Research article

Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two

  • Received: 08 March 2023 Revised: 01 May 2023 Accepted: 09 May 2023 Published: 29 May 2023
  • MSC : 35J15, 35J20, 26D10

  • In this work, we are interested in studying the existence of nontrivial weak solutions to the following class of Schrödinger equations

    {div(w(x)u) = f(x,u), xB1(0),u = 0, xB1(0),

    where w(x)=(ln(1/|x|))β for some β[0,1), the nonlinearity f(x,s) behaves like exp((1+h(|x|))|s|2/(1β)) and h is a continuous radial function such that h(r) tends to infinity as r tends to 1. The proof involves variational methods and a new version of Trudinger-Moser inequality.

    Citation: Yony Raúl Santaria Leuyacc. Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two[J]. AIMS Mathematics, 2023, 8(8): 18354-18372. doi: 10.3934/math.2023933

    Related Papers:

    [1] Junjie Li, Gurpreet Singh, Onur Alp İlhan, Jalil Manafian, Yusif S. Gasimov . Modulational instability, multiple Exp-function method, SIVP, solitary and cross-kink solutions for the generalized KP equation. AIMS Mathematics, 2021, 6(7): 7555-7584. doi: 10.3934/math.2021441
    [2] Zhe Ji, Yifan Nie, Lingfei Li, Yingying Xie, Mancang Wang . Rational solutions of an extended (2+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation in liquid drop. AIMS Mathematics, 2023, 8(2): 3163-3184. doi: 10.3934/math.2023162
    [3] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Jalil Manafian, Khaled H. Mahmoud, Kottakkaran Sooppy Nisar, Wafaa B. Rabie . Derivation of some solitary wave solutions for the (3+1)- dimensional pKP-BKP equation via the IME tanh function method. AIMS Mathematics, 2024, 9(10): 27704-27720. doi: 10.3934/math.20241345
    [4] Wafaa B. Rabie, Hamdy M. Ahmed, Taher A. Nofal, Soliman Alkhatib . Wave solutions for the (3+1)-dimensional fractional Boussinesq-KP-type equation using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(11): 31882-31897. doi: 10.3934/math.20241532
    [5] Yu-Lan Ma, Bang-Qing Li . Mixed lump and soliton solutions for a generalized (3+1)-dimensional Kadomtsev-Petviashvili equation. AIMS Mathematics, 2020, 5(2): 1162-1176. doi: 10.3934/math.2020080
    [6] Boyu Wang . A splitting lattice Boltzmann scheme for (2+1)-dimensional soliton solutions of the Kadomtsev-Petviashvili equation. AIMS Mathematics, 2023, 8(11): 28071-28089. doi: 10.3934/math.20231436
    [7] Jian-Guo Liu, Wen-Hui Zhu, Yan He, Aly R. Seadawy . Complexiton solutions and periodic-soliton solutions for the (2+1)-dimensional BLMP equation. AIMS Mathematics, 2020, 5(1): 421-439. doi: 10.3934/math.2020029
    [8] M. A. Habib, H. M. Shahadat Ali, M. Mamun Miah, M. Ali Akbar . The generalized Kudryashov method for new closed form traveling wave solutions to some NLEEs. AIMS Mathematics, 2019, 4(3): 896-909. doi: 10.3934/math.2019.3.896
    [9] Kamyar Hosseini, Farzaneh Alizadeh, Sekson Sirisubtawee, Chaiyod Kamthorncharoen, Samad Kheybari, Kaushik Dehingia . Integrability, Hirota D-operator expression, multi solitons, breather wave, and complexiton of a generalized Korteweg-de Vries–Caudrey Dodd Gibbon equation. AIMS Mathematics, 2025, 10(3): 5248-5263. doi: 10.3934/math.2025242
    [10] Yuanqing Xu, Xiaoxiao Zheng, Jie Xin . New non-traveling wave solutions for (3+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation. AIMS Mathematics, 2021, 6(3): 2996-3008. doi: 10.3934/math.2021182
  • In this work, we are interested in studying the existence of nontrivial weak solutions to the following class of Schrödinger equations

    {div(w(x)u) = f(x,u), xB1(0),u = 0, xB1(0),

    where w(x)=(ln(1/|x|))β for some β[0,1), the nonlinearity f(x,s) behaves like exp((1+h(|x|))|s|2/(1β)) and h is a continuous radial function such that h(r) tends to infinity as r tends to 1. The proof involves variational methods and a new version of Trudinger-Moser inequality.



    The soliton solutions of nonlinear evolution equations (NLEE) play an important role to understand the various advantages of physical phenomena in fluids, plasmas, etc [1,2]. Rational solutions are a particular type of soliton solutions, which include lump and rogue waves.

    A rogue wave which is a type of rational solution is isolated. It is reported in [3,4] that the mean height of rogue waves is at least double times the height of the neighboring waves. Rogue waves come from nowhere and disappear with no trace [5,6] and superfluids [7]. The applications of rogue waves with their rational solutions for the Boussinesq equation can be found in [8].

    Rogue waves can be seen in the thick ocean [7,9], water tanks [10,11], and optical fibers [10,12].

    The purpose for the rogue wave is to understand the physics of the huge waves appearance and its relations to the environmental conditions (wind and atmospheric pressure).

    In the literature, many methods were proposed to derive the rogue wave solutions such as an inverse scattering method [13], Hirota bilinear method [14], Darboux transformation method [15], B¨acklund transformation method [16], variational direct method, simplified extended tanh-function method, Exp-function method, extended rational Sin-Cos and sinh-cosh methods. In [17] the author derives the periodic wave solution for the fractional complex nonlinear Fokas-Lenells equation via an ancient Chinese algorithm so called the Ying Bu Zu Shu. Also in [18] the authors deduced the abundant solitons and periodic solutions of the (1+2)-dimensional chiral nonlinear Schr¨odinger equation using the extended He's variational method. In [19] the same authors gave the explicit solutions for the Benney-Luke equation in dark solitary, dark-like solitary, kinky dark solitary and periodic wave solutions by the variational direct method (VDM).

    The KP equation is a nonlinear partial differential equation in one temporal and two or three spatial coordinate, describes the evolution of nonlinear long waves for small amplitudes.

    Furthermore, the (KP) equation was proposed to deal with slowly varying perturbation wave in dispersion media. This equation has been studied in a variety of scientific fields, such as solid state, physics, plasma physics, fiber optics, propagation of waves, oceanography [20].

    The importance of the nonlinear terms is to obtain the rogue waves which are nonlinear waves phenomena, so they can be represented with a variety of nonlinear wave equations. Bilinear equation was obtained for soliton equation only and can be used to handle the nonlinear wave equations.

    The novelty of this work is handling the higher-order rogue wave solution by the (KP)equation in form of two (3+1)-dimensional extensions

    The multi-rogue wave solutions are found for the (3+1)-dimensional Jimbo-Miwa equation [21] and (3+1)-dimensional Hirota bilinear equation based on the bilinear form for this equation using a symbolic computation approach [22]. It is noted that there are similarity between the results in the references [21,22] and the obtained results in this paper which prove the correctness of the proposed approach.

    N-soliton solutions are obtained based on the simplified Hirota approach and kinky-lump breather, combo line kink and kinky-lump breather are derived for (3+1)-dimensional Sharma-Tasso-Olver-like (STOL) model [23]. By the bilinear form for the extended BKPA-Boussinesq equation the abundant breather waves, multi-shocks waves and localized excitation solutions are obtained [24].

    The symbolic computation approach method was chosen because it is a simple method to obtain the higher order rogue wave solution without need to obtain a Darboux transformation [25].

    Multi rogue waves of the Boussinesq type equation [26,27,28].

    A rogue wave can be formed when wave energy is focused, usually during a storm. When the storm produces waves that go against the prevailing ocean current, the wave frequency shortens.

    In [29] the authors constructed the multiple lump solutions of the (3+1)-dimensional potential Yu-Toda-Sasa-Fukuyama equation in fluid dynamics, in [30] the authors studied (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. By adding some new constraints to the N-soliton solutions and the resonance Y-type soliton and in [31] the authors investigated the multiple lump solutions for the generalized (3+1)-dimensional KP equation. With the aid of the variable transformation

    In this work, section 2 introduces the description of the symbolic computation approach [32]. Section 3 introduces the multi-rogue waves and bilinear system of the first extended (3+1)-dimensional KP equation. The first, second, and third-order rogue waves for this equation are derived in subsections 3.1–3.3. Section 4 introduces the multi-rogue waves and bilinear form of the second extended (3+1)-dimensional KP equation. Subsections 4.1–4.3 introduces the derivations of the first, second, and third-order rogue waves for this equation. Section 5 introduces the results and conclusions of the outcome results.

    The nonlinear partial differential equations (NLEEs) are:

    H(u,ut,ux,uy,uz,uxt,uxy,uxz...)=0. (2.1)

    Here, H is a function in u(x,y,z,t) and its derivatives.

    The main steps of the proposed approach are:

    Step 1. Following the Painlève analysis

    u(x,y,z,t)=u(ζ,z). (2.2)

    Step 2. By using (2.2) in NLEEs (2.1), the Hirota's bilinear form is:

    F(Dζ,Dz)=0, (2.3)

    where ζ=x+yet. The D-operator is defined by [33]

    DkxDmyDnzDltg(x,y,z,t)f(x,y,z,t)=(1)k+m+n+l(xx)k(yy)m(zz)n(tt)l[f(x,y,z,t)g(x,y,z,t)]x=x,y=y,z=z,t=t. (2.4)

    Step 3. Let

    F=Gn+1(ζ,z;α,β)=2αzPn(ζ,z)+Fn+1(ζ,z)+2β(ζ)Qn(ζ,z)+(α2+β2)Fn1(ζ,z), (2.5)

    where

    Fn(ζ,z;α,β)=12n(n+1)k=0(ki=0z2ian(n+1)2k,2iζn(n+1)2k),Pn(ζ,z)=12n(n+1)k=0(ki=0z2ibn(n+1)2k,2iζn(n+1)2k),Qn(ζ,z)=12n(n+1)k=0(ki=0z2icn(n+1)2k,2iζn(n+1)2k). (2.6)

    F0=1,F1=P0=Q0=0, α,β,am,l,bm,l and cm.l,(m,l=0,2,4,....,n(n+1)) are real numbers. α,β are used to control the rogue-wave center.

    Step 4. By substituting (2.5) into (2.3) and taking the coefficients of z and ζ equal to zero, a system of polynomials is obtained.

    Step 5. For getting the multi rogue wave solutions in terms of z and ζ, the values of am,l,bm,l and cm,l are substituted into (2.5).

    The first extended (3+1)-dimensional KP equation [34]:

    (ut+δuux+μuxxx)x+χ(uxx+uyy+uzz)=0, (3.1)

    where δ,μ and χ are plasma parameters. And u is a wave amplitude functions in x,y,z and t. The rogue-waves solutions for (3.1) can be obtained by finding the Hirota bilinear form.

    In (3.1) setting ζ=x+dyet,

    μuζζζζ+(d2χ+δue+χ)uζζ+δu2ζ+χuzz=0. (3.2)

    Using the following variable transformation

    u=u0+12μδ(lnF)ζζ. (3.3)

    Where u0 is a constant, the Hirota bilinear form for (3.1) is obtained by substituting (3.3) into (3.2):

    (μD4ζ+(d2χ+δu0e+χ)D2ζ+χD2z)FF=0. (3.4)

    If χ=1,μ=(1/3),e=d2+δu0, then (3.1) converts to the Boussinesq equation [8].

    The multi rogue wave solutions of the first extended (3+1)-dimensional (KP) equation (3.1) can be obtained as follows.

    Here, F is selected as

    F=G1=a2,0ζ2+a0,2z2+a0,0. (3.5)

    Let a2,0=1 with no loss of generalization.

    The coefficients a0,0 and a0,2 are obtained by substituting (3.5) into (3.4) and taken zero value for the coefficients of all powers of z and ζ

    a0,0=3μd2χ+δu0+χe,a0,2=d2χ+δu0+χeχ. (3.6)

    The first-order rogue waves of Eq (3.1) is obtained by inserting (3.6) in (3.5) we get

    u=u0+12μδ(lnG1)ζζ, (3.7)

    where

    G1=(d2χ+δu0+χe)(zα)2χ+(ζβ)23μd2χ+δu0+χe. (3.8)

    Figure 1 shows first-order rogue wave solutions (3.7) at α=β=0. These solutions have three centers (0,0) and (±3μd2χ+δu0+χe,0). In three-dimensional, contour plot and the corresponding density plot is presented. It is remarked that there is one peak, and the first-order rogue wave has the minimum amplitude 8d2χ+7δu0+8χ8eδ at (0,0) and maximal amplitude d2χ+2δu0+χeδ at (3μd2χ+δU0+χe,0) when μ>0,d2χ+δu0+χ<e. The first-order rogue wave solutions (3.7) at α=5,β=5 the center of rogue wave will be (5,5) and (5d2χ5δu0+3χd2μδμu0χμ+eμ5χ+5ed2χ+δu0+χe,5) as shown in Figure 2, moreover, the minimal and maximal amplitudes also change into 8d2χ+7δu0+8χ8eδ and d2χ+2δu0+χeδ respectively.

    Figure 1.  The first-order rogue wave solution (3.7). (a) 3D plot; (b) Contour plot; (c) Density at α=β=0.
    Figure 2.  The first-order rogue wave solution (3.7). (d) 3D plot; (e) Contour plot; (f) Density at α=β=2.

    The second-order rogue wave solutions of Eq (3.1) can be found by setting n=1 in Eq (2.5) as:

    F=G2(ζ,z;α,β)=2αzP1(ζ,z)+F2(ζ,z)+2βζQ1(ζ,z)+(α2+β2)F0(ζ,z)=a6,0ζ6+(z2a4,2+a4,0)ζ4+2ζ3βc2,0+(z4a2,4+2αzb2,0+z2a2,2+a2,0)ζ2+2β(c0,2z2+c0,0)ζ+a0,6z6+a0,4z4+2αz3b0,2+a0,2z2+2αzb0,0+a0,0(α2+β2+1). (3.9)

    Substituting (3.9) in (3.4) and taking the coefficients of all powers of ζ and z equal to zero, the set of parameters am,l,bm,l,cm.l,(m,l=0,2,4,6) can be obtained as:

    a0,0=19((d2+1)χ+δu0e)3(α2+β2+1)(9(c2,02(d2+1)β2+19α2b2,02)(d2+1)2χ327(c2,02(d2+1)β2+2α2b2,0227)(d2+1)(δu0+e)χ2+27(c2,02(d2+1)β2+127α2b2,02)×(δu0+e)2χ9c2,02(δu0+e)3β216875μ3),a0,2=475μ2χ(d2χ+δu0+χe),a0,4=17μ(d2χ+δu0+χe)χ2,a0,6=(d2χ+δu0+χe)3χ3,a2,0=125μ2(d2χ+δu0+χe)2,a2,2=90μχ,a2,4=3(d2χ+δu0+χe)2χ2,a4,0=25μd2χ+δu0+χe,a4,2=3d2χ+3δu0+3χ3eχ,b0,0=5μb2,03d2χ+3δu0+3χ3e,b0,2=b2,0(d2χ+δu0+χe)3χ,c0,0=μc2,0d2χ+δu0+χe,c0,2=3(d2χ+δu0+χe)c2,0χ, (3.10)

    where b2,0 and c2,0 {are} arbitrary parameters.

    The second-order rogue wave of Eq (3.1) can be found as:

    u=u0+12μδ(lnG2(ζ,z;α,β))ζζ. (3.11)

    Figures 3 and 4 show the two high peaks of the second-order rogue waves for (3.11) at α=β=0. The second-order peak breaks apart and for sufficiently big parameters at α=β=1000. The set of three first order rogue waves are forming a triangle called rogue wave triplet.

    Figure 3.  The second-order rogue wave solution (3.11). (a) 3D plot; (b) Contour plot; (c) Density at α=β=0.
    Figure 4.  The second-order rogue wave solution (3.11). (d) 3D plot; (e) Contour plot; (f) Density at α=β=1000.

    The third-order rogue wave of Eq (3.1) is given by establishing n=2 in Eq (2.5) as follows:

    F=G3(ζ,z;α,β)=2αzP2(ζ,z)+F3(ζ,z)+2βζQ2(ζ,z)+(α2+β2)F1(ζ,z)=a12,0ζ12+a10,0ζ10+a10,2z2ζ10+a8,0ζ8+a8,2z2ζ8+a8,4z4ζ8+ζ6+a6,2z2ζ6+a6,4z4ζ6+a6,6z6ζ6+a4,0ζ4+a4,2z2ζ4+a4,4z4ζ4+a4,6z6ζ4+a4,8z8ζ4+a2,0ζ2+a2,2z2ζ2+a2,4z4ζ2+a2,6z6ζ2+a2,8z8ζ2+a2,10z10ζ2+2β(c6,0ζ6+c4,2z2ζ4+c4,0ζ4+c2,4z4ζ2+c2,2z2ζ2+c2,0ζ2+c0,6z6+c0,4z4+c0,2z2+c0,0)(ζ)+(α2+β2)(a2,0ζ2+a0,2z2+a0,0)+a0,0+2αz(b6,0ζ6+b4,2z2ζ4+b4,0ζ4+b2,4z4ζ2+b2,2z2ζ2+b2,0ζ2+b0,6z6+b0,4z4+b0,2z2+b0,0)+a0,2z2+a0,4z4+a0,6z6+a0,8z8+a0,10z10+a0,12z12. (3.12)

    Substituting (3.12) in (3.4) and taken all coefficients of all powers of ζ and z equal to zero, the set of parameters am,l,bm,l,cm.l,(m,l=0,2,4,6) are found as:

    a0,0=11863225((d2+1)χ+δu0e)6μ(α2+β2+1)(33075(d2+1)6×(β2d2c4,02+β2c4,02+169α2b4,0211025)χ7+231525(δu0+e)(d2+1)5(β2d2c4,02+β2c4,02+338α2b4,0225725)χ6694575(δu0+e)2(β2d2c4,02+β2c4,02+169α2b4,0215435)(d2+1)4χ5+1157625(β2d2c4,02+β2c4,02+676α2b4,0277175)(δu0+e)3(d2+1)3χ41157625(δu0+e)4(d2+1)2(β2d2c4,02+β2c4,02+169α2b4,0225725)χ3+694575(δu0+e)5(d2+1)(β2d2c4,02+β2c4,02+338α2b4,0277175)χ2231525(δu0+e)6(β2d2c4,02+β2c4,02+169α2b4,0277175)χ33075β2δ7u07c4,02+231525β2δ6eu06c4,02694575β2δ5e2u05c4,02+1157625β2δ4e3u04c4,021157625β2δ3e4u03c4,02+694575β2δ2e5u02c4,02231525β2δe6u0c4,02+33075β2e7c4,02+181938957825625μ7),a0,2=11863225((d2+1)χ+δu0e)4μ2χ(α2+β2+1)×(11025(d2+1)6(β2d2c4,02+β2c4,02+169α2b4,0211025)χ777175(δu0+e)(d2+1)5×(β2d2c4,02+β2c4,02+338α2b4,0225725)χ6+231525(δu0+e)2(β2d2c4,02+β2c4,02+169α2b4,0215435)(d2+1)4χ5385875(β2d2c4,02+β2c4,02+676α2b4,0277175)(δu0+e)3(d2+1)3χ4+385875(δu0+e)4(d2+1)2(β2d2c4,02+β2c4,02+169α2b4,0225725)χ3231525(δu0+e)5(d2+1)(β2d2c4,02+β2c4,02+338α2b4,0277175)χ2+77175(δu0+e)6(β2d2c4,02+β2c4,02+169α2b4,0277175)χ+11025β2δ7u07c4,0277175β2δ6eu06c4,02+231525β2δ5e2u05c4,02385875β2δ4e3u04c4,02+385875β2δ3e4u03c4,02231525β2δ2e5u02c4,02+77175β2δe6u0c4,0211025β2e7c4,02186879449006250μ7),a0,4=16391725μ43(d2χ+δu0+χe)2χ2,a0,6=798980μ33χ3,a0,8=4335(d2χ+δu0+χe)2μ2χ4,a0,10=58(d2χ+δu0+χe)4μχ5,a0,12=(d2χ+δu0+χe)6χ6,a2,0=11863225((d2+1)χ+δu0e)5μ2(α2+β2+1)×(11025(d2+1)6(β2d2c4,02+β2c4,02+169α2b4,0211025)χ777175(δu0+e)(d2+1)5×(β2d2c4,02+β2c4,02+338α2b4,0225725)χ6+231525(δu0+e)2(β2d2c4,02+β2c4,02+169α2b4,0215435)(d2+1)4χ5385875(β2d2c4,02+β2c4,02+676α2b4,0277175)(δu0+e)3×(d2+1)3χ4+385875(δu0+e)4(d2+1)2(β2d2c4,02+β2c4,02+169α2b4,0225725)χ3231525(δu0+e)5(d2+1)(β2d2c4,02+β2c4,02+338α2b4,0277175)χ2+77175(δu0+e)6×(β2d2c4,02+β2c4,02+169α2b4,0277175)χ+11025β2δ7u07c4,0277175β2δ6eu06c4,02+231525β2δ5e2u05c4,02385875β2δ4e3u04c4,02+385875β2δ3e4u03c4,02231525β2δ2e5u02c4,02+77175β2δe6u0c4,0211025β2e7c4,0299239431541250μ7),a2,2=565950μ4(d2χ+δu0+χe)3χ,a2,4=14700μ3χ2(d2χ+δu0+χe),a2,6=35420(d2χ+δu0+χe)μ2χ3,a2,8=570(d2χ+δu0+χe)3μχ4,a2,10=6(d2χ+δu0+χe)5χ5,a4,0=5187875μ43(d2χ+δu0+χe)4,a4,2=220500μ3(d2χ+δu0+χe)2χ,a4,4=37450μ2χ2,a4,6=1460(d2χ+δu0+χe)2μχ3,a4,8=15(d2χ+δu0+χe)4χ4,a6,0=75460μ33(d2χ+δu0+χe)3,a6,2=18620μ2χ(d2χ+δu0+χe),a6,4=1540μ(d2χ+δu0+χe)χ2,a6,6=20(d2χ+δu0+χe)3χ3,a8,0=735μ2(d2χ+δu0+χe)2,a8,2=690μχ,a8,4=15(d2χ+δu0+χe)2χ2,a10,0=98μd2χ+δu0+χe,a10,2=6d2χ+6δu0+6χ6eχ,b0,0=539b4,0μ29(d2χ+δu0+χe)2,b0,2=7μb4,03χ,b0,4=(d2χ+δu0+χe)2b4,015χ2,b0,6=(d2χ+δu0+χe)4b4,0105μχ3,b2,0=19μb4,03d2χ+3δu0+3χ3e,b2,2=38b4,0(d2χ+δu0+χe)21χ,b2,4=3(d2χ+δu0+χe)3b4,035μχ2,b4,2=(d2χ+δu0+χe)2b4,021χμ,b6,0=b4,0(d2χ+δu0+χe)21μ,c0,0=12005c4,0μ239(d2χ+δu0+χe)2,c0,2=535μc4,013χ,c0,4=45(d2χ+δu0+χe)2c4,013χ2,c0,6=5(d2χ+δu0+χe)4c4,013μχ3,c2,0=245μc4,013d2χ+13δu0+13χ13e,c2,2=230c4,0(d2χ+δu0+χe)13χ,c2,4=5(d2χ+δu0+χe)3c4,013μχ2,c4,2=9(d2χ+δu0+χe)2c4,013χμ,c6,0=c4,0(d2χ+δu0+χe)13μ, (3.13)

    where b4,0 and c4,0 are arbitrary constants.

    Then the third-order rogue wave solution for Eq (3.1) is defined as:

    u=u0+12μδ(lnG3(ζ,z;α,β))ζζ. (3.14)

    Figures 5 and 6 show three high peaks of the third-order rogue waves for (3.14) at α=β=0. The third-order peak breaks apart and for sufficiently big parameters at α=β=108, the third-order rogue waves consist of five first-order rogue waves. These waves are located in the corners of a pentagon and the other sit in the center.

    Figure 5.  The third-order rogue wave solution (3.14). (a) 3D plot; (b) Contour plot; (c) Density at α=β=0.
    Figure 6.  The third-order rogue wave solution (3.14). (d) 3D plot; (e) Contour plot; (f) Density at α=β=108.

    The second extended (3+1)-dimensional (KP) equation [34] is:

    (ut+δuux+μuxxx)x+χ(uxx+uyy+uzz)+ρ(uxy+uyz+uzx)=0, (4.1)

    where δ,μ,χ and ρ are constants and u is a wave amplitude functions in x,y,z and t.

    The rogue-waves solutions for (4.1) can be obtained by finding the Hirota bilinear form by setting ζ=x+dyet. Then, the ODE of (4.1) can be obtained as:

    μuζζζζ+(δue+2χρ)uζζ+δu2ζ+χuzz=0. (4.2)

    Using the following variable transformation

    u=u0+12μδ(lnF)ζζ. (4.3)

    Then we can obtain the Hirota bilinear form for (4.1) by inserting (4.3) into (4.2) as

    (μD4ζ+(δu0e+2χρ)uζζ+χD2z)FF=0. (4.4)

    The multi rogue wave solutions of the second extended (3+1)-dimensional KP equation (4.1) are given as Figures 7 and 8.

    Figure 7.  The first-order rogue wave solution (4.6). (a) 3D plot; (b) Contour plot; (c) Density at α=β=0.
    Figure 8.  The first-order rogue wave solution (4.6). (d) 3D plot; (e) Contour plot; (f) Density at α=β=5.

    The coefficients a0,0 and a0,2 in Eq (3.5) can be give as follows

    a0,0=3μδu02χ+e+ρ,a0,2=δu0+2χeρχ. (4.5)

    Inserting (4.5) into (3.5), the first-order rogue waves for Eq (4.1) can be obtained in the form

    u=u0+12μδ(lnF)ζζ, (4.6)

    where

    F=δu0+2χeρχ(zα)2+(ζβ)2+3μδu02χ+e+ρ. (4.7)

    The first-order rogue wave solutions (4.6) when α=β=0 are shown in Figure 7. This figure has three centers (0,0) and (±3μδu0+2χeρ,0) in three-dimensional, contour plot and the corresponding density plot. It is remarked that, there is one peak only because energy of the rogue wave is focused on the high peaks. The first-order rogue wave has the minimal amplitude 7δu016χ+8e+8ρδ at (0,0) and maximal amplitude 2δu0+2χeρδ at (±3μδu0+2χeρ,0) where μ>0,χ<12(δu0+e+ρ). The first-order rogue wave solutions (4.6) at α=5,β=5 with the centers of rogue wave will be at (5,5) and (5δu05e+10χ5ρ3μ(δu02χ+e+ρ)δu02χ+e+ρ,5) as shown in Figure 8. The minimal and maximal amplitudes are changing into 7δu016χ+8e+8ρδ and 2δu0+2χeρδ respectively.

    For this case the second-order rogue wave solutions of Eq (4.1) is:

    u=u0+12μδ(lnG2(ζ,z;α,β))ζζ, (4.8)

    where G2(ζ,z;α,β)) is given by (3.9) with n=1 and

    a0,0=1(9α2+9β2+9)(δu02χ+e+ρ)3(9c2,02(δu02χ+e+ρ)3β24α2χ3b2,02+4α2b2,02(δu0+e+ρ)χ2α2b2,02(δu0+e+ρ)2χ+16875μ3),a0,2=475μ2χ(δu02χ+e+ρ),a0,4=17μ(δu02χ+e+ρ)χ2,a0,6=(δu02χ+e+ρ)3χ3,a2,0=125μ2(δu02χ+e+ρ)2,a2,2=90μχ,a2,4=3(δu02χ+e+ρ)2χ2,a4,0=25μδu02χ+e+ρ,a4,2=3δu0+6χ3e3ρχ,b0,0=5μb2,03δu0+6χ3e3ρ,b0,2=b2,0(δu02χ+e+ρ)3χ,c0,0=μc2,0δu02χ+e+ρ,c0,2=3c2,0(δu02χ+e+ρ)χ, (4.9)

    where b2,0 and c2,0 is an arbitrary parameters.

    In Figures 9 and 10, the two high peaks of the second-order rogue waves of (4.6) at α=β=0 are shown. At sufficiently big parameters, the set of three first order rogue waves forms and the centers are formed a triangle entitled a rogue wave triplet.

    Figure 9.  The second-order rogue wave solution (4.8). (a) 3D plot; (b) Contour plot; (c) Density at α=β=0.
    Figure 10.  The second-order rogue wave solution (4.8). (a) 3D plot; (b) Contour plot; (c) Density at α=β=1000.

    The third-order rogue wave solutions for this case of Eq (4.1) can be obtained as follows

    u=u0+12μδ(lnG3(ζ,z;α,β))ζζ, (4.10)

    where G3(ζ,z;α,β)) is given by (3.12) with n=2 and

    a0,0=11863225μ(α2+β2+1)(δu02χ+e+ρ)6((32448α2b4,024233600c4,02β2)χ7+14817600(c4,02β2+169α2b4,0225725)(δu0+e+ρ)χ622226400(δu0+e+ρ)2(c4,02β2+169α2b4,0230870)χ5+18522000(c4,02β2+338α2b4,0277175)(δu0+e+ρ)3χ49261000(c4,02β2+169α2b4,0251450)(δu0+e+ρ)4χ3+2778300(δu0+e+ρ)5(c4,02β2+169α2b4,0277175)χ2463050(c4,02β2+169α2b4,02154350)(δu0+e+ρ)6χ33075β2δ7u07c4,02+231525c4,02β2δ6×(e+ρ)u06694575c4,02β2δ5(e+ρ)2u05+1157625c4,02β2δ4(e+ρ)3u041157625c4,02β2δ3×(e+ρ)4u03+694575c4,02β2δ2(e+ρ)5u02231525c4,02β2δ(e+ρ)6u0+33075β2e7c4,02+231525β2e6ρc4,02+694575β2e5ρ2c4,02+1157625β2e4ρ3c4,02+1157625β2e3ρ4c4,02+694575β2e2ρ5c4,02+231525β2eρ6c4,02+33075β2ρ7c4,02+181938957825625μ7),a0,2=1(1863225α2+1863225β2+1863225)(δu02χ+e+ρ)4μ2χ((10816α2b4,02+1411200c4,02β2)χ74939200(c4,02β2+169α2b4,0225725)(δu0+e+ρ)χ6+7408800(δu0+e+ρ)2(c4,02β2+169α2b4,0230870)χ56174000(c4,02β2+338α2b4,0277175)(δu0+e+ρ)3χ4+3087000(c4,02β2+169α2b4,0251450)(δu0+e+ρ)4χ3926100(δu0+e+ρ)5(c4,02β2+169α2b4,0277175)χ2+154350(c4,02β2+169α2b4,02154350)(δu0+e+ρ)6χ+11025β2δ7u07c4,0277175c4,02β2δ6(e+ρ)u06+231525c4,02β2δ5(e+ρ)2u05385875c4,02β2δ4(e+ρ)3u04+385875c4,02β2δ3(e+ρ)4u03231525c4,02β2δ2(e+ρ)5u02+77175c4,02β2δ(e+ρ)6u011025β2e7c4,0277175β2e6ρc4,02231525β2e5ρ2c4,02385875β2e4ρ3c4,02385875β2e3ρ4c4,02231525β2e2ρ5c4,0277175β2eρ6c4,0211025β2ρ7c4,02186879449006250μ7),a0,4=16391725μ43χ2(δu02χ+e+ρ)2,a0,6=798980μ33χ3,a0,8=4335(δu02χ+e+ρ)2μ2χ4,a0,10=58μ(δu02χ+e+ρ)4χ5,a0,12=(δu02χ+e+ρ)6χ6,a2,0=1(1863225α2+1863225β2+1863225)(δu02χ+e+ρ)5μ2×((10816α2b4,021411200c4,02β2)χ7+4939200(c4,02β2+169α2b4,0225725)(δu0+e+ρ)χ67408800(δu0+e+ρ)2(c4,02β2+169α2b4,0230870)χ5+6174000(c4,02β2+338α2b4,0277175)×(δu0+e+ρ)3χ43087000(c4,02β2+169α2b4,0251450)(δu0+e+ρ)4χ3+926100(δu0+e+ρ)5(c4,02β2+169α2b4,0277175)χ2154350(c4,02β2+169α2b4,02154350)×(δu0+e+ρ)6χ11025β2δ7u07c4,02+77175c4,02β2δ6(e+ρ)u06231525c4,02β2δ5×(e+ρ)2u05+385875c4,02β2δ4(e+ρ)3u04385875c4,02β2δ3(e+ρ)4u03+231525c4,02β2δ2×(e+ρ)5u0277175c4,02β2δ(e+ρ)6u0+11025β2e7c4,02+77175β2e6ρc4,02+231525β2e5ρ2c4,02+385875β2e4ρ3c4,02+385875β2e3ρ4c4,02+231525β2e2ρ5c4,02+77175β2eρ6c4,02+11025β2ρ7c4,02+99239431541250μ7),a2,2=565950μ4χ(δu02χ+e+ρ)3,a2,4=14700μ3χ2(δu02χ+e+ρ),a2,6=35420μ2(δu02χ+e+ρ)χ3,a2,8=570(δu02χ+e+ρ)3μχ4,a2,10=6(δu02χ+e+ρ)5χ5,a4,0=5187875μ43(δu02χ+e+ρ)4,a4,2=220500μ3χ(δu02χ+e+ρ)2,a4,4=37450μ2χ2,a4,6=1460(δu02χ+e+ρ)2μχ3,a4,8=15(δu02χ+e+ρ)4χ4,a6,0=75460μ33(δu02χ+e+ρ)3,a6,2=18620μ2χ(δu02χ+e+ρ),a6,4=1540(δu02χ+e+ρ)μχ2,a6,6=20(δu02χ+e+ρ)3χ3,a8,0=735μ2(δu02χ+e+ρ)2,a8,2=690μχ,a8,4=15(δu02χ+e+ρ)2χ2,a10,0=98μδu02χ+e+ρ,a10,2=6δu0+12χ6e6ρχ,b0,0=539μ2b4,09(δu02χ+e+ρ)2,b0,2=7μb4,03χ,b0,4=b4,0(δu02χ+e+ρ)215χ2,b0,6=b4,0(δu02χ+e+ρ)4105μχ3,b2,0=19μb4,03δu0+6χ3e3ρ,b2,2=38b4,0(δu02χ+e+ρ)21χ,b2,4=3b4,0(δu02χ+e+ρ)335μχ2,b4,2=b4,0(δu02χ+e+ρ)221μχ,b6,0=b4,0(δu02χ+e+ρ)21μ,c0,0=12005μ2c4,039(δu02χ+e+ρ)2,c0,2=535μc4,013χ,c0,4=45c4,0(δu02χ+e+ρ)213χ2,c0,6=5c4,0(δu02χ+e+ρ)413μχ3,c2,0=245μc4,013δu0+26χ13e13ρ,c2,2=230c4,0(δu02χ+e+ρ)13χ,c2,4=5c4,0(δu02χ+e+ρ)313μχ2,c4,2=9c4,0(δu02χ+e+ρ)213μχ,c6,0=c4,0(δu02χ+e+ρ)13μ, (4.11)

    where b4,0 and c4,0 are arbitrary constants.

    In Figures 11 and 12, the three high peaks of the third-order rogue waves for (4.6) at α=β=0 are introduced. The third-order peak breaks apart and for sufficiently big parameters for α=β=108, the third-order rogue waves consists of five first-order rogue waves are located in the corners of a pentagon and other one sites in the center.

    Figure 11.  The third-order rogue wave solution (4.10). (a) 3D plot; (b) Contour plot; (c) Density at α=β=0.
    Figure 12.  The third-order rogue wave solution (4.10). (a) 3D plot; (b) Contour plot; (c) Density at α=β=108.

    In this paper, we investigated the first, second, and third-order rogue waves for two (3+1)-dimensional extensions of the (KP) equation by the bilinear method via the symbolic computation approach. The properties of the two (3+1)-dimensional extensions of the (KP) equation are examined by introducing several figures. The obtained higher-order rogue waves have the property limx±=limy±=limz±=limt±=u0. The figures were depicted in three dimensional, contour and density with the center controlled by the parameters α and β. The results obtained in this work are useful to understand the dynamic behaviors of higher-rogue waves in the deep ocean and nonlinear optical fibers. Thus, the characteristics of these solutions are discussed through some diverting graphics under different parameter choices. The dynamics behaviors of higher-rogue waves related to the optical rogue waves are pulses of light similar to rogue or freak ocean waves. Rogue waves in optical fibers can be described mathematically by the nonlinear Schr¨odinger equation and its extensions that take into account third-order dispersion. We can apply this technique to completely integrable nonlinear evolution equations.

    The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha, Saudi Arabia, for funding this work through the Research Group Project under Grant Number (RGP. 2/36/43). This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R229), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

    All authors declare that they have no conflicts of interest.



    [1] A. Adimurthi, Existence of positive solutions of the semilinear Dirichlet Problem with critical growth for the N-Laplacian, Ann. Sc. Norm. Sup. Pisa IV, 17 (1990), 393–413.
    [2] S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of R2 involving critical exponent, Ann. Sc. Norm. Sup. Pisa-Classe di Scienze, 17 (1990), 481–504.
    [3] F. S. B. Albuquerque, C. O. Alves, E. S. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2, J. Math. Anal. Appl., 409 (2014) 1021–1031. https://doi.org/10.1016/j.jmaa.2013.07.005 doi: 10.1016/j.jmaa.2013.07.005
    [4] A. Alvino, A. V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364
    [5] T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555–3561. https://doi.org/10.1016/S0362-546X(03)00020-8 doi: 10.1016/S0362-546X(03)00020-8
    [6] H. Brézis, Elliptic equations with limiting Sobolev exponents, Comm. Pure Appl. Math., 39 (1986), 517–539. https://doi.org/10.1002/cpa.3160390704 doi: 10.1002/cpa.3160390704
    [7] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [8] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Part. Diff. Eq., 5 (1980), 773–789. https://doi.org/10.1080/03605308008820154 doi: 10.1080/03605308008820154
    [9] M. Calanchi, B. Ruf, On a Trudinger–Moser type inequality with logarithmic weights, J. Differ. Equ., 258 (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019 doi: 10.1016/j.jde.2014.11.019
    [10] M. Calanchi, B. Ruf, Trudinger–Moser type inequalities with logarithmic weights in dimension N. Nonlinear Anal.-Theor., 121 (2015), 403–411. https://doi.org/10.1016/j.na.2015.02.001 doi: 10.1016/j.na.2015.02.001
    [11] D. Cassani, C. Tarsi A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in RN, Asymptot. Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934
    [12] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Ins. Henri Poincaré, Analyse Non linéair, 2 (1985), 463–470. https://doi.org/10.1016/S0294-1449(16)30395-X doi: 10.1016/S0294-1449(16)30395-X
    [13] L. Chen, G. Lu, M. Zhu, A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrödinger equations, Science China Mathematics, 64 (2021), 1391–1410. https://doi.org/10.1007/s11425-020-1872-x doi: 10.1007/s11425-020-1872-x
    [14] L. Chen, G. Lu, M. Zhu, M.. Least energy solutions to quasilinear subelliptic equations with constant and degenerate potentials on the Heisenberg group. P. Lond. Math. Soc., 126 (2022), 518–555. https://doi.org/10.1112/plms.12495 doi: 10.1112/plms.12495
    [15] D. G. de Figueiredo, O. H. Miyagaki, R. Ruf, Elliptic equations in R2 with nonlinearities in the critical growth range, Calc. Var., 3(1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
    [16] S. Ibrahim, N. Masmoudi, K. Nakanishi, Trudinger–Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc., 17 (2015), 819–835. https://doi.org/10.4171/JEMS/519 doi: 10.4171/JEMS/519
    [17] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer-Verlag, Paris, 1993.
    [18] A. Kufner, Weighted Sobolev spaces, Leipzig Teubner-Texte zur Mathematik, 1980.
    [19] Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential growth, Bound. Value Probl., 39 (2023), 1–17. https://doi.org/10.1186/s13661-023-01725-2 doi: 10.1186/s13661-023-01725-2
    [20] Y. R. S. Leuyacc, A nonhomogeneous Schrödinger equation involving nonlinearity with exponential critical growth and potential which can vanish at infinity, Results Appl. Math., 17 (2023), 100348. https://doi.org/10.1016/j.rinam.2022.100348 doi: 10.1016/j.rinam.2022.100348
    [21] Y. Leuyacc, S. Soares, On a Hamiltonian system with critical exponential growth, Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
    [22] G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. https://doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046
    [23] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077–1092. https://doi.org/10.1512/iumj.1971.20.20101 doi: 10.1512/iumj.1971.20.20101
    [24] Q. A. Ngô, V. H. Nguyen, Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ., 59 (2020), 69. https://doi.org/10.1007/s00526-020-1705-y doi: 10.1007/s00526-020-1705-y
    [25] S. Pohožaev, The Sobolev embedding in the special case pl=n, Moscow. Energet. Inst., (1965), 158–170.
    [26] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
    [27] P. Roy, On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions, Discrete and Continuous Dynamical Systems, 39 (2019), 5207–5222. https://doi.org/10.3934/dcds.2019212 doi: 10.3934/dcds.2019212
    [28] P. Roy, Extremal function for Moser–Trudinger type inequality with logarithmic weight, Nonlinear Anal.-Theor., 135 (2016), 194–204. https://doi.org/10.1016/j.na.2016.01.024 doi: 10.1016/j.na.2016.01.024
    [29] B. Ruf, F. Sani, Ground States for Elliptic Equations in R2 with Exponential Critical Growth, Geometric properties for parabolic and elliptic PDE'S, (2013), 251–267. https://doi.org/10.1007/978-88-470-2841-8_16 doi: 10.1007/978-88-470-2841-8_16
    [30] Y. R. Santaria-Leuyacc, Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity, Proyecciones, 38 (2019), 325–351. https://doi.org/10.4067/S0716-09172019000200325 doi: 10.4067/S0716-09172019000200325
    [31] Y. R. Santaria-Leuyacc, Standing waves for quasilinear Schrödinger equations involving double exponential growth, AIMS Math. 8 (2023), 1682–1695. https://doi.org/10.3934/math.2023086 doi: 10.3934/math.2023086
    [32] S. H. M. Soares, Y. R. S. Leuyacc, Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity, Commun. Contemp. Math., 20 (2018), 1750053. https://doi.org/10.1142/S0219199717500535 doi: 10.1142/S0219199717500535
    [33] S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, Math. Nachr., 292 (2019), 137–158. https://doi.org/10.1002/mana.201700215 doi: 10.1002/mana.201700215
    [34] M. de Souza, J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Math. Nachr. 284 (2011), 1754–1776. https://doi.org/10.1002/mana.201000083 doi: 10.1002/mana.201000083
    [35] N. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. https://doi.org/10.1512/iumj.1968.17.17028 doi: 10.1512/iumj.1968.17.17028
    [36] M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996.
    [37] V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808.
  • This article has been cited by:

    1. Yujie Sun, Jiaojiao Wu, Biao Li, Rogue wave solutions of (3+1)-dimensional Kadomtsev-Petviashvili equation by a direct limit method, 2023, 75, 0253-6102, 065002, 10.1088/1572-9494/accb40
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1361) PDF downloads(91) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog