Given a finite group $ G $ with the identity $ e $, the TI-power graph (trivial intersection power graph) of $ G $ is an undirected graph with vertex set $ G $, in which two distinct vertices $ x $ and $ y $ are adjacent if $ \langle x\rangle\cap \langle y\rangle = \{e\} $. In this paper, we obtain closed formulas for the metric and strong metric dimensions of the TI-power graph of a finite group. As applications, we compute the metric and strong metric dimensions of the TI-power graph of a cyclic group, a dihedral group, a generalized quaternion group, and a semi-dihedral group.
Citation: Chunqiang Cui, Jin Chen, Shixun Lin. Metric and strong metric dimension in TI-power graphs of finite groups[J]. AIMS Mathematics, 2025, 10(1): 705-720. doi: 10.3934/math.2025032
Given a finite group $ G $ with the identity $ e $, the TI-power graph (trivial intersection power graph) of $ G $ is an undirected graph with vertex set $ G $, in which two distinct vertices $ x $ and $ y $ are adjacent if $ \langle x\rangle\cap \langle y\rangle = \{e\} $. In this paper, we obtain closed formulas for the metric and strong metric dimensions of the TI-power graph of a finite group. As applications, we compute the metric and strong metric dimensions of the TI-power graph of a cyclic group, a dihedral group, a generalized quaternion group, and a semi-dihedral group.
[1] | J. Abawajy, A. Kelarev, M. Chowdhury, Power graphs: A survey, Electron. J. Graph Theory Appl. 1 (2013), 125–147. https://doi.org/10.5614/ejgta.2013.1.2.6 |
[2] | S. Bera, On the intersection power graph of a finite group, Electron. J. Graph Theory Appl., 6 (2018), 178–189. https://doi.org/10.5614/ejgta.2018.6.1.13 doi: 10.5614/ejgta.2018.6.1.13 |
[3] | I. Chakrabarty, S. Ghosh, M. K. Sen, Undirected power graphs of semigroups, Semigroup Forum, 78 (2009), 410–426. https://doi.org/10.1007/s00233-008-9132-y doi: 10.1007/s00233-008-9132-y |
[4] | G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0 |
[5] | M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, New York: Freeman, 1979. |
[6] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191–195. |
[7] | C. Hernando, M. Mora, I. M. Pelayo, C. Seara, D. R. Wood, Extremal graph theory for metric dimension and diameter, Electron. J. Combin., 17 (2010), R30. https://doi.org/10.37236/302 doi: 10.37236/302 |
[8] | A. V. Kelarev, Ring Constructions and Applications, Singapore: World Scientific, 2002. |
[9] | A. V. Kelarev, J. Ryan, J. Yearwood, Cayley graphs as classifiers for data mining: The influence of asymmetries, Discrete Math., 309 (2009), 5360–5369. https://doi.org/10.1016/j.disc.2008.11.030 doi: 10.1016/j.disc.2008.11.030 |
[10] | A. V. Kelarev, S. J. Quinn, A combinatorial property and power graphs of groups, in: Contributions to General Algebra 12 (Vienna, 1999), Verlag Johannes Heyn, Klagenfurt, 229–235, 2000. |
[11] | A. Kumar, L. Selvaganesh, P. J. Cameron, T. T. Chelvam, Recent developments on the power graph of finite groups-a survey, AKCE Int. J. Graphs Combin., 18 (2021), 65–94. https://doi.org/10.1080/09728600.2021.1953359 doi: 10.1080/09728600.2021.1953359 |
[12] | D. Kuziak, I. G. Yero, J. A. Rodríguez-Velázquez, On the strong metric dimension of the strong products of graphs, Open Math., 13 (2015), 64–74. https://doi.org/10.1515/math-2015-0007 doi: 10.1515/math-2015-0007 |
[13] | H. Li, J. Chen, S. Lin, Forbidden subgraphs of TI-power graphs of finite groups, Open Math., to appear. |
[14] | H. Li, X. Ma, R. Fu, Finite groups whose intersection power graphs are toroidal and projective-planar, Open Math., 19 (2021), 850–862. https://doi.org/10.1515/math-2021-0071 doi: 10.1515/math-2021-0071 |
[15] | X. Ma, M. Feng and K. Wang, The strong metric dimension of the power graph of a finite group, Discrete Appl. Math. 239 (2018), 159–164. https://doi.org/10.1016/j.dam.2017.12.021 |
[16] | X. Ma, R. Fu, Metric and strong metric dimension in intersection power graphs of finite groups, Commun. Algebra, 2024. https://doi.org/10.1080/00927872.2024.2423267 |
[17] | X. Ma, L. Li, G. Zhong, Perfect codes in proper intersection power graphs of finite groups, Appl. Algebra Eng. Commun. Comput., 2023. https://doi.org/10.1007/s00200-023-00626-2 |
[18] | R. Nikandish, M. J. Nikmehr, M. Bakhtyiari, Metric and strong metric dimension in cozero-divisor graphs, Mediterr. J. Math., 18 (2021), 112. https://doi.org/10.1007/s00009-021-01772-y doi: 10.1007/s00009-021-01772-y |
[19] | O. R. Oellermann, J. Peters-Fransen, The strong metric dimension of graphs and digraphs, Discrete Appl. Math., 155 (2007), 356–364. https://doi.org/10.1016/j.dam.2006.06.009 doi: 10.1016/j.dam.2006.06.009 |
[20] | H. E. Rose, A Course on Finite Groups, Berlin: Springer, 2009. |
[21] | P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559. |
[22] | A. Sebő, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29 (2004), 383–393. https://doi.org/10.1287/moor.1030.0070 doi: 10.1287/moor.1030.0070 |
[23] | L. Zhai, X. Ma, Y. Shao, G. Zhong, Metric and strong metric dimension in commuting graphs of finite groups, Commun. Algebra, 51 (2023), 1000–1010. https://doi.org/10.1080/00927872.2022.2118761 doi: 10.1080/00927872.2022.2118761 |