This paper establishes new blow-up criteria, in anisotropic Lorentz spaces, via one-directional derivatives of the velocity and magnetic fields for the Cauchy problem to the 3D magneto-micropolar model and via one-directional derivative of velocity for the Cauchy problem to the 3D nonlinear dissipative system.
Citation: Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi. Blow-up criteria for different fluid models in anisotropic Lorentz spaces[J]. AIMS Mathematics, 2023, 8(2): 4700-4713. doi: 10.3934/math.2023232
This paper establishes new blow-up criteria, in anisotropic Lorentz spaces, via one-directional derivatives of the velocity and magnetic fields for the Cauchy problem to the 3D magneto-micropolar model and via one-directional derivative of velocity for the Cauchy problem to the 3D nonlinear dissipative system.
[1] | G. P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of the microploar fluid equations, Int. J. Eng. Sci., 15 (1997), 105–108. https://doi.org/10.1016/0020-7225(77)90025-8 doi: 10.1016/0020-7225(77)90025-8 |
[2] | M. A. Rojas-Medar, J. L. Boldrini, Magneto-microploar fluid motion: Existence of weak solutions, Rev. Mat. Comput., 11 (1998), 443–460. https://doi.org/10.5209/rev_REMA.1998.v11.n2.17276 doi: 10.5209/rev_REMA.1998.v11.n2.17276 |
[3] | M. A. Rojas-Medar, Magneto-microploar fluid motion: Existence and uniqueness of strong solutions, Math. Nachr., 188 (1997), 301–319. https://doi.org/10.1002/mana.19971880116 doi: 10.1002/mana.19971880116 |
[4] | E. E. Ortega-Torres, M. A. Rojas-Medar, Magneto-microploar fluid motion: Global existence of strong solutions, Abstr. Appl. Anal., 4 (1999), 109–125. https://doi.org/10.1155/S1085337599000287 doi: 10.1155/S1085337599000287 |
[5] | S. Gala, Regularity criteria for the 3D magneto-micropolar fluid equations in the Morrey–Campanato space, Nonlinear Differ. Equ. Appl., 17 (2010), 181–194. https://doi.org/10.1007/s00030-009-0047-4 doi: 10.1007/s00030-009-0047-4 |
[6] | C. Guo, Z. Zhang, J. Wang, Regularity criteria for the 3D magneto-micropolar fluid equations in Besov spaces with negative indices, Appl. Math. Comput., 21 (2012), 10755–10758. https://doi.org/10.1016/j.amc.2012.04.068 doi: 10.1016/j.amc.2012.04.068 |
[7] | Z. J. Zhang, Z. A. Yao, X. F. Wang, A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel–Lizorkin spaces, Nonlinear Anal. Theory Methods Appl., 74 (2011), 2220–2225. https://doi.org/10.1016/j.na.2010.11.026 doi: 10.1016/j.na.2010.11.026 |
[8] | J. Geng, X. Chen, S. Gala, On regularity criteria for the 3D magneto-micropolar fluid equations in the critical Morrey-Campanato space, Commun. Pure Appl. Anal., 10 (2011), 583–592. https://doi.org/10.3934/cpaa.2011.10.583 doi: 10.3934/cpaa.2011.10.583 |
[9] | F. Wu, A refined regularity criteria of weak solutions to the magneto-micropolar fluid equations, J. Evol. Equ., 21 (2011), 725–734. https://doi.org/10.1007/s00028-020-00598-7 doi: 10.1007/s00028-020-00598-7 |
[10] | B. Yuan, X. Li, Regularity of weak solutions to the 3D magneto-micropolar equations in Besov spaces, Acta Appl. Math., 2019 (2019), 207–223. https://doi.org/10.1007/s10440-018-0220-z doi: 10.1007/s10440-018-0220-z |
[11] | Z. Tan, W. Wu, J. Zhour, Global existence and decay estimate of solutions to magneto-micropolar fluid equations, J. Diff. Eq., 266 (2019), 4137–4169. https://doi.org/10.1016/j.jde.2018.09.027 doi: 10.1016/j.jde.2018.09.027 |
[12] | M. Naqeeb, A. Hussain, A. M. Alghamdi, An improved regularity criterion for the 3D Magnetic Bénard system in Besov spaces, Symmetry, 14 (2022), 1918. https://doi.org/10.3390/sym14091918 doi: 10.3390/sym14091918 |
[13] | I. Rubinstein, Electro-diffusion of Ions, SIAM Stud. Appl. Math., SIAM, Philadelphia, 11 (1990). |
[14] | M. Bazant, K. Thornton, A. Ajdari, Diffuse-charge dynamics in electrochemical systems, Phys. Rev., 70 (2007), 1–24. |
[15] | F. Lin, Some analytical issues for elastic complex fluids, Commun. Pure Appl. Math., 65 (2012), 893–919. https://doi.org/10.1002/cpa.21402 doi: 10.1002/cpa.21402 |
[16] | R. Ryham, C. Liu, and L. Zikatanov, Mathematical models for the deformation of electrolyte droplets, Discrete Contin. Dyn. Syst., 8 (2007), 649. |
[17] | M. Schmuck, Analysis of the Navier–Stokes–Nernst–Planck–Poisson system, Math. Models Methods Appl. Sci., 19 (2009), 993–1014. https://doi.org/10.1142/S0218202509003693 doi: 10.1142/S0218202509003693 |
[18] | J. W. Jerome, Analytical approaches to charge transport in a moving medium, Transp. Theory Stat. Phys., 31 (2002), 333–366. https://doi.org/10.1081/TT-120015505 doi: 10.1081/TT-120015505 |
[19] | J. Zhao, C. Deng, S. Cui, Global well-posedness of a dissipative system arising in electrohydrodynamics in negative-order Besov spaces, J. Math. Phys., 51 (2010), 1–17. https://doi.org/10.1063/1.3484184 doi: 10.1063/1.3484184 |
[20] | C. Deng, J. Zhao, S. Cui, Well-posedness for the Navier–Stokes–Nernst–Planck–Poisson system in Triebel–Lizorkin space and Besov space with negative indices, J. Math. Anal. Appl., 377 (2011), 392–405. https://doi.org/10.1016/j.jmaa.2010.11.011 doi: 10.1016/j.jmaa.2010.11.011 |
[21] | J. Zhao, C. Deng, S. Cui, Well-posedness of a dissipative system modeling electrohydrodynamics in Lebesgue spaces, Differ. Equ. Appl., 3 (2011), 427–448. https://doi.org/10.7153/dea-03-27 doi: 10.7153/dea-03-27 |
[22] | M. Bazant and T. Squires, Induced-charge electro-kinetic phenomena: theory and microfluidic applications, Phys. Rev. Lett., 92 (2004), 066101. https://doi.org/10.1103/PhysRevLett.92.066101 doi: 10.1103/PhysRevLett.92.066101 |
[23] | P. Debye, E. Hückel, Zur Theorie der Electrolyte, Ⅱ, Phys. Z., 24 (1923), 305–325. |
[24] | R. F. Probstein, Physicochemical Hydrodynamics, An Introduction, John Wiley and Sons, INC., 1994. https://doi.org/10.1002/0471725137 |
[25] | P. Constantin, M. Ignatova, On the Nernst–Planck–Navier–Stokes system, Arch. Ration. Mech. Anal., 232 (2019), 1379–1428. https://doi.org/10.1007/s00205-018-01345-6 doi: 10.1007/s00205-018-01345-6 |
[26] | B. Yuan, Regularity of weak solutions to magneto-micropolar fluid equations, Acta Math. Sci. Ser. B Engl. Ed., 30 (2010), 1469–1480. https://doi.org/10.1016/S0252-9602(10)60139-7 doi: 10.1016/S0252-9602(10)60139-7 |
[27] | J. Lorenz, W. G. Melo, S. C. P. De Souza, Regularity criteria for weak solutions of the Magneto-micropolar equations, Electron. Res. Arch., 29 (2021), 1625–1639. https://doi.org/10.3934/era.2020083 doi: 10.3934/era.2020083 |
[28] | Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 1–12. https://doi.org/10.1186/1687-2770-2013-58 doi: 10.1186/1687-2770-2013-58 |
[29] | J. Zhao, M. Bai, Blow-up criteria for the three dimensional nonlinear dissipative system modeling electro-hydrodynamics, Nonlinear. Anal., 31 (2016), 210–226. https://doi.org/10.1016/j.nonrwa.2016.01.016 doi: 10.1016/j.nonrwa.2016.01.016 |
[30] | R. O'Neil, Convolution operators and L(p, q) spaces, Duke Math. J., 30 (1963), 129–142. https://doi.org/10.1215/S0012-7094-63-03015-1 doi: 10.1215/S0012-7094-63-03015-1 |
[31] | K. A. Bekmaganbetov, Y. Toleugazy, On the Order of the trigonometric diameter of the anisotropic Nikol'skii-Besov class in the metric of anisotropic Lorentz spaces, Anal. Math., 45 (2019), 237–247. https://doi.org/10.1007/s10476-018-0707-x doi: 10.1007/s10476-018-0707-x |
[32] | C. Cao, J. Wu, Two regularity criteria for the 3D MHD equations, J. Differ. Equ., 9 (2010), 2263–2274. https://doi.org/10.1016/j.jde.2009.09.020 doi: 10.1016/j.jde.2009.09.020 |
[33] | M. A. Ragusa, F. Wu, Regularity Criteria for the 3D Magneto-Hydrodynamics Equations in Anisotropic Lorentz Spaces, Symmetry, 13 (2021), 1–10. https://doi.org/10.3390/sym13040625 doi: 10.3390/sym13040625 |
[34] | Z. Tang, G. Wang, H. Guan, A Regularity Criterion for the Magneto-Micropolar Fluid Equations in ${\dot{B}_{\infty, \infty}^{-1}}$, Discret. Dyn. Nat. Soc., 2013 (2013), 1–6. |