Research article

Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two

  • Received: 08 March 2023 Revised: 01 May 2023 Accepted: 09 May 2023 Published: 29 May 2023
  • MSC : 35J15, 35J20, 26D10

  • In this work, we are interested in studying the existence of nontrivial weak solutions to the following class of Schrödinger equations

    $ \left\lbrace\begin{array}{rcll} -{\rm div}(w(x)\nabla u) \ & = &\ f(x, u), &\ x \in B_1(0), \\ u \ & = &\ 0, &\ x \in \partial B_1(0), \end{array}\right. $

    where $ w(x) = \big(\ln (1/|x|)\big)^{\beta} $ for some $ \beta \in [0, 1) $, the nonlinearity $ f(x, s) $ behaves like $ {\rm \exp}((1+h(|x|))|s|^{2/(1-\beta)}) $ and $ h $ is a continuous radial function such that $ h(r) $ tends to infinity as $ r $ tends to $ 1 $. The proof involves variational methods and a new version of Trudinger-Moser inequality.

    Citation: Yony Raúl Santaria Leuyacc. Supercritical Trudinger-Moser inequalities with logarithmic weights in dimension two[J]. AIMS Mathematics, 2023, 8(8): 18354-18372. doi: 10.3934/math.2023933

    Related Papers:

  • In this work, we are interested in studying the existence of nontrivial weak solutions to the following class of Schrödinger equations

    $ \left\lbrace\begin{array}{rcll} -{\rm div}(w(x)\nabla u) \ & = &\ f(x, u), &\ x \in B_1(0), \\ u \ & = &\ 0, &\ x \in \partial B_1(0), \end{array}\right. $

    where $ w(x) = \big(\ln (1/|x|)\big)^{\beta} $ for some $ \beta \in [0, 1) $, the nonlinearity $ f(x, s) $ behaves like $ {\rm \exp}((1+h(|x|))|s|^{2/(1-\beta)}) $ and $ h $ is a continuous radial function such that $ h(r) $ tends to infinity as $ r $ tends to $ 1 $. The proof involves variational methods and a new version of Trudinger-Moser inequality.



    加载中


    [1] A. Adimurthi, Existence of positive solutions of the semilinear Dirichlet Problem with critical growth for the N-Laplacian, Ann. Sc. Norm. Sup. Pisa IV, 17 (1990), 393–413.
    [2] S. L. Yadava, Multiplicity results for semilinear elliptic equations in a bounded domain of $ \mathbb{R}^2$ involving critical exponent, Ann. Sc. Norm. Sup. Pisa-Classe di Scienze, 17 (1990), 481–504.
    [3] F. S. B. Albuquerque, C. O. Alves, E. S. Medeiros, Nonlinear Schrödinger equation with unbounded or decaying radial potentials involving exponential critical growth in $\mathbb{R}^2$, J. Math. Anal. Appl., 409 (2014) 1021–1031. https://doi.org/10.1016/j.jmaa.2013.07.005 doi: 10.1016/j.jmaa.2013.07.005
    [4] A. Alvino, A. V. Ferone, G. Trombetti, Moser-type inequalities in Lorentz spaces, Potential Anal., 5 (1996), 273–299. https://doi.org/10.1007/BF00282364 doi: 10.1007/BF00282364
    [5] T. Bartsh, M. Willem, On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555–3561. https://doi.org/10.1016/S0362-546X(03)00020-8 doi: 10.1016/S0362-546X(03)00020-8
    [6] H. Brézis, Elliptic equations with limiting Sobolev exponents, Comm. Pure Appl. Math., 39 (1986), 517–539. https://doi.org/10.1002/cpa.3160390704 doi: 10.1002/cpa.3160390704
    [7] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 36 (1983), 437–477. https://doi.org/10.1002/cpa.3160360405 doi: 10.1002/cpa.3160360405
    [8] H. Brezis, S. Wainger, A note on limiting cases of Sobolev embeddings and convolution inequalities, Commun. Part. Diff. Eq., 5 (1980), 773–789. https://doi.org/10.1080/03605308008820154 doi: 10.1080/03605308008820154
    [9] M. Calanchi, B. Ruf, On a Trudinger–Moser type inequality with logarithmic weights, J. Differ. Equ., 258 (2015), 1967–1989. https://doi.org/10.1016/j.jde.2014.11.019 doi: 10.1016/j.jde.2014.11.019
    [10] M. Calanchi, B. Ruf, Trudinger–Moser type inequalities with logarithmic weights in dimension N. Nonlinear Anal.-Theor., 121 (2015), 403–411. https://doi.org/10.1016/j.na.2015.02.001 doi: 10.1016/j.na.2015.02.001
    [11] D. Cassani, C. Tarsi A Moser-type inequalities in Lorentz-Sobolev spaces for unbounded domains in $ \mathbb{R}^N$, Asymptot. Anal., 64 (2009), 29–51. https://doi.org/10.3233/ASY-2009-0934 doi: 10.3233/ASY-2009-0934
    [12] A. Capozzi, D. Fortunato, G. Palmieri, An existence result for nonlinear elliptic problems involving critical Sobolev exponent, Ann. Ins. Henri Poincaré, Analyse Non linéair, 2 (1985), 463–470. https://doi.org/10.1016/S0294-1449(16)30395-X doi: 10.1016/S0294-1449(16)30395-X
    [13] L. Chen, G. Lu, M. Zhu, A critical Trudinger-Moser inequality involving a degenerate potential and nonlinear Schrödinger equations, Science China Mathematics, 64 (2021), 1391–1410. https://doi.org/10.1007/s11425-020-1872-x doi: 10.1007/s11425-020-1872-x
    [14] L. Chen, G. Lu, M. Zhu, M.. Least energy solutions to quasilinear subelliptic equations with constant and degenerate potentials on the Heisenberg group. P. Lond. Math. Soc., 126 (2022), 518–555. https://doi.org/10.1112/plms.12495 doi: 10.1112/plms.12495
    [15] D. G. de Figueiredo, O. H. Miyagaki, R. Ruf, Elliptic equations in $ \mathbb{R}^2$ with nonlinearities in the critical growth range, Calc. Var., 3(1995), 139–153. https://doi.org/10.1007/BF01205003 doi: 10.1007/BF01205003
    [16] S. Ibrahim, N. Masmoudi, K. Nakanishi, Trudinger–Moser inequality on the whole plane with the exact growth condition, J. Eur. Math. Soc., 17 (2015), 819–835. https://doi.org/10.4171/JEMS/519 doi: 10.4171/JEMS/519
    [17] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Springer-Verlag, Paris, 1993.
    [18] A. Kufner, Weighted Sobolev spaces, Leipzig Teubner-Texte zur Mathematik, 1980.
    [19] Y. R. S. Leuyacc, A class of Schrödinger elliptic equations involving supercritical exponential growth, Bound. Value Probl., 39 (2023), 1–17. https://doi.org/10.1186/s13661-023-01725-2 doi: 10.1186/s13661-023-01725-2
    [20] Y. R. S. Leuyacc, A nonhomogeneous Schrödinger equation involving nonlinearity with exponential critical growth and potential which can vanish at infinity, Results Appl. Math., 17 (2023), 100348. https://doi.org/10.1016/j.rinam.2022.100348 doi: 10.1016/j.rinam.2022.100348
    [21] Y. Leuyacc, S. Soares, On a Hamiltonian system with critical exponential growth, Milan J. Math., 87 (2019), 105–140. https://doi.org/10.1007/s00032-019-00294-3 doi: 10.1007/s00032-019-00294-3
    [22] G. Lu, H. Tang, Sharp singular Trudinger-Moser inequalities in Lorentz-Sobolev spaces, Adv. Nonlinear Stud., 16 (2016), 581–601. https://doi.org/10.1515/ans-2015-5046 doi: 10.1515/ans-2015-5046
    [23] J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 20 (1971), 1077–1092. https://doi.org/10.1512/iumj.1971.20.20101 doi: 10.1512/iumj.1971.20.20101
    [24] Q. A. Ngô, V. H. Nguyen, Supercritical Moser-Trudinger inequalities and related elliptic problems, Calc. Var. Partial Differ. Equ., 59 (2020), 69. https://doi.org/10.1007/s00526-020-1705-y doi: 10.1007/s00526-020-1705-y
    [25] S. Pohožaev, The Sobolev embedding in the special case $pl = n$, Moscow. Energet. Inst., (1965), 158–170.
    [26] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.
    [27] P. Roy, On attainability of Moser-Trudinger inequality with logarithmic weights in higher dimensions, Discrete and Continuous Dynamical Systems, 39 (2019), 5207–5222. https://doi.org/10.3934/dcds.2019212 doi: 10.3934/dcds.2019212
    [28] P. Roy, Extremal function for Moser–Trudinger type inequality with logarithmic weight, Nonlinear Anal.-Theor., 135 (2016), 194–204. https://doi.org/10.1016/j.na.2016.01.024 doi: 10.1016/j.na.2016.01.024
    [29] B. Ruf, F. Sani, Ground States for Elliptic Equations in $\mathbb{R}^2$ with Exponential Critical Growth, Geometric properties for parabolic and elliptic PDE'S, (2013), 251–267. https://doi.org/10.1007/978-88-470-2841-8_16 doi: 10.1007/978-88-470-2841-8_16
    [30] Y. R. Santaria-Leuyacc, Nonlinear elliptic equations in dimension two with potentials which can vanish at infinity, Proyecciones, 38 (2019), 325–351. https://doi.org/10.4067/S0716-09172019000200325 doi: 10.4067/S0716-09172019000200325
    [31] Y. R. Santaria-Leuyacc, Standing waves for quasilinear Schrödinger equations involving double exponential growth, AIMS Math. 8 (2023), 1682–1695. https://doi.org/10.3934/math.2023086 doi: 10.3934/math.2023086
    [32] S. H. M. Soares, Y. R. S. Leuyacc, Hamiltonian elliptic systems in dimension two with potentials which can vanish at infinity, Commun. Contemp. Math., 20 (2018), 1750053. https://doi.org/10.1142/S0219199717500535 doi: 10.1142/S0219199717500535
    [33] S. H. M. Soares, Y. R. S. Leuyacc, Singular Hamiltonian elliptic systems with critical exponential growth in dimension two, Math. Nachr., 292 (2019), 137–158. https://doi.org/10.1002/mana.201700215 doi: 10.1002/mana.201700215
    [34] M. de Souza, J. M. do Ó, On a class of singular Trudinger-Moser type inequalities and its applications, Math. Nachr. 284 (2011), 1754–1776. https://doi.org/10.1002/mana.201000083 doi: 10.1002/mana.201000083
    [35] N. Trudinger, On embedding into Orlicz spaces and some applications, J. Math. Mech., 17 (1967), 473–483. https://doi.org/10.1512/iumj.1968.17.17028 doi: 10.1512/iumj.1968.17.17028
    [36] M. Willem, Minimax Theorems, Boston: Birkhäuser, 1996.
    [37] V. Yudovich, Some estimates connected with integral operators and with solutions of elliptic equations, Dokl. Akad. Nauk SSSR, 138 (1961), 805–808.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1064) PDF downloads(86) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog