Our main purpose in this paper is to obtain the anisotropic Moser-Trudinger type inequality in Lorentz space $ L(n, q) $, $ 1 \leq q \leq \infty $. It can be seen as a generation result of the Moser-Trudinger type inequality in Lorentz space.
Citation: Tao Zhang, Jie Liu. Anisotropic Moser-Trudinger type inequality in Lorentz space[J]. AIMS Mathematics, 2024, 9(4): 9808-9821. doi: 10.3934/math.2024480
Our main purpose in this paper is to obtain the anisotropic Moser-Trudinger type inequality in Lorentz space $ L(n, q) $, $ 1 \leq q \leq \infty $. It can be seen as a generation result of the Moser-Trudinger type inequality in Lorentz space.
[1] | N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. http://dx.doi.org/10.1512/iumj.1968.17.17028 doi: 10.1512/iumj.1968.17.17028 |
[2] | J. Moser, A sharp form of an inequality by N. Trudinger, Indiana U. Math. J., 11 (1971), 1077–1092. http://dx.doi.org/10.2307/24890183 doi: 10.2307/24890183 |
[3] | A. Cianchi, A fully anisotropic Sobolev inequality, Pac. J. Math., 196 (2000), 283–295. http://dx.doi.org/10.2140/pjm.2000.196.283 doi: 10.2140/pjm.2000.196.283 |
[4] | A. Cianchi, Optimal Orlicz-Sobolev embeddings, Rev. Mat. Iberoamericana, 20 (2002), 427–474. http://dx.doi.org/10.4171/RMI/396 doi: 10.4171/RMI/396 |
[5] | L. Tartar, Imbedding theorems of Sobolev spaces into Lorentz spaces, Boll. Unione Mat. Ital., 1998,479–500. |
[6] | F. Feo, J. Martin, M. R. Posteraro, Sobolev anisotropic inequalities with monomial weights, J. Math. Anal. Appl., 505 (2022), 125557. http://dx.doi.org/10.1016/j.jmaa.2021.125557 doi: 10.1016/j.jmaa.2021.125557 |
[7] | A. Alvino, V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273–299. http://dx.doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364 |
[8] | S. Adachi, K. Tanaka, Trudinger type inequalities in $\mathbb{R}^N$ and their best exponents, P. Am. Math. Soc., 128 (2000), 2051–2057. http://dx.doi.org/10.1090/S0002-9939-99-05180-1 doi: 10.1090/S0002-9939-99-05180-1 |
[9] | A. Karppinen, Fractional operators and their commutators on generalized Orlicz spaces, Opusc. Math., 42 (2022), 583–604. http://dx.doi.org/10.7494/OpMath.2022.42.4.573 doi: 10.7494/OpMath.2022.42.4.573 |
[10] | Q. H. Yang, Y. Li, Trudinger-Moser inequalities on hyperbolic spaces under Lorentz norms, J. Math. Anal. Appl., 472 (2019), 1236–1252. http://dx.doi.org/10.1016/j.jmaa.2018.11.074 doi: 10.1016/j.jmaa.2018.11.074 |
[11] | G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. http://dx.doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046 |
[12] | G. Lu, H. Tang, Sharp Moser-Trudinger inequalities on hyperbolic spaces with the exact growth condition, J. Geom. Anal., 26 (2016), 837–857. http://dx.doi.org/10.1007/s12220-015-9573-y doi: 10.1007/s12220-015-9573-y |
[13] | L. Carleson, S. Y. A. Chang, On the existence of an extremal function for an inequality of J. Moser, B. Sci. Math., 110 (1986), 113–127. |
[14] | N. Labropoulos, Vector analysis on symmetric manifolds and Sobolev inequalities, Rend. Circ. Mat. Palerm., 71 (2022), 1173–1215. http://dx.doi.org/10.1007/s12215-022-00792-1 doi: 10.1007/s12215-022-00792-1 |
[15] | M. Flucher, Extremal functions for Trudinger-Moser inequality in 2 dimensions, Comment. Math. Helv., 67 (1992), 471–497. http://dx.doi.org/10.1007/bf02566514 doi: 10.1007/bf02566514 |
[16] | N. Lam, G. Lu, L. Zhang, Existence and nonexistence of extremal functions for sharp Trudinger-Moser inequalities, Adv. Math., 352 (2019), 1253–1298. http://dx.doi.org/10.1016/j.aim.2019.06.020 doi: 10.1016/j.aim.2019.06.020 |
[17] | Y. Li, B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^n$, Indiana U. Math. J., 57 (2008), 451–480. http://dx.doi.org/10.1512/iumj.2008.57.3137 doi: 10.1512/iumj.2008.57.3137 |
[18] | B. Ruf, A sharp Trudinger-Moser type inequality for unbounded domains in $\mathbb{R}^2$, J. Funct. Anal., 219 (2005), 340–367. http://dx.doi.org/10.1016/j.jfa.2004.06.013 doi: 10.1016/j.jfa.2004.06.013 |
[19] | S. Y. A. Chang, P. Yang, The inequality of Moser and Trudinger and applications to conformal geometry, Commun. Pur. Appl. Math., 56 (2003), 1135–1150. http://dx.doi.org/10.1002/cpa.3029 doi: 10.1002/cpa.3029 |
[20] | D. Cao, Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^2$, Commun. Part. Diff. Eq., 17 (1992), 407–435. |
[21] | D. Cassani, L. Du, Fine bounds for best constants of fractional subcritical Sobolev embeddings and applications to nonlocal PDEs, Adv. Nonlinear Anal., 12 (2023), 20230103. http://dx.doi.org/10.1515/anona-2023-0103 doi: 10.1515/anona-2023-0103 |
[22] | D. G. de Figueiredo, O. H. Miyagaki, B. Ruf, Elliptic equations in $\mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var. Partial. Dif., 3 (1995), 139–153. http://dx.doi.org/10.1007/BF01189954 doi: 10.1007/BF01189954 |
[23] | T. Ogawa, T. Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, J. Math. Anal. Appl., 155 (1991), 531–540. http://dx.doi.org/10.1016/0022-247X(91)90017-T doi: 10.1016/0022-247X(91)90017-T |
[24] | N. Lam, G. Lu, Elliptic equations and systems with subcritical and critical exponential growth without the Ambrosetti-Rabinowitz condition, J. Geom. Anal., 24 (2014), 118–143. http://dx.doi.org/10.1007/s12220-012-9330-4 doi: 10.1007/s12220-012-9330-4 |
[25] | X. Lin, X. Tang, On concave perturbations of a periodic elliptic problem in $\mathbb{R}^2$ involving critical exponential growth, Adv. Nonlinear Anal., 12 (2023), 169–181. http://dx.doi.org/10.1515/anona-2022-0257 doi: 10.1515/anona-2022-0257 |
[26] | Z. Liu, V. D. Radulescu, J. Zhang, A planar Schr$\ddot{o}$dinger-Newton system with Trudinger-Moser critical growth, Calc. Var. Part. Diff. Eq., 62 (2023), 122. http://dx.doi.org/10.1007/s00526-023-02463-0 doi: 10.1007/s00526-023-02463-0 |
[27] | C. S. Lin, J. C. Wei, Locating the peaks of solutions via the maximum principle II: A local version of the method of moving planes, Commun. Pur. Appl. Math., 56 (2013), 784–809. |
[28] | A. Alvino, V. Ferone, G. Trombetti, P. Lions, Convex symmetrization and applications, Ann. Inst. H. Poincar$\acute{e}$ Anal. Non Lin$\acute{e}$aire, 14 (1997), 275–293. http://dx.doi.org/10.1016/S0294-1449(97)80147-3 |
[29] | M. Belloni, V. Ferone, B. Kawohl, Isoperimetric inequalities, wulffshape and related questions for strongly nonlinear elliptic operators, Z. Angew. Math. Phys., 54 (2003), 771–783. http://dx.doi.org/10.1007/s00033-003-3209-y doi: 10.1007/s00033-003-3209-y |
[30] | M. Belloni, B. Kawohl, P. Juutinen, The $p$-Laplace eigenvalue problem as $p\rightarrow \infty$ in a Finsler metric, J. Eur. Math. Soc., 8 (2006), 123–138. http://dx.doi.org/10.4171/JEMS/40 doi: 10.4171/JEMS/40 |
[31] | C. Bianchini, G. Ciraolo, Wulff shape characterizations in overdetermined anisotropic elliptic problems, Commun. Part. Diff. Eq., 43 (2018), 790–820. http://dx.doi.org/10.1080/03605302.2018.1475488 doi: 10.1080/03605302.2018.1475488 |
[32] | A. Cianchi, P. Salani, Overdetermined anisotropic elliptic problems, Math. Ann., 345 (2009), 859–881. http://dx.doi.org/10.1007/s00208-009-0386-9 doi: 10.1007/s00208-009-0386-9 |
[33] | I. Fonseca, S. Muller, A uniqueness proof for the Wulff theorem, P. Roy. Soc. Edinb. A., 119 (1991), 125–136. http://dx.doi.org/10.1017/S0308210500028365 doi: 10.1017/S0308210500028365 |
[34] | V. Ferone, B. Kawohl, Remarks on a Finsler-Laplacian, P. Am. Math. Soc., 137 (2009), 247–253. http://dx.doi.org/10.1090/S0002-9939-08-09554-3 doi: 10.1090/S0002-9939-08-09554-3 |
[35] | G. Wang, C. Xia, Blow-up analysis of a Finsler-Liouville equation in two dimensions, J. Differ. Equations, 252 (2012), 1668–1700. http://dx.doi.org/10.1016/j.jde.2011.08.001 doi: 10.1016/j.jde.2011.08.001 |
[36] | G. Bellettini, M. Paolini, Anisotropic motion by mean curvature in the context of Finsler geometry, J. Hokkaido Math., 25 (1996), 537–566. http://dx.doi.org/10.14492/hokmj/1351516749 doi: 10.14492/hokmj/1351516749 |
[37] | G. Wang, C. Xia, A characterization of the Wulff shape by an overdetermined anisotropic PDE, Arch. Ration. Mech. An., 99 (2011), 99–115. |
[38] | R. L. Xie, H. J. Gong, A priori estimates and blow-up behavior for solutions of $-Q_{n}u = Ve^{u}$ in bounded domain in $\mathbb{R}^n$, Sci. China Math., 59 (2016), 479–492. http://dx.doi.org/10.1007/S11425-015-5060-Y doi: 10.1007/S11425-015-5060-Y |
[39] | C. L. Zhou, C. Q. Zhou, Moser-Trudinger inequality involving the anisotropic Dirichlet norm $(\int_{\Omega}F^N(\nabla u)dx)^{\frac 1N}$ on $W^{1, N}_0(\Omega)$, J. Funct. Anal., 276 (2019), 2901–2935. http://dx.doi.org/10.1016/j.jfa.2018.12.001 doi: 10.1016/j.jfa.2018.12.001 |
[40] | C. L. Zhou, C. Q. Zhou, Extremal functions of Moser-Trudinger inequality involving Finsler-Laplacian, Commun. Pur. Appl. Anal., 17 (2018), 2309–2328. http://dx.doi.org/10.3934/cpaa.2018110 doi: 10.3934/cpaa.2018110 |
[41] | R. O'Neil, Integral transforms and tensor products on Orlicz spaces and $L(p, q)$ spaces, J. Anal. Math., 21 (1968), 1–276. http://dx.doi.org/10.1007/BF02787670 doi: 10.1007/BF02787670 |
[42] | G. G. Lorentz, Some new functional spaces, Ann. Math., 51 (1950), 37–55. |
[43] | R. Hunt, On $L(p, q)$ spaces, Enseign. Math., 12 (1967), 249–276. |
[44] | C. Bennett, R. Sharpley, Interpolation of operators, Pure and Applied Mathematics, Academic Press, 129 (1988). http://dx.doi.org/10.1016/S0079-8169(08)60845-4 |
[45] | A. Alvino, P. L. Lions, G. Trombetti, On optimization problems with prescribed rearrangements, Nonlinear Anal.-Theor., 13 (1989), 185–220. http://dx.doi.org/10.1016/0362-546X(89)90043-6 doi: 10.1016/0362-546X(89)90043-6 |
[46] | D. R. Adams, A sharp inequality of J. Moser for higher order derivatives, Ann. Math., 188 (1988), 385–398. http://dx.doi.org/10.2307/1971445 doi: 10.2307/1971445 |