalent norm given by
My 100y = IVl -
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Lemma 2.5. If p : Q— [1, c0) is continuous and

2<p1 <px)<pr < n >3,

n-2
then the embedding H'(Q) — L”Y(Q) is continuous and compact.

Lemma 2.6. [27] Let E : R* — R* be a nonincreasing function and ¢ : R* — R be an increasing
C! -function satisfying

#(0) =0 and ¢(t) > +oo as t — +oo.

Assume further, that there exist ¢ > 0, A > 0 such that
f ETN ()¢’ (Hdt < AE(S), VS > 0.
S

Then, V¢ > O,
E@) < CEQO)1 +¢@®) "4, if ¢g>0,
E(t) < CE(0)e™", if q=0,

where C and w are positive constants independent of the initial energy E(0).

Definition 2.7. Given the initial data (ug, u;) € Hé (Q) x L?(Q), a function u defined on Q X (0, T) is
called a weak solution of problem (1.1) if

u € L((0,7); HyQ),
u € L% ((o, T);LZ(Q))OL’"(') (Q % (0,T))

and it verifies the variational equation
Wt W) + (Vit, Yw) + & (1) [ (s w) + (Ju ™7 i w)| = 0, Yw € C ().
We introduce the energy functional associated to problem (1.1) as
E() := %llutllg + %lqull%, t>0. 2.1
Lemma 2.8. Let u be the solution of (1.1). Then,

E (1) = —a(f) f (|u,|2 + |u,|’”(x))dx <0, t>0. (2.2)
Q

Proof. Multiplying Eq (1.1) by u, and integrating over €, the result follows.

Remark 2.9. In the sequel, we use C to denote a generic constant which may differ from one place to
another.
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3. Existence and uniqueness

The following theorem states our existence and uniqueness results, which are the main focus of this
section.

Theorem 3.1. Assume that the variable exponent m(-) satisfies conditions (1.2) and (1.3). Then, for
any initial data uy € H)(Q), u; € L*(Q), problem (1.1) admits a unique global weak solution.

Proof. To prove the existence of a weak solution to (1.1), we make use of the Galerkin approximation
method. For that reason we assume {v j}j>1 is an orthogonal basis for Hé (Q) and orthonormal in L*(Q).

We find a solution of the form

k
uk (x,1) = Z ajp v (x), ap )= <uk ®), Vj> ’

=1
to the approximate problem
(Ltltct, Vj) + (Vuk, VV]) + (l’) I:(I/tf, Vj) + (|ut| m()=2 Mk V])] =0, (31)

where

k
uk (x,0) = u’é (x) = Z uo, Vi J i — up strongly in H! 0 (L),

k
uf (x,0) = u'{ (%) Z ul, vj ; — uy strongly in L*(Q). 3.2)
=1

This system, by the standard ODE theory has a unique solution guaranteed on [0,#), 0 < #, < T.
Next, we need to show that this solution can be extended to the maximal interval [0, T), Yk > 1 and for
any T > 0.

Replace v; by uf in (3.1) to get

7 (S Ry N R
and integrate over (0, 7) for 7 € (0, #;) to arrive at
e a2 [ o o+ [ el e
= el v < e a3

Hence, the solution can be extended to [0, T'), for any given T > 0.
Using (1.4), we arrive at

!
e+ + 200 [ ot e [ el oy
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where we can conclude that
u* is bounded in L™ ((0, T) ; Hy(Q))

uf is bounded in L™ ((0,T) ; LA(Q))
u’ is bounded in L™ (Q x (0, T)).
Therefore, we can extract subsequences, still denoted by u¥ and u’t‘ such that
u* — u weakly star in L™ ((0, T) ;Hé(Q))
u¥ — u, weakly star in L™ ((0, T); LZ(Q)) )
As u* is bounded in L™ (Q x (0, T)), then |uf |m(')_2 u¥ is bounded in Lo (Q % (0,7)). Hence,
ot

— ¢ weakly in Lt (Qx(0,T)).

To show that ¢ = Iutl”’(')_2 u;, we integrate (3.1) over (0,¢) to get, Vj =1, ..., k,

! !
fufvjdx - fu/fvjdx + f fVuk - Vydx + f a(s)f (uf (s) + |uf|m(')_2 uf (s)) vidxds = 0.
o) Q 0 Ja 0 Q

Now, letting k — +oc0 and differentiating the latter result with respect to ¢ gives

d
— f uvdx + fVu - Vvdx + a () f (u, +¥)vdx =0, Vve Hé(Q). 3.4)
dt Jg Q Q

Hence,
uy—Au+a (), +¢)=0, in D' (Qx(0,7)).

If we define

T
X =2 f o (1) f (|u’;|’"("‘2 uk — 2 v) (uf = v) dxdr, ¥v e L™ ((0.T): HY(®),
0 Q

and
A®W) = "0,

then we have

k _ ! f kY _ k m(-) .l
X _2fo 0 Q(A(ut) AW)(uf - v)dxdt 2 0, ¥v € L™ ((0,T): Hy(Q)).

Using Eq (3.3), we get
W= bl 9l - [ (e f + ot o Jax -2 f e [ Jif
Q

-2 f a (b f (uf) vdxdt -2 f a () f A ) (uf - v)dxd.
0 Q
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As k — +oo,

. k 2 2
0 < limsupyx” < |lull5 +[|Vuoll; —
k

s

(I, (D + Vu (T)F) dx

T T
-2 f 0 f |u,|* dxdt — 2 f a(t) f Yvdxdt
0 Q 0 Q

T
—2f a () f A W) (u; —v)dxdt.
0 Q

Integration of (3.4) over (0, T') after replacing v by u, give

T
flut(T)lzdx+f|Vu(T)|2dx—||u1||§—||Vu0||§+2f a(t)f(lut|2+zﬁut)dxdt:0.
Q Q 0 Q

Adding (3.5) and (3.6) give

T T
0 < limsupyf<2 f a(t) f Yudxdt — 2 f a(t) f Yvdxdt
k 0 Q 0 Q

T
—2f a (1) f A W) (u; —v)dxdt
0 Q

T
=2 f a(?) f W = AW) (u, - v)dxdt, Mve L™ ((0,T); Hy(Q)).
0 Q
Thus, by the density of H}(€) in L™(Q) we have
T
f f W —AW)(u —v)dxdt >0, YveL"(Qx(0,T)).
0 Q
If we let v = Aw + u, for w € L0 (Q x (0, T)) then

T
- f f W —A@Aw+u))wdxdt >0, VYwe L") Q% (0,T)).
0 Jo

As 0 < A4 — 0, we have,

T
f f (Y — A (u,) wdxdt <0, Ywe L™ (Qx(0,T)).
0

Q

Similarly, if 0 > 4 — 0, we have,

T
f f (Y — A (u,) wdxdt >0, Ywe L™ (Qx(0,T)).
0 Q

This implies that ¥ = A (u,) = |u,|"" ™ u,.

(3.5)

(3.6)

To handle the initial conditions, we use Lions’ Lemma [25], to obtain, up to a subsequence, that

uk = uin c([o, T] ;LZ(Q)).
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Therefore, u*(-,0) makes sense and u(-,0) — u(-,0) in L2(Q). Also, by density we have
uh(-,0) = ub — uy in HY(Q),

hence u(-,0) = u.
For the other condition, as in [26], we obtain from (3.1) and for any j < k and ¢ € C (0, T),

T
—f fufvj (x) ¢’ (t) dxdt
0 Ja

T T
= - f f Vuvaj (x) @ () dxdt + f a (1) f (uf + |ult‘|m(.)—2 u’;) vi(x) ¢ (t)dxdt.
0o Ja 0 Q
As k — +co, we obtain that, for all v € H}(Q),

T T
- f f u (x) ¢’ (1) dxdt = f (A= (@) (u, + " ) v () ¢ (1) dt.
0 Q 0

This implies that
uy € L7 ([0,7): H'(©).
and u solves the equation
Uy — Au+ a(t) (u, + |u, 072 ut) =0.
Therefore,
u, € C([0,7); H(Q)),
where u*(-,0) makes sense and u*(-,0) — u,(-,0) in H~'(Q). But we have
uk(,0) = ub - uy in L*(Q).
So u;(+,0) = u;.
To prove the uniqueness, we assume u and v are two solutions of (3.1). Then w = u — v satisfies the
following problem

wy — Aw + a (t) (wt + Iu,l’"(')_2 u; — Iv,l’"(')_2 vl) =0 in Qx(0,7T),
w=0, on 0Qx(0,T),
w(x,0) = wo(x),  wi(x,0) = w;(x), in Q.

Multiply the equation by w, and integrate over €2, to obtain
l1d 3= m()—
oo [ f (Iwd® + VW) dx| + e (2) f | Wil + (™7, = ™07 v,) = v) | dx = 0.
Q Q
Integration over (0, 1), to get

!
f (Iwd® + VW) dx + 2 f a (1) f [ Wil + (I w, = Wil v,) (uy = )| dxdt = 0.
Q 0 Q
Using the fact that

(|a|”’(')‘2 a— |b|"? b) (a—b)>0, Va,beR andae x € Q,

fg (lwt|2 + |Vw|2) dx =0,

This implies that w = C = 0, since w = 0 on 9Q. Hence, the uniqueness. This completes the proof
of Theorem 3.1.

we obtain
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4. Decay of solutions
Theorem 4.1. Let (1o, u;) € Hy (Q) x L* () be given. Assume that fow @ (t)dr = ccand m(-) € C (ﬁ)

that satisfies
2<m <m(x) <my <2,

Then, the solution energy (2.1) satisfies, for two positive constants ki, k5,
E@) < ke e he®ds g > g 4.1)

Proof. Multiply (1.1) by auE‘(t) and integrate over Q X (s,7),0 < s < T, to obtain
T
f aE9(r) f (uu,, —ulAu +a (uut + uu, Iu,Im(x)_z)) dxdt = 0,
K Q
which gives

g d
f aE(r) f (E (uu,) — u,2 +|Vul> + (uu, + uu, |u,|m(x)_2)) dxdt = 0, 4.2)
K Q

for ¢ > 0 to be specified later.
Recalling the fact that fQ (qul2 + utz) dx = 2E(t) and using the relation

d
d—t(aEq(t)fg;uu,dx)

d
= a/Eq(t)fuu,dx+anq_l(t)E'(t)fuutdx+aEq(t)—fuutdx,
Q Q dt Jo

equation (4.2) becomes

T
2 f aE (1)dt (4.3)

T d T
= —f —(aE"(t)fuutdx)—f aqu(t)fuu,dxdt
K dt Q K Q
T T
+qf a/Eq_l(t)E'(t)fuu,dxdt+f a/’Eq(t)fuutdxdt
K Q K Q

T T
+2f aEq(t)fu,dedt—f azE”’(t)fuut(x, 1) |u,|" 2 dxdt.
K Q s Q

The first term in the right side of (4.3) is estimated, using Poincaré’s inequality, (2.2) and the fact

that
1
f udx < = f (luf® +u?)dx < C f (IVul* + 1) dx < CE (1),
Q 2 Q Q

T d
_ fadl q
‘ j; 7 (a/E 63) L uu,dx) dt
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< C [a(s) ET'(s) + a(T) Eq“(T)] < Ca (0) E0)E(s) < CE(s).

Using Young’s inequality, the second term leads to

T
‘—f ozqu(t)fuu,a’xdt
K Q

IA

IA

T C T
5C f aEq“(t)dt—E f EY(H)E'(H)dt, Y6 > 0.

Taking 6 = 1/2C, we get

T
l—f a/qu(t)fuutdxdt
N Q

Similar to the first term, we have

T
|q f aET (1)E' (1) f uu,dxdt
s Q

T
< —Cf EY(H)E'(H)dt < CET'(s) < CE(s).

1 T
< 3 f aE (1)dt + CE(s).

The fourth term:
T

f a’ (t)Eq(t)fuu,dxdt
s Q

The fifth term:

IA

T T
C f &/ ()| E“* (1)dt < CET(5) f &’ (1) dt
CE™(s)a (s) < CE(s).

IA

T T
2 f aE4(t) f wldxdt < =2 f EY(t)E'(dt < CE”(s) < CE(s).
s Q s

The last term in the right-hand side of (4.3) is handled by using Young’s inequality with

a(x) = ﬂ and a’(x) = m(x).
m(x)—1

So, fora.e. x € Q, £ > 0, and

ce(x) = glm (m(x))—m(x) (m(x) — 1)m(x)—1 ’

T
‘— f @*E‘ (1) f i, |u,|" 72 dxdt
K Q

T
< C f aE1(f) ls f lu()|™™ dx + f ce(x) |u,(t)|’"(")dx]dt
K Q Q

we have

T
f E%(r) [5Ca(t) f |Vul? dx+£0z(t) f ufdx] dt
s Q 46 Q

4.5)

(4.6)

4.7)

(4.8)
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IA

" -
C f aE4(1) s( f lu()|™ dx + f u(r)|™ dx)+ f cg(x)lut(t)l’"(x)dx] dt
K | Q Q Q

T N
c f aE(0) |& (IVu@Ily" + IVu@ll;) + f cg(x)lu,(t)lm(x)dx]dt (4.9)
s | Q

. _
< Cf aE“(7) g(E"?(t)+E"’zz(r))+f

Q

IA

A

ce(2) lu (D" dx} dt

IA

5 .
cCE(0) f aET\ (B)dt + C f 0 f ce(x) lu (D" dxdt.
s s Q

If we fixe =1/2CE %‘1(0), noting that c.(x) is bounded since m(x) is bounded, then (4.9) becomes

T 1 T T
'— f @*E‘(1) f u, lu "2 dxdi| < 3 f aE (0)dt - ¢ f EY()E'(f)dt
S Q S K
1 T
< 3 f aET Y (1)dt + CE(s). (4.10)

Combining (4.3)—(4.10) and taking 7 — oo we arrive at
f aE(H)dt < CE(s).

Therefore, (4.1) is established by the virtue of Lemma 2.6 for ¢ = 0 and ¢(¢) = fot a(s)ds.

Example 1. If we take a(t) = 1 and m(x) = 2 then we have ¢(t) = t and hence, for two positive
constants ki, k,
E(t) < kje™, vt > 0.

The next theorem handles the case: 1 < m; < 2.

Theorem 4.2. (Polynomial Decay) Let (ug, u,) € Hé (Q) x L? (Q) be given. Assume that fom a(r)dr =

oo and m(-) € C (ﬁ) and satisfies (1.2). Assume further that m; < 2. Then, the solution energy (1.1)
satisfies, for some positive constant K,

1-my

E(t)SK(l+fa(‘r)dT)2_ml, Vi > 0. @.11)
0

Proof. We follow the same steps in the proof of the previous theorem. But we have to re-estimate the
last term in (4.3). For this purpose, we define

Qi ={xeQ|mkx)<2} and Q ={x e Q|m(x) > 2}.

fuutlutlm(x)_zdx:f uutlu,lm(x)_zdx+f i, u, |2 dx.
Q Q.l QZ

Then we use Young’s inequality and Poincaré’s inequality, to get

—f ity |u,|" 7% dx
Q)
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In order to estimate the last term of (4.12), we define

ms = supm(x) < 2.
xeQ

Then Holder’s inequality and the embedding give

—af it |u, |72 dx
Q

6Cf |VI/£|2 dx + ﬁ f |ut|2m|—2 dx+f |ut|2m3_2 dx]
Q Q Q

IA

46

CG,’ [ m1—1 M3—1
sC f \Vul> dx + — ( |ut|2dx) +( f |u,|2dx) l
Q 46 i Q Q
5 CCZ [ 5 Wl1—1 5 m3—l
5C | |Vu| dx+4—6 lu,* dx + |u,|* dx (4.13)
Q i Q Q
C r m3—m, mp—1
sC f Vil dx + —= 1+( f |ut|2dx) ]( f |u,|2dx)
Q 45 L Q Q

6Cf \Vul* dx + < [1+ QE (0))™™™] (—E’(t))””_1
Q 46

IA

IA

IA

IA

IA

6C f \Vul dx + < (-E' @)™ "
a 46

Thus,

T
|—f aqu(t)f uy u, "% dxdt
K Q

Using Young’s inequality, we obtain for any A > 0,

T T
stf aE‘I+1(t)dt+c5f aEUf) (—E'®))" " dr.  (4.14)

EN0) (—E' @)™ < AE@)™ + ¢4 (~E'(0)).

If welet g + 1 = 52— hence ¢ = Zmi “then (4.14) implies that

mi mi—1°

T
‘— f P E‘ (1) f ity u,|" 7% dxdt
s Q

T T
< 6C f aET (0)dt + Acg f aET (1)dt

T
+csc, f a(=E'(1))dt.

Then we choose 6 = 1/4C. After ¢ is fixed, we choose A = 1/4c¢; to obtain

T
‘— f N0 f it u,|" 7 dxdt
N Q|

Now over ,, we follow the same steps as in (4.9) to conclude that

T
‘— f N0 f i u, " dxdt
K Q)
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T
s% f aET (t)dt + CE (s). (4.15)

T
s

s% f aE (1)dt + CE (s). (4.16)
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Combining (4.15) and (4.16), give

T
‘— f @*E‘ (1) f uy "% dxdt
K Q

Consequently, from (4.3)—(4.8) and (4.17), we have

T
< f aET (f)dt + CE (s). 4.17)

T
f aET N (1)dt < CE(s).

If we let T — oo, then from Lemma 2.6 with ¢ () = fot a(r)dr and g = fn_l—’_"; > 0, we arrive for

some K > 0,
: by
E@) < K(l + f a’(T)dT) l .
0

This completes the proof.
Example 2. If we take Q = (0,1), a(t) = f—ii and m(x) =2 — 213, then we have ¢(t) =t + In(1 + 1),
my; = 3/2 and

EO<K(+t+In(1+0)", Vt>0,

for a positive constant K.
5. Conclusions

In this paper, we have shown that the time varying coefficient appears in the problem has a direct
effect in well posednesss and the decay rates. In fact, we investigated the nonlinear wave Eq (1.1)
with nonlinear feedback having a variable exponent m(x) and a time-dependent coefficient a(z). We
established a decay result of an exponential and polynomial type under specific conditions on both m(-)
and « (¢) and the initial data.
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